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Overview

» Classification tasks for microarrays

e Cluster analysis
e Time series example
e Distance measures
o Cluster algorithms

 Comparisons and recommendations
« Estimating the number of clusters
« Assessment of cluster validity
« Comparative study for tumor classification
« Gene selection
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Prediction of labels: Supervised vs. Unsupervised

Unsupervised Supervised
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Distances In Tables of Expression-data
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Classification Tasks for Microarrays

e Classification of SAMPLES

Generate gene expression profiles that can

(i) discriminate between different known cell types or conditions, e.qg.
between tumor and normal tissue,

(i) identify different and previously unknown cell types or conditions, e.g.
new subclasses of an existing class of tumors.

e Classification of GENES

(i) Assign an unknown cDNA sequence to one of a set of known gene
classes.

(i) Partition a set of genes into new (unknown) functional classes on the
basis of their expression patterns across a number of samples.

Cancer classification Class discovery Class prediction
Machine learning Unsupervised learning Supervised learning
Statistics Cluster analysis Discriminant analysis
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Classification Tasks for Microarrays

» Difference between discriminant analysis (supervised
learning) and cluster analysis (unsupervised learning)
IS Important:

e If the class labels are known, many different
supervised learning methods are available. They can
be used for prediction of the outcome of future objects.

o If the class labels are unknown, then unsupervised
learning methods have to be used. For those, it is
difficult to ascertain the validity of inferences
drawn from the output.
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Classification

MESSAGE 1

Discriminant analysis: CLASSES KNOWN

Cluster analysis: CLASSES NOT KNOWN
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Cluster Analysis

e Clustering columns
Grouping similar samples

The gene
expression matrix

e Clustering rows

Grouping genes with similar trajectories
across samples

samples

v

Bi-Clustering

Biclusters Grouping genes that have similar partial
trajectories in a subset of the samples

e Tanay A, Sharan R, and Shamir R (2002):
/ Discovering Statistically Significant Biclusters in
/ Gene Expression Data. Bioinformatics 18, Suppl.1,

sauab
[ }

136-144.

v » Genes and samples both represented as nodes of a
/ _ bipartite graph and connected with weights according
Li,j: expression level to expression of the respective gene and sample.

of gene i in sample | « Then the heaviest subgraph is determined with an
algorithm that runs in polynomial time.
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Cluster Analysis — Distance Measures

e Goal in cluster analysis * Euclidean distance:
Grouping a collection of objects into
subsets or “clusters”, such that those 2
within each cluster are more closely d (X’ y) = \/Z(Xi —Yi )

related to one another than objects
assigned to different clusters.

 Manhattan distance:

e Distance measure

A notion of distance or similarity of two .
objects: When are two objects close to d (X’ y) o Z‘Xi Y ‘

each other?

e Correlation distance:

e Cluster algorithm

A procedure to minimize distances of Z(

objects within groups and/or maximize d(x,y)=1- )( y' y)

- X
distances between groups. \/Z X. —Y) )
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Time series example

Bioloqgy

Measurements of gene
expression on 4
(consecutive) days.

Steep up ......

Statistics

Every gene is coded by a
vector of length 4.

gene expression

steep up: x,=(2,4,5, 6)
up: X, = (2/4, 414, 5/4, 6/4)

change: x,=(2.5,35,4.5,1) 1 2 3 4
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Distance Measures - Time Series Example

Euclidean distance

The distance between two vectors is the square root of
the sum of the squared differences over all

coordinates.

do(X,, X,) = J(2-2/4)? + (4-4/4)% + (5-5/4)% + (6-6/4)% =33/ 4 ~ 2.598

e steep up: X;,=(2,4,5,6)

e up:

e change:

X, = (214, 414, 5/4, 6/4)

X, = (2.5, 3.5, 4.5, 1)
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Distance Measures - Time Series Example

Manhattan distance

The distance between two vectors is sum of the
absolute (unsquared) differences over all coordinates.

dy (X, X,) = |2-2/4|+ |4-4/4|+|5-5/4| +|6-6/4| = 51/4 = 12.75

* steep up: x;=(2,4,5,6) 0 |12.75|13.25| 6.50
* up. Xo = (214, 414,514, 614) 152510 | 2550 | 8.25
: 1325|250 | 0 | 7.75
e change: x,=(2.5,35,451)

