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Overview

Analysis of groups of genes

• Motivation

• How to define gene groups

• Assess relevance of gene groups

Group testing methods

• Gene set enrichment: Fisher-test, GSEA

• Holistic approaches: Category, globaltest, GlobalAncova,

restandardization approach



Motivation

So far: Gene-wise analysis

• Genes are treated independently

• Correction for multiple testing is crucial

• Resulting lists of interesting genes are rather ’instable’

• Biological interpretation of such gene lists is hard

Now: Analysis of gene sets

• Predefined gene groups provide more biological knowledge

• More meaningful interpretation in biological context

• Number of gene sets to be investigated is smaller than
number of individual genes

• Useful for validation of published gene groups
Example: Does a gene signature have predictive value?



How to Define Gene Groups

Exploratory research, literature search or Bioinformatic algo-
rithms can be used to define

• Pathways
Networks of interacting genes (KEGG, cMAP, BioCarta)

• Gene Ontology categories
Biological Process, Molecular Function, Cellular Component

• Regions in the genome

• Signatures for classification

• Gene sets of published results

• . . .



Assess Relevance of Gene Groups

• Outstanding gene expression in a specific group compared to

other genes

Example: Do the cyclin D1 target genes show an extraordi-

nary expression pattern in human tumours?

• Differential gene expression not of single genes but over a

specific group of genes

Example: Does the cell cycle pathway contain (many) diffe-

rentially expressed genes between cancer types A and B?

• Two basic strategies for analysis:

Gene set enrichment and holistic approaches



Group Testing

Gene set enrichment

• Idea: Provide biological meaning to a list of interesting genes
by means of an over-representation analysis

• Step 1: Gene-wise analysis (e.g. of differential expression)
Step 2: Score gene groups for enrichment
(always in comparison with the set of all genes)

• Goal: Find gene groups that contain many interesting genes

Holistic approaches

• Idea: Look directly at gene sets and ask whether they are
biologically relevant with respect to differential expression

• Global analysis of differential expression for gene groups
(without taking the set of all genes as a reference)

• Goal: Find gene groups that contain at least one interesting
gene or many genes with moderate differentiality



Hypergeometric Test

Step 1

• Compute a gene-wise measure (for differential expression, e.g.

t-statistic p-values)

• Adjust for multiple testing and choose a cutoff to define a

list of interesting genes

Step 2

• Given N genes on the microarray and M
genes in a gene group, what is the proba-
bility of having x from K interesting genes
in this group?

P (X = x|N, M, K) =

(
M
x

)(
N −M
K − x

)
(

N
K

)
• A p-value for the gene group corresponds

to P (X ≥ x|N, M, K)



Fisher’s Exact Test

• The hypergeometric test is equivalent to Fisher’s exact test

∈ gene group /∈ gene group

∈ DE genes x K − x K

/∈ DE genes M − x (N −M)− (K − x) N −K

M N −M N

• Fisher-test and similar tests based on gene counts are very

often used in Gene Ontology analysis

(binomial test, χ2 test, test based on normal z scores)

Khatri and Draghici (2005)

• All these tests have the hypergeometric as null distribution

Rivals et al. (2006)



Fisher’s Exact Test

Example: N = 20000 genes on the microarray, M = 100 genes in

a gene group of interest, K = 300 differentially expressed genes

∈ group /∈ group

∈ DE 3 297 300
/∈ DE 97 19603 19700

100 19900 20000

could be random

p-value = 0.19

∈ group /∈ group

∈ DE 6 294 300
/∈ DE 94 19606 19700

100 19900 20000

not likely random

p-value = 0.004



Fisher’s Exact Test

Advantages

• Not restricted to analysis of differential expression

• If you just get a list of somehow interesting genes and want
to assess biological background, tests based on gene counts
are the only way to go

Problems

• Loss of information because of two separated steps

• Small but consistent differential expression is not detected

• Dividing genes into differentially and non-differentially expres-
sed genes is artificial

• No clear way of defining K: p-value correction and choice of
a cutoff are crucial



Gene Set Enrichment Analysis

Subramanian et al. (2005)

Step 1

• Compute a gene-wise measure (for differential expression, e.g.
absolute t-statistics)

• Rank genes according to this measure

Step 2

• Assign labels A to genes belonging to a gene group of interest
and B to all the other genes

• If group A is enriched with interesting genes, many of it’s
genes will have high ranks and we will observe a separation
in the ordered list


measure for differential expression

A B A A B A A A B A B B B A B B B B A B B B



Gene Set Enrichment Analysis

• Assign score nB to all genes A and −nA to all genes B

• Draw the cumulative sum of these scores

• Is the maximum M of the cumulative sum unusually high?

