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Biological questions

➢ Main idea:

• If you look for candidate genes correlated with a given phenotype it is better to look for

interesting gene groups first.

• Grouping the genes into biological predefined clusters can be seen as a filtering: genes

from the same group share the same biology.

➢ Analysis steps:

1. Derive score for genes (p-value, t-statistic, even gene expression value itself).

2. Map genes to biological groups and compute significance of these groups using a suitable

test statistic.

3. Screen the significant biological groups for candidate genes.

➢ Advantages:

• Easier to find biologically related genes sharing the same pattern.

• Fewer groups to be investigated for differential expression than individual genes.

• Easier to find genes with sensible small change in expression.
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Gene Ontology

• The Gene Ontology (GO) is a

controlled vocabulary to describe

gene and gene product attributes

(http://www.geneontology.org/)

• Three Ontologies

Molecular Function (7825 terms)

Biological Process (13860 terms)

Cellular Component (1993 terms)

• Relations between GO terms are

displayed in directed acyclic graphs transcription factor activity

DNA binding

transcription regulator activity

molecular function

nucleic acid binding

Gene Ontology

binding



Gene Ontology

• Genes known to be associated with some

attributes are mapped to corresponding

GO terms

• Inheritance

Each gene associated with some term is

also mapped to all its ancestors

• Overlap exists also between unrelated

terms

• Not every gene belongs to a leave node

{genes in the leaves} 6= {genes in the root}



GO Analysis

• Most current tools for GO analysis use tests based on Gene

Set Enrichment

Khatri and Draghici (2005), Rivals et al. (2006)

• Testing thousands of GO terms requires some adjustment for

multiple testing

• Recent approaches incorporate the special structure of the

Gene Ontology

– Decorrelating the GO (elim, weight), Alexa et al. (2006)

– Parent-child approach, Grossmann et al. (2007)

– Focus-level approach, Goeman and Mansmann (2008)



Gene sets enrichment

➢ Group enrichment : given a gene group with some biological function, analyse the positions of

these genes in the ordered list . The gene group is relevant, if all genes are among the top

genes in the ordered list .

➢ Idea: Sort genes according to some score (diff. expression) and investigate the ranks of the

members of group A (the biological function) in this list.

➢ Define cutoff and count members of group A below and above cutoff. Basically, one wants to

compare the following ratios:
K

N
≤

x

M
.

N (gene on the microarray) M (genes in group)

K N-K x-Mx
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GO scoring: general problem

Given:

• a directed acyclic graph (GO graph) and a set of items (genes) s.t.:

– each node in the graph contains some genes

– the parent of a node contains all the genes of its child

– a node can contain genes that are not found in the children

• a subset of genes that we call significant genes (differentially expressed genes)

Goal:

• find the nodes from the graph (biological functions) that best represent the sig-

nificant genes w.r.t some scoring function (some test statistic)
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GO independence assumption

GO:0006066
<0.056232>

GO:0006082
<0.605731>

GO:0006629
<0.018155>

GO:0006631
<0.034009>

GO:0006636
<0.000137>

GO:0006690
<0.000251>

GO:0006694
<0.010300>

GO:0006950
<0.008965>

GO:0006952
<1.69e−19>

GO:0006955
<7.24e−19>

GO:0007154
<0.000114>

GO:0007165
<0.000156>

GO:0007242
<0.000281>

GO:0007275
<0.928984>

GO:0007582
<0.518213>

GO:0008150
<1.000000>

GO:0008152
<0.682324>

GO:0008202
<0.028348>

GO:0008610
<0.003199>

GO:0009058
<0.332307>

GO:0009059
<0.316679>

GO:0009581
<0.922100>

GO:0009595
<2.17e−05>

GO:0009596
<2.28e−06>

GO:0009605
<0.231742>

GO:0009607
<1.20e−17>

GO:0009613
<2.59e−05>

GO:0009653
<0.526024>

GO:0009887
<0.637777>

GO:0009987
<0.486926>

GO:0016125
<0.002279>

GO:0016126
<4.50e−05>

GO:0019752
<0.595263>

GO:0019882
<1.94e−15>

GO:0019883
<7.14e−05>

GO:0019884
<9.95e−14>

GO:0019886
<1.02e−12>

GO:0030097
<0.000492>

GO:0030333
<6.10e−14>

GO:0043170
<0.327698>

GO:0050874
<4.75e−06>

GO:0050896
<1.89e−06>

Note: The coloring of the nodes represent the relative significance of the GO terms: dark red is the most

significant, light yellow is the least significant from the graph
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The elim method

