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1 Preprocessing

We analyse ALL gene expression data from [Chiaretti, S., et al., 2004]. The dataset consists of 128 microarrays
from different patients with ALL. First we load the libraries and the data:

> library(topGO)

> library(ALL)

> data(ALL)

When the topGO package is loaded three new environments GOBPTerm, GOMFTerm and GOMFTerm are created and
binded to the package environment. These environments are build based on the GOTERM environment from package
GO. They are used for fast recovering of the information specific to each ontology. In order to access all GO groups
that belong to a specific ontology, e.g. Biological Process (BP), one can type:

> BPterms <- ls(GOBPTerm)

> str(BPterms)

chr [1:13155] "GO:0000001" "GO:0000002" "GO:0000003" ...

Next we need to load the annotation data. The chip used for the experiment is HGU95aV2 Affymetrix.

> affyLib <- annotation(ALL)

> library(package = affyLib, character.only = TRUE)

Usually one needs to remove genes with low expression value and genes which might have very small variability
across the samples. Package genefilter provides such tools.

> library(genefilter)

> f1 <- pOverA(0.25, log2(100))

> f2 <- function(x) (IQR(x) > 0.5)

> ff <- filterfun(f1, f2)

> eset <- ALL[genefilter(ALL, ff), ]

2 Creating a topGOdata object

The first step when using the topGO package is to create a topGOdata object. This object will contain all information
necessary for the GO analysis, namely the gene list, the list of interesting genes, the scores of genes (if available)
and the part of the GO ontology (the GO graph) which needs to be used in the analysis.

First, we need to define the set of genes that are to be annotated with GO terms. Usually, one starts with all genes
present on the array. In our case we start with 2400 genes, genes that were not removed by the filtering.

> geneNames <- featureNames(eset)

> length(geneNames)

In the next step the user needs to define the list of interesting genes or to compute gene scores that quantify the
significance of the genes. The topGO package deals with these two cases in a unified way. The only difference is the
way the topGOdata object is build.

1



2.1 Predefined list of interesting genes

If the user has some a priori knowledge about a set of interesting genes, he can test the enrichment of GO terms
with regard to this list of interesting genes. In this scenario, when only a list of interesting genes is provided, the
user is restricted to the use of tests statistics that use only counts of genes.

To exemplify this we randomly select 100 genes and consider them as interesting genes.

> myInterestedGenes <- sample(geneNames, 100)

> geneList <- factor(as.integer(geneNames %in% myInterestedGenes))

> names(geneList) <- geneNames

> str(geneList)

Factor w/ 2 levels "0","1": 1 1 2 1 1 1 1 1 1 1 ...
- attr(*, "names")= chr [1:2400] "1005_at" "1007_s_at" "1008_f_at" "1009_at" ...

The object geneList is a named factor that indicates which genes are interesting and which not. It is straight-
forward to compute such a named vector in the situation where a user has his own predefined list of interesting
genes.

Next the topGOdata object is build. The user needs to specify the ontology of interest (BP, MF or CC) and an
annotation function which maps genes/probe IDs to GO terms. The function annFun.hgu contained in the package
is such an annotation function. As long as the user is using Affymetrix chips, this function does not need to be
modified. In other cases the function can be easily modified to comply with the user’s needs.

> GOdata <- new("topGOdata", ontology = "MF", allGenes = geneList,

+ annot = annFUN.hgu, affyLib = affyLib)

Building most specific GOs ..... ( 924 GO terms found. )

Build GO DAG topology .......... ( 1297 GO terms and 1542 relations. )

Annotating nodes ............... ( 2087 genes annotated to the GO terms. )

The initialisation of the GOdata object can take around one minute, depending on the number of annotated genes
and on the chosen ontology (in this example we used MF as the ontology of interest). By typing GOdata, the user
can see the values of some slots.

> GOdata

------------------------- topGOdata object -------------------------

Description:
-

Ontology:
- MF

2400 available genes (all genes from the array):
- symbol: 1005_at 1007_s_at 1008_f_at 1009_at 1020_s_at ...
- 100 significant genes.