(Kolmogorov-Smirnov test)
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GSEA Permutation Test

Permute genes

• Permute labels A and B in the ordered list P times

• Calculate the maximum M∗ of the cumulative sum for each
permutation

• Empirical p-value: p = #(M∗ ≥M)/P

• Hypothesis: group is extreme w.r.t. random mixing

Permute subjects

• Permute phenotype labels in the expression matrix

• Compute the gene-wise measure for each permutation

• For each resulting gene ranking calculate M∗ and then a
p-value as above

• Hypothesis: group is extreme w.r.t. overall expression



GSEA Example

• Lamb et al. (2003) investigate activity of cyclin D1 in human

tumours: Does the cyclin D1 target gene set play a promi-

nent role in different tumour entities? Being present as highly

expressed genes

• Group A: cyclin D1 target gene set

Group B: all other genes



Gene Set Enrichment Analysis

Advantages

• Not restricted to analysis of differential expression

• Ranking of genes is considered

• No cutoff has to be chosen

Problems

• Loss of information because of two separated steps

• Small but consistent differential expression is not detected



Category

Gentleman (2006)

• Goal is to find gene categories whose genes show small but
consistent expression changes in the same direction

• Calculate vector x of genewise statistics indicating differential
expression, e.g. t-test statistics or more general x = f1(X)

• Get an incidence matrix A representing the mappings
between predefined categories and genes

A =


0 1 1 0 0 . . .
0 0 0 1 0 . . .
1 1 0 1 1 . . .
... ... ... ... ... . . .

 ← categories

↑
genes

• Row sums: numbers of genes in each category
Column sums: numbers of categories each gene belongs to



Category

• Define a statistic z that reflects which categories are extreme:

z =
Ax√

rowsums(A)
or more general z = f2(A,x)

• When x is a vector of t-statistics and z as shown, then

z ∼ N(0,1) (unfortunately only when genes are independent)

• Comparisons are possible

Within categories: For a given category, is the observed test

statistic unusual?

Between categories: Are any of the observed category stati-

stics unusually w.r.t. the entire reference distribution?



Category Permutation Test

Permute genes

• Permute columns of A P times

• Calculate category statistic z∗ for each permutation

• Empirical p-value: p = #(z∗ ≥ z)/P

• Hypothesis: group is extreme w.r.t. random mixing

Permute subjects

• Permute phenotype labels in the expression matrix X

• Compute the gene-wise measure x∗ for each permutation

• Calculate category statistic z∗ with A and each x∗ and
then a p-value as above

• Hypothesis: group is extreme w.r.t. overall expression



Category

• qq-plots of the category statistics can help to reveal intere-
sting gene groups

• These groups can further be explored by plotting expression
means in the two clinical entities against each other



Category

Advantages

• Proper statistical framework

• Very flexible through choice of functions f1 and f2

• Ability to find groups with interesting expression patterns mis-
sed by gene set enrichment approaches

Problems

• Categories with both up- and down-regulated genes will even-
tually not be found because their t-statistics will cancel out
in the overall sum

• Permutation of genes destroys correlations between genes,
permutation of subjects ignores overall distribution of group
statistics – what to do?



Global Tests

Is the global expression pattern of a group of genes significantly

related to some clinical variable of interest?

globaltest: Does knowledge of gene expression X help to improve

prediction of the variable Y ?

H0 : P (Y = 1|X) = P (Y = 0|X)

Goeman et al. (2004)

GlobalAncova: How is gene expression X influenced by the struc-

ture of the variable Y ?

H0 : P (X|Y = 1) = P (X|Y = 0)

Mansmann and Meister (2005)

Tests are equivalent under the null hypothesis of no relationship

between Y and X



Globaltest

• Does knowledge of gene expression X help to improve pre-
diction of the variable Y ?

• Test statistic

Q ∼ (Y − µ)TR(Y − µ)

∼
∑
g

[Xg(Y − µ)]2 sum over genes

∼
∑
i

∑
j

Rij(Yi − µ)(Yj − µ) sum over subjects

R = XTX matrix of correlations between gene expression of subjects

• Test to see whether subjects with similar expression also have
similar outcomes

• Permutation based and asymptotic p-values are available

• Also multicategorical, continuous or survival variables can be
considered and adjustment for covariates is possible



Globaltest

• Checkerboard plots help to illustrate whether subjects of the
same clinical group also have similar expression patterns

• Gene plots show the influence of single genes in the gene sets
on the global test statistic

12
34
56
78
91011121314151617181920212223242526272829303132333435363738394041424344114115116117118119120454647484950515253555657585960616263646566676869707172737576777879102103104105106107108109110111112113

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 11
4

11
5

11
6

11
7

11
8

11
9

12
0 45 46 47 48 49 50 51 52 53 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 75 76 77 78 79 10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