650 | 825 | 775 | 0
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Distance Measures - Time Series Example

Correlation distance

Distance between two vectors is 1-p (or 1-|p]|), where p
IS the Pearson correlation of the two vectors.

oy, %) =1 (- DE-D+EDE-D+ENE-D+6- D64
\/(2 D +(E-0)+ D) +(6-Y) \/(421 )2 4 (4-11Y2 4 (5-11)7 1 (8.11)

* steep up: x;=(2,4,5,06) 0 0 2 | 1.18
° up: X, = (2/4, 414, 5/4, 6/4)

0 0 2 1.18

2 2 0 0.82

change: x,=(25,35,45,1) 118 | 1.18 | 082 | 0

Matrix of pairwise distances
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Distance Measures - Time Series Example

Summary

» Euclidean distance measures average difference
across coordinates.

 Manhattan distance measures average
difference across coordinates, in a robust way.

e Correlation distance measures difference with
respect to trends.
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Standardization

Data points (e.g. genes) are normalized with respect to
mean and variance:

Apply transformation X — X%‘ , where i is an estimator
of the mean (usually average across coordinates) and &

IS an estimator of the variation (usually empirical standard
deviation).

After standardization, Euclidean distance and Correlation
distance are equivalent(!): d.(x,X,)° = 2nd. (X, X,)

Standardization makes sense, If one is not interested in
the magnitude of the effects, but in the effect itself. Results
can be misleading for noisy data.
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Distance measures

MESSAGE 2

Appropriate choice of distance measure
depends on your intention!
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Cluster Algorithms

e Types of clustering algorithms:
Combinatorial algorithms, mixture modeling and mode seeking

e Popular algorithms for clustering microarray data:
» Hierarchical clustering
 K-means
 PAM (Partitioning around medoids)
 SOMs (Self-Organizing Maps)

« K-means and SOMs take original data directly as input:
Attributes are assumed to live in Euclidean space.

« Hierarchical cluster algorithms and PAM allow the choice of a
dissimilarity matrix d, that assigns to each pair of objects x; and
X; a value d(x;,x;) as their distance.
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Hierarchical Clustering

« Hierarchical clustering was the first algorithm used in
microarray research to cluster genes (Eisen et al. (1998)).

1. First, each object is assigned to its own cluster.
2. Iteratively:

* the two most similar clusters are joined, representing a
new node of the clustering tree. The node is computed
as average of all objects of the joined clusters,

 the similarity matrix is updated with this new node
replacing the two joined clusters.

3. Step 2 is repeated until only one single cluster remains.
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Hierarchical Clustering

e Calculation of distance d(G,H) between clusters G and H
IS based on object dissimilarity between the objects from

the two clusters:

* Single linkage uses the smallest distance: d.(G,H)= r(r;uan
ieG, je

- Complete linkage uses the largest distance: d¢(G,H)= max d,

ieG, jeH
2 2.0

H ieG jeH

« Average linkage uses the average distance: d,(G,H) =

 Alternative to agglomerative clustering: Divisive clustering:
Iteratively, best possible splits are calculated.
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Hierarchical Clustering

 Visualization of hierarchical clustering with dendrogram:
» Clusters that are joined are combined by a line.
* Height of line is average distance between clusters.
» Cluster with smaller variation typically plotted on left side.

* Procedure provides a hierarchy of clusterings, with the
number of clusters ranging from 1 to the number of objects.

« BUT:
« Parameters for distance matrix: n(n-1)/2
« Parameters for dendrogram: n-1.

—> Hierarchical clustering does not show the full picture!
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Hierarchical Clustering

 Visualization with heat map
and dendrogram

e Leukemia dataset:
Chiaretti et al. (2004): Gene expression
profile of adult T-cell acute lymphocytic
leukemia identities distinct subsets of
patients with different response to therapy
and survival. Blood 103(7):2771-8.

Practical Microarray Analysis
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Hierarchical Clustering

 Visualization with heat map
and dendrogram

Leukemia dataset:

Chiaretti et al. (2004). Gene expression
profile of adult T-cell acute lymphocytic
leukemia identities distinct subsets of
patients with different response to therapy
and survival. Blood 103(7):2771-8.

Interest in specific genes:

If you search for genes that are co-
regulated with a specific gene of
your choice, DO SO!