2087 feasible genes (genes that can be used in the analysis):
- symbol: 1005_at 1007_s_at 1008_f_at 1009_at 1020_s_at ...
- 92 significant genes.

GO graph:
- a graph with directed edges
- number of nodes = 1297
- number of edges = 1542

------------------------- topGOdata object -------------------------
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Figure 1: The distribution of the gene’s adjusted p-values.

One important point here is that not all the genes that are provided by geneList can be annotated to the GO.
This can be seen by comparing the number of all available genes (the genes present in geneList) with the number
of feasible genes. It is straight forward to use only the feasible genes for the rest of the analysis, since for other
genes no information is available.

The GO graph shows the number of nodes and edges of the specified GO ontology induced by the geneList. This
graph contains only GO terms with at least one annotated feasible gene.

2.2 Using the genes score

In many cases the set of interesting genes can be computed based on a score assigned to all genes, for example
based on the p-value returned by a study of differential expression. In this case, the topGOdata object can store
the genes score and the rule specifying the list of interesting genes. However, the availability of genes scores allows
the user to choose from a larger family of tests statistics to be used in the GO analysis.

A typical example is the study of the ALL dataset where we need to discriminate between ALL cells delivered from
either B-cell or T-cell precursors. There are 95 B-cell ALL samples and 33 T-cell ALL samples in the dataset.

> y <- as.integer(sapply(eset$BT, function(x) return(substr(x,

+ 1, 1) == "T")))

> str(y)

A two-sided t-test can by applied using the function getPvalues. By default the function computes FDR (false
discovery rate) adjusted p-value in order to account for multiple testing. A different type of correction can be
specified using the correction parameter. The distribution of the adjusted p-values is shown in Figure 1.

> geneList <- getPvalues(exprs(eset), classlabel = y, alternative = "greater")

> hist(geneList, br = 50)

Next, a function for specifying the list of interesting genes must be defined. This function needs to select genes
based on their scores (in our case the adjusted p-values) and must return a logical vector specifying which gene is
selected and which not. Also, this function must have one parameter, named allScore and must not depend on
the names attribute of this parameter. For example, if we consider as interesting genes all genes with an adjusted
p-value lower than 0.01, the function will look as follows:

> topDiffGenes <- function(allScore) {

+ return(allScore < 0.01)

+ }



> x <- topDiffGenes(geneList)

> sum(x)

With all these steps done, the user can now build the topGOdata object

> GOdata <- new("topGOdata", ontology = "BP", allGenes = geneList,

+ geneSel = topDiffGenes, description = "GO analysis of ALL data based on diff. expression.",

+ annot = annFUN.hgu, affyLib = affyLib)

Building most specific GOs ..... ( 1285 GO terms found. )

Build GO DAG topology .......... ( 2530 GO terms and 4317 relations. )

Annotating nodes ............... ( 2062 genes annotated to the GO terms. )

Note that the only difference to the case in which we start with a predefined list of interesting genes is the use of
the geneSel parameter. All further analysis depends only on this GOdata object.

3 Working with the topGOdata object

Once the topGOdata object is created the user can use various methods defined for this class to access the infor-
mation encapsulated in the object.

The description slot contains information about the experiment. This information can be accessed or replaced
using the method with the same name.

> description(GOdata)

> description(GOdata) <- paste(description(GOdata), "Object modified on:",

+ format(Sys.time(), "%d %b %Y"), sep = " ")

> description(GOdata)

Methods to obtain the list of genes that will be used in the further analysis or methods for obtaining all gene scores
are exemplified below.

> a <- genes(GOdata)

> str(a)

> numGenes(GOdata)

Next we describe how to retrieve the score of a specified set of genes, e.g. a set of randomly selected genes. If the
object was constructed using a list of interesting genes, then the factor vector that was provided at the building of
the object will be returned.

> selGenes <- sample(a, 10)

> gs <- geneScore(GOdata, whichGenes = selGenes)

> print(gs)

If the user wants an unnamed vector or the score of all genes:

> gs <- geneScore(GOdata, whichGenes = selGenes, use.names = FALSE)

> print(gs)

> gs <- geneScore(GOdata, use.names = FALSE)

> str(gs)

The list of significant genes can be accessed using the method sigGenes().