The main idea: Test how enriched node x is if we do not consider the genes from its significant

children (x.ch[2] in our case).

Algorithm:

1. The nodes are processed bottom-up. This assures that

all children of node x were investigated before node x

itself.

2. Let removed(x) be the set of genes that were removed

in a previous step by a node in the lower subgraph in-

duced by node x. Then

genes(x) <−− genes(x) − removed(x).

3. The p-value for node x is computed using Fisher’s exact

test.

4. If node x is found significant, we remove all the genes

mapped to this node, from all its ancestors.

x

x.ch[1]
 p-val = 0.89

x.ch[2]
 p-val = 1e-5

x.ch[3]
 p-val = 0.03
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elim result

GO:0006066
<0.056276>

GO:0006082
<0.605906>

GO:0006629
<0.018181>

GO:0006631
<0.034032>

GO:0006636
<0.000137>

GO:0006694
<0.010306>

GO:0006950
<0.043997>

GO:0006952
<0.038530>

GO:0006955
<3.01e−14>

GO:0007154
<0.000115>

GO:0007165
<0.000157>

GO:0007582
<0.891345>

GO:0008150
<1.000000>

GO:0008152
<0.683392>

GO:0008202
<0.028368>

GO:0008610
<0.003202>

GO:0009058
<0.332579>

GO:0009059
<0.316898>

GO:0009581
<0.998927>

GO:0009595
<1.000000>

GO:0009596
<2.29e−06>

GO:0009605
<0.526431>

GO:0009607
<0.101011>

GO:0009613
<0.000696>

GO:0009987
<0.488090>

GO:0016125
<0.002281>

GO:0016126
<4.50e−05>

GO:0019752
<0.595439>

GO:0019882
<0.000124>

GO:0019883
<7.14e−05>

GO:0019884
<9.96e−14>

GO:0019886
<1.02e−12>

GO:0030333
<0.000734>

GO:0043170
<0.328277>

GO:0050874
<0.998860>

GO:0050896
<0.983638>

Top 10 significant node (the boxes) obtained with method elim

Adrian Alexa Munich, November 29th, 2007 –12–



The weight method

➢ We want to decide if node x is better representing the list of interesting genes (is more

enriched) than any other node from its neighborhood.

➢ The main idea: Associate single genes mapped to a node with weights that denote their

relevance. The elim algorithm uses 0-1 weights.

Algorithm:

1. Compute the p-value of node x with its current

weights. Initially all its genes have weight 1.

2. CASE I: Look at the children that are more signif-

icant than node x (x.ch[1] and x.ch[4]). These

children are local optima (colored with red).

3. For each such child down-weight all genes mapped

to it in all the ancestors of node x, including x.

Mark these children and GOTO step 1.

x.ch[1]
 p-val = 1e-15

x.ch[2]
 p-val = 1e-2

x.ch[3]
 p-val = 1e-9

x.ch[4]
 p-val = 1e-20

x.ch[5]
 p-val = 1e-6

x.par[1]

x

x.par[2] x.par[3]

x.ch[1]
 p-val = 1e-15

x.ch[2]
 p-val = 1e-2

x.ch[3]
 p-val = 1e-9

x.ch[4]
 p-val = 1e-20

x.ch[5]
 p-val = 1e-6

x.par[1]

x
 p-val = 1e-10

x.par[2] x.par[3]
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The weight method

4. CASE II: If no child of node x has a p-value less

than the current p-value of node x then node x is

a local optimum.

5. The genes in these children are down-weighted

and the p-values for these nodes are recomputed

with the new updated weights.