Don’t do clustering, but generate a
list of genes close to your gene
with respect to a distance of your
choice.

Practical Microarray Analysis

Euclidean distance of clusters at the time they are joint/split
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Time Series Example

e Euclidean distance

Similar values are clustered Cluster Dendrogram
together
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Time Series Example

e Manhattan distance

Similar values are clustered Cluster Dendrogram
together (robust)
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Time Series Example

e Correlation distance

Similar trends are clustered Cluster Dendrogram
together
0 |
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Cluster Algorithms — K-means

 K-means is a partitioning algorithm with a prefixed number k of
clusters. It tries to minimize the sum of within-cluster-variances.

* The algorithm chooses a random sample of k different objects as
initial cluster midpoints. Then it alternates between two steps until
convergence:

1. Assign each object to its closest of the k midpoints with respect
to Euclidean distance.

2. Calculate k new midpoints as the averages of all points
assigned to the old midpoints, respectively.

 K-means is a randomized algorithm, two runs usually produce
different results. Thus it has to be applied several times to the same
data set and the result with minimal sum of within-cluster-variances
should be chosen.

Practical Microarray Analysis Tim Beissbarth Clustering
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K-Means Clustering

1. Choose . Compute
Number of ®sge® CR : p _
Clusters (3) o ‘e new Cluster-

]
and random ° means
Cluster- based on the
means. o, % new
clusters..

Assign Data-
points to the

( _ 4.  Assign Data-
respective points to the
cluster with

new cluster
the closest means..
mean.

5.—n lterate 3. and 4. until the

clusters do not change any

more. o
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Cluster Algorithms — Self-Organizing Maps

e SOM'’s are similar to k-means,
but with additional constraints.

e Mapping from input space onto
one or two-dimensional array of
k total nodes.

e [teration steps (20000-50000):
» Pick data point P at random

 Move all nodes in direction of P,
the closest node in network
topology most, the further a
node is in network topology, the
less

« Decrease amount of movement Data point  Node (cluster prototypes)
with iteration steps

Tamayo et al. (1999): First use of SOM’s
for gene clustering from microarrays
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Cluster Algorithms - PAM

 PAM (Partitioning around medoids, Kaufman and Rousseeuw
(1990)) is a partitioning algorithm, a generalization of k-means.

e For an arbitrary dissimilarity matrix d it tries to minimize the sum
(over all objects) of distances to the closest of k prototypes.

n

« Objective function: J:I{lmk d(i,m;)  (d: Manhattan, Correlation, ...)

e BUILD phase: Initial 'medoids’.

SWAP phase: Repeat until convergence:

« Consider all pairs of objects (i,j), where i is a medoid and j not, and make
the 1 € j swap (if any) which decreases the objective function most.
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Clustering Time Series - Literature Example

lyer et al.,
Science,
Jan 1999:

Genes from
functional
classes are
clustered
together
(sometimes!)

Careful
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neccessary!

15 min
3} riry
1hr
2hr

4 hr

& hr
Ahr

12 hr
16 br
200
24 br
unsynG

O hr

HOR1

EST Moderately similar te CAM kinage || &
EST Moderately similar to CAM kinags || &
Mr profein knase

KIT

IGFBRI

Pyats
Pf{?

EST highly similar by opid birding protein
::S&!"lghly similar by opiold binding protein

HET1
LTarz

A Signal transduction

ATF3
C-FOS
EGR1
DECT
TEG
TEG
RAINOE

JUNE
CPBREKLF
Y

D3

D2
ME-IL3A

Fulattve O binding profein A0
HIW-1 Enhancer binding protain - 2
ET5:

ETS2
Immediate-early transcription factors

HIF11E

HIF11E

Pre-B-cell Bukamia ransenplon fackes-3
HERFZ

[E]]

MEIST

LDE1

AHR

HSF prolen 2
De2

ERF2
ERF2
ERF2
FREAL-Z

C Other transcription factors

3

Kipz
Hipd
OXE Irfibkor p1B
'WEE{Ake prolain kinase
ER

Fro-B-call kekemia Transaription i3

DA jopoisormorass B o
D Inpoisomarass B
Eil:\lc I_mn:l:;n:k soninod protein Madp

A Cell cyele and prodiferation

THED
Faclor Il
Faclar Il
Endoihalin 4
FLALR
o
o
]
TFPIZ
TFPIZ
B Coagulation and hemostasis
CoOx3
L2
MF 2
=
L1l
MCF1
E0F1
L&
c Inflammation

