— Exploring cDNA Data—

Achim Tresch, Andreas Buness, Wolfgang Huber, Tim BeiBbarth

Practical DNA Microarray Analysis
http://compdiag.molgen.mpg.de/ngfn/pma2005nov. shtml

The following exercise will guide you through the first steps of a spotted cDNA microarray analysis. These
steps comprise loading data into R/Bioconductor, quality control of the measurements, and preprocessing
of the raw data via normalization. Make extensive use of the help(<object>) command to find informa-
tion about particular objects. Use the vignette(<package>) command to get introductory material for
a certain package.

1.) Preliminaries. To go through this exercise, you need to have installed R >= 2.6, the release versions
>=2.1 of the Bioconductor libraries Biobase, cluster, genefilter, marray, multtest, limma, RColorBrewer,
vsn, and arrayMagic.

>
>
>
>
>
>

library("vsn")
library("marray")
library("limma")
library("arrayMagic")
library("cluster")
library("RColorBrewer")

2.) Reading data files.

a.

Your data has to be stored in one folder, with one file corresponding to one sample. Our example
folder is located at <R library path>/arrayMagic/extdata/. Set the working directory path to
that location. With a little luck,

> setwd(system.file("extdata", package = "arrayMagic"))

does the job. The file names are 1c7b047rex.DAT, 1c7b048rex.DAT, ... On the command line,
you can use the commands dir(), getwd() and setwd() to navigate around. In the GUI, you can use
File, Change dir in the menu.

Open the file 1c7b048rex.DAT in a text editor. This is the typical file format for the results from the
image analysis on a cDNA slide. Different image analysis programs use slightly different conventions and
column headings, but we will describe an import method which is suited to the most common software
(Genepix, Spot, ...77).

For a both easy and flexible import of the data, there has to be a description file. The description file
contains a table with all the hybridization data file names in one column and possibly additional sample
information in further columns. Create a tab-delimited text file of this kind. We have done this for you,
the description file is named phenoDataLymphoma.txt. You may examine its structure with any text or
spreadsheet editor. There is a convenient method for converting such a table into a phenoData object.
Ignore all the warnings, which are due to a recent change in the Bioconductor base classes.

> lymphenoData = read.phenoData("phenoDataLymphoma.txt", header = TRUE)

. The phenoData object is used to simulatneously import all data files.

> lymphRaw = readIntensities(pData(lymphenoData), fileNameColumn = "fileName",
+ slideNameColumn = "slideNumber", type = "ScanAlyze")

> lymphNormvsn = normalise (lymphRaw, subtractBackground = T, method = "vsn",
+ spotIdentifier = "SPOT")

> lymphoma = as(as.exprSet (lymphNormvsn), "ExpressionSet")
> setwd (homedir)

3.) The Bioconductor class ExpressionSet.

a. The object lymphoma is now of class ExpressionSet. This class is the standart representation of a
microarray experiment in Bioconductor. It consists of the objects ("slots”). You can get an overview of
the structure of an object using the function str (1ymphoma). Slots can be accessed directly with "@"
(e.g. lymphoma®@phenoData), but one should use the accessor methods for the class ExpressionSet.
See help(ExpressionSet) for details. The most interesting objects to us are the expression matrix,
given by exprs(lymphoma) and the data frame with the phenotype data, pData(lymphoma). Have
a look at them. In older Bioconductor Versions the standart class for microarray data was exprSet,
which still works similarly as ExpressionSet, but is depreciated now. We will use it though, in parts
of this excercise as some packages as e.g. arrayMagic do not support the new class yet.

> dim(exprs(lymphoma)) # genes X samples
[1] 9216 16
> exprs(lymphoma)[1:3, 1:6]
1 2 3 4 5 6
gene #1 4.705011 5.157140 5.3156628 5.970322 6.187813 4.736314

gene #2 6.542351 6.561461 7.373095 6.251734 7.219573 6.471994
gene #3 7.117775 7.051510 7.457064 6.635266 7.733980 7.020954

> dim(pData(lymphoma)) # samples X descriptors
[1] 16 5
> pData(lymphoma)

fileName sampleid tumortype sex slideNumber

1 1c7b047rex.DAT CLL-13 CLL m 1
2 1c7b048rex.DAT CLL-13 CLL m 2

3 1c7b069rex.DAT CLL-52 CLL £ 3

b. You might want to add a column containing the hybridization colour.
> colour = rep(c("red", "green"), 8)
> pData(lymphoma) = cbind(pData(lymphoma), colour)

fileName sampleid tumortype sex slideNumber colour

1 1c7b047rex.DAT CLL-13 CLL m 1 red
2 1c7b048rex.DAT CLL-13 CLL m 2 green

3 1c7b069rex .DAT CLL-52 CLL f 3 red

4.) Simple plots.

a. We will perform some elementary diagnostic plots for quality control. Most analyses are carried out on
the log transformed data, so lymphoma contains (generalized) log transformed expression values. For
convenience, we extract these values into another variable.

> logexpr = exprs(lymphoma)
It is possible to examine each single channel. Produce a histogram and a density plot of the log inten-
sities in channel 1 of slide 1. The command x11() opens a new graphics window.