> sg <- sigGenes(GOdata)

> str(sg)

> numSigGenes(GOdata)



Another useful method is updateGenes which allows the user to update/change the list of genes (and their scores)
from a topGOdata object. If one wants to update the list of genes by including only the feasible ones, one can type:

> .geneList <- geneScore(GOdata, use.names = TRUE)

> GOdata

> GOdata <- updateGenes(GOdata, .geneList, topDiffGenes)

> GOdata

There are also methods available for accessing information related to GO and its structure. First, we want to know
which GO terms are available for analysis and to obtain all the genes annotated to a subset of these GO terms.

> graph(GOdata)

A graphNEL graph with directed edges
Number of Nodes = 2530
Number of Edges = 4317

> ug <- usedGO(GOdata)

> str(ug)

chr [1:2530] "GO:0000002" "GO:0000003" "GO:0000018" ...

Next, we select some random GO terms, count the number of annotated genes and obtain their annotation.

> sel.terms <- sample(usedGO(GOdata), 10)

> num.ann.genes <- countGenesInTerm(GOdata, sel.terms)

> num.ann.genes

> ann.genes <- genesInTerm(GOdata, sel.terms)

> str(ann.genes)

When the sel.terms parameter is missing all GO terms are used. The scores for all genes, possibly annotated
with names of the genes, can be obtained using the method scoresInTerm().

> ann.score <- scoresInTerm(GOdata, sel.terms)

> str(ann.score)

> ann.score <- scoresInTerm(GOdata, sel.terms, use.names = TRUE)

> str(ann.score)

Finally, some statistics for a set of GO terms are returned by the method termStat. As mentioned previously, if
the sel.terms parameter is missing then the statistics for all available GO terms are returned.

> termStat(GOdata, sel.terms)

Annotated Significant Expected
GO:0048625 1 0 0.12
GO:0006582 2 0 0.23
GO:0050674 1 0 0.12
GO:0015674 23 3 2.67
GO:0016477 35 2 4.06
GO:0006892 5 0 0.58
GO:0002495 4 0 0.46
GO:0006356 3 0 0.35
GO:0008610 35 6 4.06
GO:0007015 9 0 1.04



4 The GO analysis

We are now ready to start the GO analysis. The main function is getSigGroups() which takes two parameters.
The first parameter is of class topGOdata and the second parameter is of class groupStats. The topGO package is
designed to work with different test statistics and with multiple GO graph algorithms, see [Alexa, A., et al., 2006].

There are three algorithms implemented in the package: classic, elim and weight. Also there are two types of test
statistics which can be used, test statistics based on gene counts (like Fisher’s exact test) and test statistics based
on the genes scores (like Kolmogorov-Smirnov test). To distinguish between all the algorithms and to secure that
all test statistics are only used with the appropriate algorithms, two classes are defined for each algorithm.

To better understand this principle consider the following example. Assume we decided to apply the classic algo-
rithm. The two classes defined for this algorithm are classicCount and classicScore. If an object of this class
is given as a parameter to getSigGroups() than the classic algorithm will be used. The getSigGroups() function
can take a while, depending on the size of the graph (the ontology used), so be patient.

> test.stat <- new("classicCount", testStatistic = GOFisherTest,

+ name = "Fisher test")

> resultFis <- getSigGroups(GOdata, test.stat)

The algorithm is scoring 1066 nontrivial nodes

According to this mechanism, one first defines a test statistic for the chosen algorithm, in this case classic and then
runs the algorithm (see the second line). The slot testStatistic contains the test statistic function. In the above
example GOFisherTest function which implements Fisher’s exact test and is available in the topGO package was
used. A user can define his own test statistic function and then apply it using the classic algorithm. (For example
a function which computes the Z score can be implemented using as an example the GOFisherTest function.)

For the Kolmogorov-Smirnov (KS) test we have:

> test.stat <- new("classicScore", testStatistic = GOKSTest,

+ name = "KS tests")

> resultKS <- getSigGroups(GOdata, test.stat)

The algorithm is scoring 2530 nontrivial nodes

This time we used the class classicScore. This is done since the KS test needs scores of all genes and in this case
the representation of a group of genes (GO term) is different.