11
0

11
1

11
2

11
3

0
50

10
0

15
0

20
0

25
0

30
0

35
0

in
flu

en
ce

N
M

_0
01

75
9

N
M

_0
01

76
0

N
M

_0
01

78
6

N
M

_0
01

78
9

N
M

_0
01

79
8

N
M

_0
01

79
9

N
M

_0
01

80
0

N
M

_0
04

06
4

N
M

_0
01

92
4

A
I1

67
14

5

N
M

_0
02

89
5

A
I3

43
45

9

A
I3

33
09

2

N
M

_0
03

91
4

M
96

57
7

N
M

_0
07

11
1

U
09

57
9

N
M

_0
05

98
3

A
A

63
21

61

A
K

00
06

60

A
A

86
85

69

M
74

09
3

A
F

00
48

19

N
M

_0
00

05
1

N
M

_0
00

07
5

N
M

_0
00

07
7

A
I4

45
90

8

N
M

_0
00

32
1

N
M

_0
01

25
9

N
M

_0
01

26
2

N
M

_0
01

27
4

higher expression in 1 samples
higher expression in 0 samples



GlobalAncova

• How is gene expression X influenced by the structure of the
variable Y ?

• The expectation for gene j follows a linear model E(xj) = Dβj

• The design matrix D, e.g. in the two group case and with an
additional covariate z, may look like this

Int Y z
sample 1
sample 2
sample 3
sample 4

. . .

 1 0 0
1 0 1
1 1 1
1 1 0

. . .



• The full model containing the clinical parameter of interest
is compared to a reduced model without it via the extra sum
of squares principle

• Gene-wise linear models are summarized to a global F-test



GlobalAncova

• Permutation p-values:

Permutation of subjects and calculation of empirical p-values

Asymptotic p-values:

Approximation of the test statistic distribution

• General linear model framework allows analysis of

Design Full model Reduced model

Various groups ∼ group + cov ∼ cov

Dose-response ∼ dose + cov ∼ cov

Group by dose interaction ∼ group * dose + cov ∼ group + dose + cov

Differential time trends ∼ group * time + cov ∼ group + time + cov

Gene gene interaction ∼ gene + cov ∼ cov

Differential co-expression ∼ group * gene + cov ∼ group + gene + cov

. . .



GlobalAncova

• Subject plots help to detect subjects that ’do not fit’ into
their clinical groups

• Gene plots show the influence of single genes in the gene sets
on the global test statistic
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Global Tests

Advantages

• Gene groups with few strongly as well as groups with many

moderately differentially expressed genes are detected

• Flexible frameworks suitable for many kinds of applications

Problems

• Only analysis of expression patterns within groups – it is not

accounted for the overall distribution of group statistics

• Eventually too sensitive for data with much differential ex-

pression



Restandardization

Efron and Tibshirani (2007)

• How can a proper null distribution for some gene set statistic
S be simulated?

• Randomization of genes destroys correlations between genes:
variability of S will be underestimated

• Permutation of subjects does not account for the overall dis-
tribution: If all genes are equally differential, all gene groups
will look significant though none of them is more extreme
than the others

• Restandardized gene set statistic

S∗∗ = µ+ + σ+

σ∗ (S
∗ − µ∗)

µ+, σ+ mean and standard deviation of S+ for a

randomly selected gene set of same size

µ∗, σ∗ corresponding quantities for S∗, which are

computed based on sample permutations 0.5 1.0 1.5 2.0 2.5

0.
0
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Restandardization

Advantages

• Applicable for arbitrary gene set statistics

• Combines ideas of a global group statistic and at the same

time comparison with all remaining genes

Problems

• For complex group statistics a nested simulation is required

• Is it really necessary to account for the overall distribution of

gene set statistics?

• Gene randomization is problematic



Gene versus Subject Sampling

Goeman and Bühlmann (2007)

Subject sampling model: A new sample corresponds to measu-
rements of the same variables (= genes) for a new subject

Gene sampling model: A new sample would correspond to a sam-
ple of new genes for the same subjects
(this is also the underlying model for hypergeometric tests)

• Gene sampling reverses the roles of samples and variables

• Interpretation of p-values is different

• Misleading sample size in gene sampling model, i.e. the num-
ber of genes m does not correspond to the biological sample
size n = number of subjects

• Assumption of independence between genes in the gene
sampling model may lead to anti-conservative tests



Summary: Two Perspectives on Gene Groups

Question 1

Is the gene expression in gene set A different from the ex-

pression in gene set B?

Gene set A Gene set B

Question 2

Is there differential expression between different biological en-

tities, not in terms of single genes but with respect to a de-

fined gene set?

Entity 1 Entity 2

Gene set X Gene set X



Summary: Perspectives of Group Testing

Fisher-test approaches

Are there more interesting genes in the gene

set than expected by randomly drawing?

Gene set enrichment analysis

Do the genes in the gene set have high ranks

with respect to differential expression?

Globaltest / GlobalAncova / Category

Can there be found differential expression in

the gene set?



Outlook

• Gene versus subject sampling: Also tests based on gene

counts in a contingency table could be modified to subject

sampling procedures

• Annotation: Only genes annotated to the considered gene

sets are involved in the analysis, all others are missed

• When testing large collections of gene sets we have to face

a multiple testing problem

• Dependencies between gene sets complicate statistical ana-

lysis and interpretation

Special example: Gene Ontology
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