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Biological
 

networks
 

vs. Network
 

Models

Learning
 

Networks
 

from
 

non-interventional
 (=observational)

 
data:

 -
 

Correlation
 

Graphs
 -

 
Gaussian

 
Graphical

 
Models

 -
 

Bayesian
 

Networks

Learning
 

from
 

interventional
 

data:
 -

 
Pruning

 -
 

Nested
 

Effects
 

Models

Topics

“All models
 

are
 

wrong, some
 

of them
 

are
 

useful“
(Edwards Deming, George Box) 
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Which
 

biological
 

Network?
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Transcription
 

Networks
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Transcription
 

Networks

From

 

the

 KEGG 
database
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qualitative

semiquantitative

quantitative

What
 

do the
 

arrows
 

mean?

Do they
 

have
 

a biological
 interpretation?

Best suited
 

for
 

high 
dimensional, noisy

 
data

Which
 

Network
 

Model?
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Correlation
 

Graphs

Coexpression
 

is
 

conveniently
 measured

 
by

 
correlation.
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Correlation
 

close
 

to 1 or
 

-1 strong linear dependence
Correlation close to 0 no or weak linear dependence

(Pearson) Correlation
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Correlation
 

close
 

to 1 or
 

-1 strong linear dependence
Correlation close to 0 no or weak linear dependence

(Pearson) Correlation

?
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Correlation
 

close
 

to 1 or
 

-1 strong linear dependence
Correlation close to 0 no or weak linear dependence

(Pearson) Correlation

?
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Correlation
 

close
 

to 1 or
 

-1 strong linear dependence
Correlation close to 0 no or weak linear dependence
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An expression profile is a collection of expression vectors 
{ Xg

 

= (Xg,s

 

)s

 

є

 

samples

 

, g є
 

Genes }

Correlation graph: Genes are the vertices of the graph and an
 undirected edge (i, j) is drawn

 
if

 
some correlation measure

 (Pearson correlation, Spearman rank correlation, Kendall’s 
tau) between Xi

 

and Xj

 

is sufficiently different from zero.

Advantage: This representation of the marginal dependence 
structure is easy to interpret and can be estimated accurately 
even if 

p         >       N
 the number of features (genes)

 
>   the number of samples

Application: Stuart et al. (Science, 2003) build a graph from 
coexpression

 
across multiple organisms.

Correlation
 

Graphs
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It is impossible to distinguish direct from indirect 
dependence
Three reasons why X, Y , and Z may be highly correlated:

Problems of correlation based approaches

A strong correlation is not a strong evidence for regulatory 
dependence (lots of false positives). But a low correlation is a

 strong evidence for no regulatory dependence.
Possible remedies:

•search for correlations which cannot be explained by other 
variables.
•measure effects of gene perturbations
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In other words:
Knowing Z, knowing Y is irrelevant for knowing X (and vice 
versa).
Z “explains”

 
any observed dependence between X and Y .

Conditional Independence
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Conditional Independence
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Conditional Independence
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Gaussian Graphical Models (GGM)

Do not
 

draw
 

an edge
 

between
 

vertices
 

i and j if
 

and only
 

if
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Foot
 

sizeIn
co

m
e

Foot
 

size
 

Income

gender

Example:

The
 

variable „gender“ explains
 

the
 

correlation
 

of 
foot

 
size

 
and income.

Gaussian Graphical Models (GGM)
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Foot
 

sizeIn
co

m
e

Foot
 

size
 

Income

gender

Example:

The
 

variable „gender“ explains
 

the
 

correlation
 

of 
foot

 
size

 
and income.

Gaussian Graphical Models (GGM)
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Gaussian Graphical Models (GGM)

If we assume that the common expression distribution of all 
genes follows a multivariate Gaussian distribution (which is 
of course ridiculous), conditional independence can be 
assessed as follows: 
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Full conditional relationships can only be accurately estimated if 
the number of samples N is relatively large compared to the 
number of variables p.

Graph from Basso et al (Nat Genet, 2005)

Thus, if p »
 

N, you can . . .
•

 
use the Moore-Penrose 
pseudoinverse, 
bootstrap aggregation 
and shrinkage 
estimators to stabilize 
the result (e.g. Schäfer

 
and 

Strimmer, Bioinformatics´05)
•

 
resort to a simpler 
model that does not 
rely on full conditional 
independence

What if p » N?
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Modified Gaussian Graphical Models (GGM)

Correlation
 

Graphs

GGMs

Wille / Bühlmann

All methods
 

fail
 

to accurately
 

reconstruct
 

networks, 
even

 
if

 
they

 
are

 
of moderate size

 
(~20)
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The common probability distribution of a 
Bayes

 
Net is the product of its local 

probability distributions.