6. The processing of node x terminates. Its p-value

can be changed later, when node x is treated as a

child of another node.

x.ch[1]
 p-val = 1e-15

x.ch[2]
 p-val = 1e-2

x.ch[3]
 p-val = 1e-9

x.ch[4]
 p-val = 1e-20

x.ch[5]
 p-val = 1e-6

x.par[1]

x
 p-val = 1e-8

x.par[2] x.par[3]

x.ch[1]
 p-val = 1e-15

x.ch[2]
 p-val = 1e-2

x.ch[3]
 p-val = 1e-9

x.ch[4]
 p-val = 1e-20

x.ch[5]
 p-val = 1e-6

x.par[1]

x
 p-val = 1e-7

x.par[2] x.par[3]

x.ch[1]
 p-val = 1e-15

x.ch[2]
 p-val = 1

x.ch[3]
 p-val = 1e-9

x.ch[4]
 p-val = 1e-20

x.ch[5]
 p-val = 1e-3

x.par[1]

x
 p-val = 1e-7

x.par[2] x.par[3]
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The weight method

➢ The p-value of a node is computed by applying Fisher’s exact test on a weighted contingency

table. The quantity

|sigGenes ∩ genes(u)|

is replaced with
2

6

6

6

X

i∈{sigGenes ∩ genes(u)}

weight[i]

3

7

7

7

.

➢ The weights for node x and one of its children are obtained by

sigRatio(ch, x) =
log(p-value(ch))

log(p-value(x))
or sigRatio(ch, x) =

p-value(x)

p-value(ch)

If sigRatio() > 1 then node ch is more significant than its parent, node x.

➢ The weights are updated using vector operators: minimum on the components, the product of

the components, etc.
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weight result

GO:0006066
<0.785504>

GO:0006082
<0.999043>

GO:0006629
<0.869460>

GO:0006631
<0.711396>

GO:0006636
<0.000137>

GO:0006690
<0.000571>

GO:0006694
<0.831932>

GO:0006950
<0.956915>

GO:0006952
<4.00e−16>

GO:0006955
<0.001195>

GO:0007154
<0.236831>

GO:0007165
<0.166516>

GO:0007166
<0.503071>

GO:0007167
<0.000754>

GO:0007242
<0.000591>

GO:0007582
<0.999998>

GO:0008150
<1.000000>

GO:0008152
<1.000000>

GO:0008202
<0.519796>

GO:0008610
<0.892080>

GO:0009058
<0.999973>

GO:0009059
<0.999917>

GO:0009267
<0.000685>

GO:0009581
<0.997752>

GO:0009595
<0.108846>

GO:0009596
<2.28e−06>

GO:0009605
<0.999917>

GO:0009607
<0.631876>

GO:0009613
<0.016128>

GO:0009987
<0.999955>

GO:0009991
<0.333623>

GO:0016125
<0.055872>

GO:0016126
<4.50e−05>

GO:0019752
<0.998991>

GO:0019882
<5.42e−13>

GO:0019884
<0.055314>

GO:0019886
<0.055325>

GO:0030333
<0.054835>

GO:0042594
<0.000685>

GO:0043170
<0.999990>

GO:0050874
<0.999866>

GO:0050875
<1.000000>

GO:0050896
<0.999900>

Top 10 significant node (the boxes) obtained with method weight
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Algorithms review

➢ classic algorithm

• Calculate significance of each GO term independently.

• Adjust pvalues for multiple testing (Bonferroni, FDR, etc.).

• Kolmogorov-Smirnov test can easily be used in this case

➢ elim algorithm

• Nodes are processed bottom-up in the GO graph.

• It iteratively removes the genes annotated to significant GO terms from more general GO terms.

• Intuitive and simple to interpret.

➢ weight algorithm

• The genes obtain weights that denote the gene relevance in the significant nodes.

• To decide if a GO term u better represents the interesting genes, the enrichment score of node u is

compared with the scores of its children.