The mechanism presented above for classic also hold for elim and weight with the only remark that for the weight
algorithm no test based on gene scores is implemented. To run the elim algorithm with Fisher’s exact test one
needs to write:

> test.stat <- new("elimCount", testStatistic = GOFisherTest,

+ name = "Fisher test", cutOff = 0.01)

> resultElim <- getSigGroups(GOdata, test.stat)

The algorithm is scoring 1066 nontrivial nodes

Parameters: cutOff = 0.01

Level 15: 1 nodes to be scored (0 eliminated genes)

Level 14: 6 nodes to be scored (0 eliminated genes)

Level 13: 15 nodes to be scored (0 eliminated genes)

Level 12: 20 nodes to be scored (15 eliminated genes)

Level 11: 34 nodes to be scored (15 eliminated genes)



Level 10: 48 nodes to be scored (23 eliminated genes)

Level 9: 94 nodes to be scored (23 eliminated genes)

Level 8: 158 nodes to be scored (177 eliminated genes)

Level 7: 190 nodes to be scored (187 eliminated genes)

Level 6: 190 nodes to be scored (188 eliminated genes)

Level 5: 145 nodes to be scored (235 eliminated genes)

Level 4: 95 nodes to be scored (237 eliminated genes)

Level 3: 54 nodes to be scored (237 eliminated genes)

Level 2: 15 nodes to be scored (243 eliminated genes)

Level 1: 1 nodes to be scored (243 eliminated genes)

Similarly, for the weight algorithm one types:

> test.stat <- new("weightCount", testStatistic = GOFisherTest,

+ name = "Fisher test", sigRatio = "ratio")

> resultWeight <- getSigGroups(GOdata, test.stat)

The algorithm is scoring 1066 nontrivial nodes

Level 15: 1 nodes to be scored.

Level 14: 6 nodes to be scored.

Level 13: 15 nodes to be scored.

Level 12: 20 nodes to be scored.

Level 11: 34 nodes to be scored.

Level 10: 48 nodes to be scored.

Level 9: 94 nodes to be scored.

Level 8: 158 nodes to be scored.

Level 7: 190 nodes to be scored.

Level 6: 190 nodes to be scored.

Level 5: 145 nodes to be scored.

Level 4: 95 nodes to be scored.

Level 3: 54 nodes to be scored.

Level 2: 15 nodes to be scored.

Level 1: 1 nodes to be scored.

Next we look at the results of the analysis. First we need to put all resulting p-values into a list. Then we can use
the genTable function to generate a table with the results.



GO.ID Term Annotated Significant Expected Rank in classic classic KS elim weight
1 GO:0050870 positive regulation of T cell activation 16 8 1.85 11 0.00016 0.00428 0.05294 0.00016
2 GO:0050857 positive regulation of antigen receptor-... 4 4 0.46 12 0.00018 0.00117 0.00018 0.00018
3 GO:0051209 release of sequestered calcium ion into ... 4 4 0.46 13 0.00018 0.00117 0.00018 0.00018
4 GO:0001501 skeletal development 29 11 3.36 19 0.00021 0.00888 0.00021 0.00021
5 GO:0030098 lymphocyte differentiation 28 13 3.25 2 3.8e-06 0.00051 0.05085 0.00104
6 GO:0007417 central nervous system development 35 11 4.06 31 0.00132 0.04715 0.00132 0.00132
7 GO:0001766 lipid raft polarization 3 3 0.35 32 0.00154 0.00761 0.00154 0.00154
8 GO:0002053 positive regulation of mesenchymal cell ... 3 3 0.35 33 0.00154 0.00831 0.00154 0.00154
9 GO:0007435 salivary gland morphogenesis 3 3 0.35 34 0.00154 0.00831 0.00154 0.00154