The
 

sprinkler
 

network

J = Season

S = Sprinkler

W = Wet Lawn

R = Rain

pa(J) = ∅pa(S) = {J}
pa(R) = {J}

pa(N) = {S,R}
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Bayesian Networks: Children depend on Parents
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The
 

common
 

distribution
 

of {J,S,R,N} can
 

be
 

coded
 

by
 the

 
graph

 
topology

 
and 3+4+4+4 =15 real numbers:

(instead
 

of 4·2·2·2-1 = 31 real numbers
 

for
 

an arbitrary
 distribution)

Bayesian
 

Networks: The
 

Sprinkler Network



Page 273/3/2008| Achim Tresch

Bayesian
 

Networks

Problems:
Given

 
a directed

 
acyclic

 
graph

 
(DAG), learn

 
the

 
local

 probability
 

distributions
 

and score
 

the
 

DAG 
according

 
to its

 
likelihood

 
(„how

 
good does

 
this

 
graph

 fit the
 

data“?) → Parameter estimation, Bayesian
 Dirichlet

 
metric

 
(Cooper, Herskovits

 
1992)

Find the
 

topology(-ies) of the
 

underlying
 

DAG

The
 

latter
 

point is
 

the
 

crucial
 

problem, since
 

there
 

may
 be

 
DAGs

 
that

 
are

 
equally

 
likely, and there

 
are

 
in 

general
 

zillions
 

of DAGs
 

that
 

score
 

comparably
 

well.
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∑∑
∈Γ∈Γ

ΓΓ∈≈ΓΓ∈=
samplesDAGs

  )|()(
samples#

1  )|()()|( DPeIDPeIDeP

Network
 

identification

Model Selection: 
Find a model

 
wíth

 
maximal (or

 
at least exceptionally

 high) posterior
 

probability
 

P(DAG | Data) and 
assume

 
that

 
this

 
is

 
the

 
true

 
network

 
topology

Model Averaging: 
Draw a large number

 
of random

 
samples

 
Γ from

 
the

 distribution
 

P(Γ |Data) and approximate
 

P(edge
 present

 
| Data) by

 
the

 
sum

→Markov
 

Chain Monte Carlo (MCMC) sampling
 of directed

 
acyclic

 
graphs



Page 293/3/2008| Achim Tresch

Examples
 

of equivalent
 

and non-equivalent
 

graphs

)()|()|()()|()|()()|()|(),,( apcbPacPcPcbPcaPbPbcPcaPcbaP ===

m0 m1 m2

)()(),|(),,( bPaPbacPcbaP =

m3
Each

 
common

 
distribution

 
P(a,b,c), that can be modelled with BN m0 

can
 

also be
 

modelled
 

with
 

m1 and m2 , and vice
 

versa. However
 

there
 exist

 
distributions

 
P(a,b,c), which

 
can

 
be

 
modeled

 
with

 
BN m3 , but

 
not

 with
 

m0 .

Causality
 

in Bayesian
 

Networks: Likelihood
 

equivalence

m1

 

,m2

 

,m3

 

will always
 

obtain
 

the
 

same
 

score
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Conclusion: Learning
 

from
 

observational
 

data

Correct Reconstruction of the complete regulatory 
network is impossible

 
due to

-
 

Lack of data
 -

 
Measurement error

 -
 

Oversimple/wrong model assumptions

Reconstruction of regulatory interactions from 
observational data is merely useful as a screening 
method.
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Learning
 

from
 

interventional
 

data

„true“ 
Model
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Learning
 

from
 

interventional
 

data

observed
 Model
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Pertur-
bation Effect

G1 G2 , G3 , G4 , G5

G2 G3 , G4 , G5

G3 -
G4 G5

G5 -

Pertur-
bation Effect

G1 G2 , G3 , G4 , G5

G2 G3 , G4 , G5

G3 -
G4 G5

G5 -

observations list

Pruning of Gene interaction Graphs

necessarily
 direct

 
interactions

optional, possibly
 indirect

 
interactions

G2G1 G3

G4

G5

Interaction graph
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Given
 

a gene
 

interaction
 

graph, find edges
 

that
 

survive
 Occam‘s

 
razor

 
(14th

 
century):

Is
 

this
 

edge “dispensible” or
 

not?

“non est ponenda pluritas sine necessitate”
 (pluralities ought not to be proposed without necessity)

G2G1 G3

Pruning of Gene interaction Graphs

Need
 

for
 

algorithm
 

to define
 

and find 
minimal consistent

 
and biologically

 
meaningful

 
graph
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•

 

“Trivial”. 
Remove all edges a→b

 
for which there 

exists a bypass (a longer way from a to 
b). [Wagner, 2002]

•

 

“Signs“.  
Let every edge of the observational 
graph hava

 
a sign +1 or –1 according to 

the direction of the regulatory effect.
 Remove a→b

 
if product of all signs 

along the path a→... →b  equals the sign 
of the edge a→b

 
[Tringe

 
et al., 2004]

•

 

“Weights“.  
Let every edge be weighted with a non-

 negative number. Edges with low 
weights are meant to represent edges 
for which there is strong evidence for a 
direct regulatory interaction.