CALLANOAD

1 I3
-1k
r

D Angiogenesis

E Tissue remodeling

SFTENT

[EET highiy shmilar 5o a-adducin
CALDT

Dusmoplakin and 1
Wimanin

HHCFATR

B2
HFL1
Sl b2l procursor
[Fs=d

[FiE12
Muiaosnianen -8
MTIL

[Fetaloatinnedn fom cadmum-drealed cels
nain 14

Tumor assaclabed anbgen LS
Hazal shadk cognaks 74 kD prmain
[EET High'y skmilar o GrpE
Pz -F;Cljl cls-rare

-prodyl cls-Tans
proyt cl

Unidentified role in wound healing

[EER!
[EET Highey similar 3o pulaibe microvaseular EDGE1

marasa, minchondriad
mararsa, mdschondria

[HMIS CoA racuclase

IPF iscmorase

IPF Isomarass:

IPP isamaorase

Farncsy-diphcsphaln famesy iranslorarse
L O S

=

esterol biosynthesis

Fold repression
=G =4 =7 1:1 =2 =4

Practical Microarray Analysis

Fold induction
= =8

Fold reprassion

=8>8 >4 >2 1:1 >2 >4

Fold induction
>G5 >B

Tim Beissbarth

Clustering

30



Estimating the Number of Clusters

Internal indices

 Statistics based on within- and between-clusters matrices of sums-of-
squares and on cross-products (Milligan & Cooper (1985): exhaustive
comparison of 30 indices)

o Estimate is number of clusters K that minimizes/maximizes an internal index

Model-based methods

« EM algorithm for Gaussian mixtures, Fraley & Raftery (1998, 2000) and
McLachlan et al. (2001)

Gap statistic

 Resampling method, for each K compare an observed internal index to its
expected value under a reference distribution and look for K which
maximizes the difference (Tibshirani et al., 2001)
Caution: Does not work in high dimensions (e.g. large numbers of genes)

Average silhouette width (Kaufman & Rousseeuw, 1990)
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Estimating the Number of Clusters

» Silhouette plots for clustering Leukemia patients (Chiaretti et al., 2004)

K=2 clusters

n=128 2 clusters C,
j : n] | ave\ECj Si

1: 95| 0.28

2: 33| 0.41

I I I I I |
0.0 0.2 04 0.6 0.8 1.0

Silhouette width s,
Average silhouette width : 0.32

K=3 clusters

Green: Well separated cluster

Practical Microarray Analysis

n=128 3 clusters C,
j: njlavec s

1: 48 | 0.13

2: 47 | 0.06

I 3: 33038

I I I I I |
0.0 0.2 04 0.6 0.8 1.0

Silhouette width s;

Average silhouette width ; 0.17

Red: No clear cluster structure
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Estimating the Number of Clusters

Heuristic approach: Average silhouette width

* For each observation i, define silhouette width s(i) as follows:
» a(i) := average dissimilarity between i and all other points of its cluster.

» For all other clusters C, let d(i,C) := average dissimilarity of i to all
observations of C. Define b(i) := min. d(i,C).

. Define silhouette width: s(i) := (b(i)-a(i)) / max(a(i),b(i)).

« Maximal average silhouette width over all observations can be
used to select the number of clusters.

e Observations with s(i) close to 1 can be considered well-clustered,
observations with s(i)<0 are misclassified.

e The optimal number of clusters cannot be determined in general, as
the quality of a clustering result depends on the concept of a cluster.
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Cluster Validity

 If true class labels are known, the validity of the clustering can

be verified by comparing true class labels and clustering
labels with external cluster indices.

Number of misclassifications
n; = # objects in class i and cluster |

lteratively match best fitting class and
cluster, and sum up numbers of
remaining observations.

Rand index

Probability of randomly
drawing ‘consistent’ pair
of observations.

Rand =

ni1  Ni2 Ny | N1,
Nop M99 nop | N,
N B .
n. :
N1 N2 ngr | Ng.
ni1 No n, | n.
() -1 220/ 6)
i .
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Cluster Validity

* Yeung et al. (Bioinformatics, 2001)

Framework for assessing the quality of algorithms for clustering
genes.