> chl=logexpr[,1]; ch2=logexpr[,2] # we will need the second channel later

> x11(0)
> plot(hist(chl), main = "Histogram")
> plot(density(chl), main = "Densityplot")

Histogram Densityplot
n
N
S
o
S -
= & 4
S
o
8
® Te]
3 =
c o 2 o
S 37 2
g 8 g
L 8 | o
<
n
(=] (ST
T o
o
o - o S
I T T T T 1 © \ T T T T \
0 2 4 6 8 10 0 2 4 6 8 10
chl N =9216 Bandwidth =0.2011

Some plots that help to detect bad hybridizations. Compare the log intensity boxplots of the slides
> boxplot (split(t(logexpr), 1:ncol(logexpr)), col = as.vector(pData(lymphoma) [,

+ "colour"]), main = "boxplot")
Boxplot g-gplot
N - 3
o _] ;°°e ° e |
SRR LRI} R ET Y g
X N R
R R ©
|| R
o
S <
O I I I R I
4_4.4_4._:_-'-"'14_ d_.l.g'
o °e§ l°lsgt N g
e S e o 3
rT 1T 17T T T T T T T T T T TT T I I I I I
1 3 5 7 9 11 13 15 0 2 4 6 8 10
chl

A convenient way to compare the expression distributions between two samples is a quantile-quantile
plot
> gqplot(chl, ch2, main = "q-q plot")
b. Save one of the plots as a PDF. Copy and paste it into an MS-Office application.
> pdf(file = "savedplot")
> qqplot(chl, ch2, main = "q-q plot")
> dev.off()
c. A more detailed view is provided by a scatter plot and its corresponding M-A plot
> plot(chl,ch2,pch="." ,main="Scatterplot")
> abline(a=0,b=1,col="blue"); abline(a=1,b=1,col="red"); abline(a=-1,b=1,col="red")
> plot((chl+ch2)/2,ch2-chl,pch=".",xlab="A",ylab="M" ,main="M-A plot")
> abline(h=0,col="blue"); abline(h=1,col="red"); abline(h=-1,col="red")

d. We hid one "outlier slide” among the original lymphoma data. Find it using diagnostic plots!

Scatterplot M-A plot

ch2

chl A

5.) Normalization

a. Before we started analysis, we tacitly normalized our data (cf. normalise(lymphraw...)). Try two
other commonly used normalization methods:

lymphNormloess = normalise(lymphRaw, subtractBackground = T,
method = "loess", spotIdentifier = "SPOT")

logexpr2 = as.exprSet(lymphNormloess)

lymphNormquantile = normalise(lymphRaw, subtractBackground = T,
method = "quantile", spotIdentifier = "SPOT")

logexpr3 = as.exprSet (lymphNormquantile)

vV + Vv Vv + V

b. These commands take their time! You can save the results into a file with the save function, and later
restore them with the load function. In MS-Windows, you can use the GUI for the latter.

c. Compare the results of the variance stabilization method to the loess method! Which Plots are appro-
priate for that?

6.) Further data exploration

a. Another explorative tool is clustering of genes, which can be done in many ways. We use k-means
clustering to obtain 50 gene clusters, say.

> set.seed(0)

> palette(rainbow(9))

> result = kmeans(logexpr, centers = 50, iter.max = 30)

> x11()

> par(mfrow = c(3, 3))

> for (j in 1:9) {

+ selection = (1:nrow(logexpr)) [result$cluster J}inj j]

+ plot(c(0, 0), xlim = c(1, 16), ylim = c(min(logexpr[selection,
+ 1), max(logexprl[selection, 1)), type = "n", xlab = "",
+ ylab = "")

+ apply(logexpr[selection,], 1, points, type = "1", col = j)
+ }

b. Due to their pervasive power, heatmaps enjoy high popularity (although they hardly prove anything).
We can produce them in a few lines of R code.

> selectionl = (1:nrow(logexpr))[result$cluster Jinj, 11]

> selection2 = (1:nrow(logexpr)) [result$cluster 7inj 20]

> heatmap (logexpr[c(selectionl[1:20], selection2[1:20]),], col = brewer.pal(10,
+ "RdBu"))

X

gene #381
gene #314
gene #14
gene #570
gene #370
gene #254
gene #33
gene #327
gene #246
gene #569
gene #464
gene #282
gene #573
gene #12
gene #374
gene #416
gene #363
gene #447
gene #414
gene #571
gene #235
gene #196
gene #136
gene #218
gene #206
gene #141
gene #140
gene #130
gene #233
gene #90
gene #138
gene #211
gene #109
gene #144
gene #215
gene #213
gene #212
gene #207
gene #201
gene #209

7.) Further quality assessment
The package arrayMagic provides additional measures for quality control. It produces a bunch of
graphics which are saved as pdf files in your current working directory - you might want to create a new
directory and change into it using setwd() first. Take the time to examine some of them. Have a look
at the vignette arrrayMagicVignette for details before proceeding.

> vignette("arrayMagicVignette")

> gP <- qualityParameters(lymphRaw, lymphNormvsn, resultFileName = "gP.txt",
+ spotIldentifier = "SPOT", slideNameColumn = "fileName")

> qualityDiagnostics (lymphRaw, lymphNormvsn, gqP)

X11
2

> visualiseHybridisations (lymphRaw[, 1], mappingColumns = list(Block = "GRID",
+ Column = "COL", Row = "ROW"))

here are some samples of the output:

slideDistances

Ic7b069rex.DAT

Ic7b070rex.DAT

Ic7b048rex.DAT

Ic7b047rex.DAT

Ic7b058rex.DAT

Ic7b056rex.DAT

Ic7b057rex.DAT

Ic7b019rex.DAT

= = = = = = = =
g 8 8 8 8 3 3 3
8 3 3 8 8 8 g 2
5 IS & & S & s 5
P=] n n n < < ~ ©
(=] (=] (=] (=] (=] (=] (=3 (=]
2 2 2 2 2 2 2 2
S g S g g g g S
5 5 5 5 5 5 5 5

green foreground green background red foreground red background

O