 Remove a→b
 

if sum of the weights 
along the path a→... →b is smaller than 
the weight of the edge a→b

 [Tresch
 

et al.]
Tresch et al, J.Comp.Biol.

a x1 b

Finding non-necessary edges
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Unpruned
 

vs. Pruned Network

The
 

methods
 

do not
 

remove
 

enough
 

edges, 
too

 
many

 
false

 
positives.

 Too
 

many
 

interventions
 

(and replicate
 

measurements
 

of 
them) needed

 
for

 
reliable

 
estimation.
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Nested
 

Effects
 

Models

Information flow
 

through
 

a graph
 

of components
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Information flow
 

through
 

a graph
 

of components

Task: Reconstruct
 

the
 

arrows

Nested
 

Effects
 

Models
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Information flow
 

through
 

a graph
 

of components

Task: Reconstruct
 

the
 

arrows, without
 

measuring
 

all components

Nested
 

Effects
 

Models
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Information flow
 

through
 

a graph
 

of components

Task: Reconstruct
 

the
 

arrows, without
 

measuring
 

all components, 
from

 
noisy

 
observational/interventional

 
data

too
 

ambitious…

Nested
 

Effects
 

Models
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Information flow
 

through
 

a graph
 

of components

Task: Reconstruct
 

the
 

wiring
 

of a small
 

subset
 

of components, 
perform

 
interventions

 
on these

 
components, make

 
use

 
of 

all observable
 

components.

Focus your
 

question

Nested
 

Effects
 

Models
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Actions
 

graph: 
Adjacency

 
matrix

 
Γ

Effects
 

graph:
 Adjacency

 
matrix

 
Θ

Actions

Predicted
 

effects

O
bs

er
va

bl
es 1 0 0

1 1 0

1 1 0

1 1 1
Assumption: 
Each

 
observable

 
is

 
linked

 
to 

exactly
 

one
 

action

Definition of Nested
 

Effects
 

Models

Predicted
 

effect
 

of the
 

leftmost
 

action
 

on the
 bottom

 
observable

 
(0 = no effect, 1 = effect)
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Actions
O

bs
er

va
bl

es
Definition of Nested

 
Effects

 
Models

1 0 0

1 1 0

1 1 0

1 1 1

Why
 

„nested“ ?

█
 

⊇
 

█
 

⊇
 

█

Predicted
 

effects

If
 

the
 

actions
 

graph
 

is
 transitively

 
closed, then

 
the

 effects
 

are
 

nested
 

in the
 sense

 
that

a
 

→ b

implies

effects(a)
 

⊇
 

effects(b)
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a
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Results
 

on simulated
 

Data

4

2

3

1

1

2

3

4

True
 

graphs
 

Γ,Θ

simulated
 measure-
 ments

 
(R)

ideal
 measure-

 ments
 

(ΓΘ)
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Results
 

on simulated
 

Data
True

 
graph Estimated

 
graph

Fr
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y
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0
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0
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0
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Distribution of the
 

likelihoods

12 edges, 212=4096 action
 

graphs, ~ 4seconds
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Application to Drosophila data
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Application to Drosophila data

Scores of the
 top ranked NEMs

Lo
g 

Li
ke

lih
oo

d

Actions
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•
 

graph: basic class definitions and functionality

•
 

RBGL: interface to graph algorithms (e.g. shortest path, 
connectivity)

•
 

Rgraphviz: Different layout algorithms. Node plotting, line 
type, colour etc. can be controlled by the user.

•
 

dynamicGraph: visualize interactive Graphs with TclTK.

•
 

GeneTS: Estimate GGMs
 

from Microarray Data.

•
 

Nessy, nem: Implementation and estimation of the Nested 
Effects Model 

Networks in R/Bioconductor
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•
 

Some Pathway Databases:
•

 
KEGG (http://www.genome.jp/kegg)

•
 

TRANSPATH (http://www.biobase.de)
•

 
Biocarta

 
(http://www.biocarta.com)

•
 

Reactome
 

(http://www.reactome.org)
•

 
HumanCyc

 
(http://humancyc.org)

•
 

Signal Transduktion
 

Knowledge Environment 
(http://stke.sciencemag.org)

•
 

Software tools
•

 
GeneMAPP

 
(www.genemapp.org)

•
 

GoMiner
 

(http://discover.nci.nih.gov/gominer)
•

 
Bioconductor/Graphviz

 
(http://www.bioconductor.org)

•
 

Cytoscape
 

(http://www.cytoscape.org)

Pathways
 

and Visualization
 

Tools

http://www.genome.jp/kegg
http://www.biobase.de/
http://www.biocarta.com/
http://www.reactome.org/
http://humancyc.org/
http://stke.sciencemag.org/
http://www.genemapp.org/
http://discover.nci.nih.gov/gominer
http://www.bioconductor.org/
http://www.cytoscape.org/
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