Apply algorithm to data from all but one condition (sample) and use
the remaining condition to assess predictive power of the resulting
clusters (leave-one-out scenario).

* Dudoit and Fridlyand (Genome Biology, 2002)

Resampling method Clest to estimate the number of clusters in a
dataset based on prediction accuracy

e Smolkin and Ghosh (BMC Bioinformatics, 2003)

Cluster stability scores for microarray data in cancer studies based
on subsampling techniques
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Cluster Validity - Comparative Study

e Comparative study for tumor
classification with microarrays:

Comparison of hierarchical
clustering, k-means, PAM and
SOM'’s

Data sets:

Golub et al: Leukemia dataset,
http://www.genome.wi.mit.edu/MPR,

3 cancer classes: 25 acute myeloid
leukemia (AML) and 47 acute
lymphoblastic leukemia (ALL) (9 T-cell
and 38 B-cell), Affymetrix.

Ross et al.: NCI60 cancer dataset,
http://genome-www.stanford.edu/nci60,
9 cancer classes: 9 breast, 6 central
nervous system, 7 colon, 8 leukemia, 8
melanoma, 9 lung, 6 ovarian, 2 prostate,
8 renal, cDNA microarray

Practical Microarray Analysis

» Superiority of k-means with
repeated runs

(Similar for discriminant analysis:
FLDA best, Dudoit et al. 2001)

o Superiority of PAM with
Manhattan distance especially
for noisy data

 Differences depend on the
specific dataset

« Rahnenflhrer (2002): Efficient
clustering methods for tumor
classification with gene expression
arrays, Proceedings of '26th Annual
Conference of the Gesellschatft fir
Klassifikation', Mannheim, July 2002.
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Classification

MESSAGE 3

Simple cluster algorithms work better
In case of little model knowledge!

(But: More sophisticated methods might be
more appropriate with more a priori knowledge)
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Gene Selection

 Preselection of genes

Various approaches for gene selection, especially in supervised learning.

For clustering samples, a practical proceeding is to choose the top 100-200
genes with respect to variance (across samples). This decreases noise and
computation time.

o | B
@0
H— t
om oam
far v} om

Dendrogram for clustering Leukemia patients (Chiaretti et al., 2004)
without gene selection
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Gene Selection

 Preselection of genes

Various approaches for gene selection, especially in supervised learning.

For clustering samples, a practical proceeding is to choose the top 100-200
genes with respect to variance (across samples). This decreases noise and
computation time.

Height
20
l

Dendrogram for clustering Leukemia patients (Chiaretti et al., 2004)
with 100 top variance genes
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Gene Selection

 Preselection of genes

Various approaches for gene selection, especially in supervised learning.

For clustering samples, a practical proceeding is to choose the top 100-200
genes with respect to variance (across samples). This decreases noise and

computation time.

Distance matrices for clustering Leukemia
patients (Chiaretti et al., 2004)
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100 high-variance
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Plot of sample types in first

two principal components
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Component 1
These two components explain 30.39 % of the point variability.

100 high-variance genes

Component 2
0
1

Component 1
These two components explain 44.08 % of the point variability.
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Gene Selection

o Clustering after supervised feature selection

NO! Do not first select genes based on the outcome of some covariable
(e.g. tumor type) and then look at the clustering.

You will ALWAYS find difference w.r.t. your covariable, since this is how you
selected the genes!

Height

ok N TFFE |- IS TFFE

= = om om

Left dendrogram obtained by Right plot shows original labels
1. Random assignment of sample labels

2. Selection of best discriminating genes

3. Clustering with selected genes
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R commands and libraries

library(mva)
» Hierarchical clustering: hclust()
« Kmeans: kmeans()
* Principal components: princomp()

library(cluster)
e PAM: pam()
« Silhouette information: silhouette()

library(cclust)

library(mclust)
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SUMMARY

MESSAGE 1.
Discriminant analysis: CLASSES KNOWN
Cluster analysis: CLASSES NOT KNOWN

MESSAGE 2:
Appropriate choice of distance measure
depends on your intention!

MESSAGE 3:
Simple cluster algorithms work better
In case of little model knowledge!
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