10 GO:0030854 positive regulation of granulocyte diffe... 3 3 0.35 35 0.00154 0.00596 0.00154 0.00154
11 GO:0048266 behavioral response to pain 3 3 0.35 36 0.00154 0.00596 0.00154 0.00154
12 GO:0042471 ear morphogenesis 6 4 0.70 43 0.00219 0.02311 0.00219 0.00219
13 GO:0007200 G-protein signaling, coupled to IP3 seco... 7 4 0.81 50 0.00464 0.04904 0.00464 0.00464
14 GO:0001759 induction of an organ 4 3 0.46 57 0.00563 0.00959 0.00563 0.00563
15 GO:0046661 male sex differentiation 4 3 0.46 58 0.00563 0.03005 0.00563 0.00563
16 GO:0006007 glucose catabolic process 21 7 2.43 65 0.00715 0.01693 0.00715 0.00715
17 GO:0045061 thymic T cell selection 8 4 0.93 69 0.00844 0.02262 0.00844 0.00844
18 GO:0050863 regulation of T cell activation 18 10 2.09 3 6.9e-06 0.00051 0.00286 0.01270
19 GO:0007586 digestion 6 4 0.70 44 0.00219 0.00992 0.00219 0.01274
20 GO:0007346 regulation of progression through mitoti... 5 3 0.58 78 0.01287 0.01200 0.01287 0.01287

Table 1: Significance of GO terms according to different tests.

> l <- list(classic = score(resultFis), KS = score(resultKS),

+ elim = score(resultElim), weight = score(resultWeight))

> allRes <- genTable(GOdata, l, orderBy = "weight", ranksOf = "classic",

+ top = 20)

allRes is a data.frame containing the top 20 GO terms identified by the weight algorithm (see orderBy parameter).
This parameter allows the user decide which p-values should be used for ordering the GO terms. The table includes
some statistics on the GO terms plus the p-values obtained from the other algorithms/test statistics. Table 1 shows
the results.

We can take a look at the p-values computed by each algorithm, see Figure 2:

> par(mfrow = c(2, 2))

> for (nn in names(l)) {

+ p.val <- l[[nn]]

+ hist(p.val[p.val < 1], br = 50, xlab = "p values",

+ main = paste("Histogram for method:", nn, sep = " "))

+ }

Another insightful way of looking at the results of the analysis is to investigate how the significant GO terms are
distributed over the GO graph. For each algorithm the subgraph induced by the most significant GO terms is
plotted. In the plots, the significant nodes are represented as boxes. The plotted graph is the upper induced graph
generated by these significant nodes.

> showSigOfNodes(GOdata, score(resultFis), firstTerms = 5,

+ useInfo = "all")

> showSigOfNodes(GOdata, score(resultWeight), firstTerms = 5,

+ useInfo = "def")

If we want to print the graphs to .pdf or .ps file, then we can use the following command:

> printGraph(GOdata, resultWeight, firstSigNodes = 5, fn.prefix = "tGO",

+ pdfSW = TRUE)

tGO_weightCount_5_def --- no of nodes: 66

To emphasise differences between two methods, one can type:

> printGraph(GOdata, resultWeight, firstSigNodes = 10,

+ resultFis, fn.prefix = "tGO", useInfo = "def")

tGO_weightCount_classicCount_10_def --- no of nodes: 103
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Figure 2: The distribution of the p-values returned by each method.

> printGraph(GOdata, resultElim, firstSigNodes = 15, resultFis,

+ fn.prefix = "tGO", useInfo = "all")

tGO_elimCount_classicCount_15_all --- no of nodes: 127
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Figure 3: The subgraph induced by the top 5 GO terms identified by the classic algorithm for scoring GO terms for
enrichment. Boxes indicate the 5 most significant terms. Box color represents the relative significance, ranging from
dark red (most significant) to light yellow (least significant). Black arrows indicate is-a relationships and red arrows
part-of relationships.
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Figure 4: The subgraph induced by the top 5 GO terms identified by the weight algorithm for scoring GO terms for
enrichment. Boxes indicate the 5 most significant terms. Box color represents the relative significance, ranging from
dark red (most significant) to light yellow (least significant). Black arrows indicate is-a relationships and red arrows
part-of relationships.
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