• Children with a better score than u better represent the interesting genes; their significance is

increased

• Children with a lower score than u have their significance reduced.
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Influence of the p-values adjustment

➢ We had performed a two-stage analysis:

1. A cutoff is chosen based on the distribution of the genes’

scores (p-values adjustment problem). Genes above the

cutoff are called DE genes.

2. The enrichment of a set of genes (GO term) is tested

based on test statistics that depend on the list of DE genes.

➢ Problem:

• In real-life cases the list of DE genes contains only a small

fraction of truly DE genes.

• Is the result of the enrichment analysis hampered by the

choice of the cutoff?

➢ Results:

• k = 515 DE genes (all genes with FDR-adjusted p-value

p ≤ 0.01).

• Variating the cutoff value does not significantly change the

order of the most significant GO terms (only small swaps

between the GO terms)
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Evaluation on simulated data

➢ We use the GO graph structure (2311 nodes), and all the genes from HGU95aV2 Affymetrix

chip (9623 mapped to the GO graph)

➢ Select only the nodes that have the no. of mapped genes in some range (10 . . . 100)

➢ Choose randomly a number of nodes (50 in our case) from the selected nodes. These nodes

represent the enriched nodes.

➢ Set as significant genes all the genes from the enriched nodes.

➢ Some noise can be introduce:

• Pick 10% from all significant genes

• Remove them from the significant list

• Replace the genes that we removed with other genes

➢ The goal is to recover as best as possible the enriched nodes.
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Simulated dataset
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Simulated dataset
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Quality of GO scoring methods

Each curve represents the average of the numbers of preselected GO terms, over 100 simulation runs, that

are among the top k GO terms. The left plot represents score0
k and the right plot represents score

1p

k .

10 to 50 genes annotated

10% noise level.
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Parent-Child Approach

• If many differentially expressed genes are annotated to a
GO term it is not surprising that there is also found over-
representation in the more specific descendants of the term

• Compute hypergeometric p-values where the reference gene
population does not consist of all genes m but rather of only
all parental genes mpa(t) of a given GO term t

P (Xt ≥ xt|Xpa(t) = xpa(t)) =

min(xpa(t),mt)∑
k=x

(
mt
k

)(
mpa(t) −mt

xpa(t) − k

)
(

mpa(t)
xpa(t)

)
pa(t): set of parents parents of term t

mt: number of genes annotated to term t

mpa(t): nr. of genes in either union or intersection of genes annotated to parents of t

xt: number of differentially expressed genes annotated to term t

Grossmann et al. (2007)



Parent-Child Approach

• Idea is reverse to elim and weight: Children nodes might only
inherit significance from their more general parents

• Focus lies in more general terms



Simulation Study

Similar simulation setup as in Alexa et al. (2006), but

• Pre-selection of terms that actually can achieve a small p-
value with the parent-child approach

• Overrepresentation of just one term (out of the preselected)

ROC analysis

→ How to design an objective simulation study . . .?



Focus Level Approach

• Again a different idea: Significant terms logically must have

significant ancestor terms

• Relevance of terms is assessed by global tests

(e.g. globaltest or GlobalAncova)

• Multiple testing procedure on the Gene Ontology graph which

controls the family-wise error rate (FWER): Combines closed

testing procedure with correction method of Holm

• Holm correction: very fast but not very efficient

Closed testing procedure: very efficient in case of correlated

test statistics but computationally infeasible



Focus Level Approach

• Choose a focus level – a set of terms H in the middle of the

GO graph (as the level of detail that is of most interest)

• Taking each of the terms in H as root nodes, build subgraphs

that are closed under intersection

• Iterate:

1. Test phase: Test the GO terms in H with global tests and

correct raw p-values by a Holm’s factor (initially |H|)

2. Upward phase: For every hypothesis rejected in the test

phase, reject all ancestors

3. Downward phase: Add those terms to H, for which all pa-

rent hypotheses in the closed subgraphs have been rejected

4. Holm’s phase: Recalculate Holm’s factor as the number of

subgraphs which contain unrejected hypotheses



Focus Level Approach

• Result is a significant subgraph starting from the root

• Leave nodes in the subgraph usually are of most interest
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