# From a gene list to biological function

- Scoring Gene Ontology terms-

# Adrian Alexa

alexa@mpi-inf.mpg.de
Computational Biology and Applied Algorithmics
Max Planck Institute for Informatics
D-66123 Saarbrcken

Courses in Practical DNA Microarray Analysis, Berlin, March 2, 2006



- Gene sets enrichment
- Scoring GO Terms
- Topology based GO Terms scoring
- Evaluation on simulated data





- Gene sets enrichment
- Scoring GO Terms
- Topology based GO Terms scoring
- **■** Evaluation on simulated data





- The Microarray experiments provide a long list of genes.
- > Typical studies analyze genes one by one:
  - 1. samples are divided into two groups: disease vs. healthy and the genes are ranked according to differential expression.
  - 2. genes are ordered according to correlation of the expression values with a phenotype measurement.

These studies result in an ordered list of genes.

#### More important is the group enrichment:

- given a set of genes with some biological function, analyze the positions of these genes in the ordered list.
- the biological function is relevant, if all genes are among the top genes in the ordered list.





## **Differentially expression**



#### ➤ Gene sets:

- Gene Ontology (GO) terms
- Metabolic pathways
- MIPS classes
- Chromosomes
- Classes defined via transcription factors
- Gene sets obtained from other previous experiments

#### > Remark 1:

The score and the gene set must be chosen independently!

#### Remark 2:

The dependence between gene sets usually make the statistical interpretation of the result harder!



## **Differentially expression**



**Main idea:** Sort genes according to some score and analyze positions of members of the investigated gene group in this list.

- ➤ We want to know if the members of group a have significantly small ranks (higher in the list). If this is the case, then group a is enriched.
- There are basically two approaches:
  - 1. Define cutoff and count members of group **a** below and above cutoff (parametric test statistic).
  - 2. Analyze distribution of all ranks of members of group a (non-parametric test statistic).

| Gene                          | Score      | Group |
|-------------------------------|------------|-------|
| $gene_{\sigma(1)}$            | score 1    | a     |
| $gene_{\sigma(2)}$            | score 2    | b     |
| $gene_{\sigma(3)}$            | score 3    | a     |
| $gene_{\sigma(4)}$            | score 4    | a     |
|                               |            |       |
| $\mathrm{gene}_{\sigma(100)}$ | score 100  | b     |
| $gene_{\sigma(101)}$          | score 101  | a     |
|                               |            |       |
| $gene_{\sigma(9905)}$         | score 9905 | b     |





- Gene sets enrichment
- Scoring GO Terms
- Topology based GO Terms scoring
- **■** Evaluation on simulated data



#### **Enrichment of GO Terms**



- Obtain the Gene Expression Data from the microarrays experiments (this is the normalized and cleaned data: Long list of genes)
- > Select a set of significant genes (use some test statistic: t-test, permutation-test)
- Map all the genes to the corresponding GO terms
- Analyze the GO terms for significance (pretty tricky)

**Remark:** the GO terms are considered to be independent and the significance is computed for each one separately.

- Khatri P. and Draghici S. (2005). Ontological analysis of gene expression data: current tools, limitations, and open problems, Bioinformatics, 21(18):3587-3595.
  - Most used methods: Onto-Express, GOstat, GoMiner, FunSpec, FatiGO, GO::TermFinder
  - Methodically, all known methods are very similar (the accent is put on multiple tests adjustment)







Note: The labels of the nodes are the GO IDs:  $0008150 \cong GO:0008150$ 







Note: The labels of the nodes are the GO IDs:  $0008150 \cong GO:0008150$ 





The score for a GO term is the degree of independence between the two properties:

 ${\cal A}$  : gene is in the list of significant genes

 ${\cal B}$  : gene is found in the GO term

|                         | Significant genes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Not significant genes                                               | Sum       |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------|
| Genes in ${\cal G}$     | extstyle 	ex | $\overline{\mathtt{sigGenes}} \cap \mathtt{funcGenes}$              | funcGenes |
| Genes in $\overline{G}$ | $ \mathtt{sigGenes} \cap \overline{\mathtt{funcGenes}} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $ \overline{\mathtt{sigGenes}} \cap \overline{\mathtt{funcGenes}} $ | funcGenes |
| Sum                     | sigGenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | sigGenes                                                            | allGenes  |

Testing the independence of two groups in the above contingency table corresponds to Fisher's exact test.



# Finding significant nodes



Small example: suppose that we have a GO term for which we expect  $\sim$  10 genes to be significant.

| genes expected | genes in data |                    |
|----------------|---------------|--------------------|
| 10             | 10            | random             |
| 10             | 12            | still random       |
| 10             | 20            | better than random |
| 10             | 40            | significant        |

For computing the significance of a gene set, we can use a *hypergeometric test*:

- N genes are on microarray
- Bio is a GO term
  - M genes  $\in Bio$
  - N-M genes  $\notin Bio$
- ullet let K be the no. of significant genes
- ullet what is the probability of having exactly x genes from K, of type Bio ?

$$P(X = x | N, M, K) = \frac{\binom{M}{x} \binom{N-M}{K-x}}{\binom{N}{K}}.$$

 This is the probability of getting exactly x by chance (not what we want)

$$p = 1 - \sum_{i=0}^{x-1} \frac{\binom{M}{x} \binom{N-M}{K-x}}{\binom{N}{K}}.$$

(similar to Fisher's exact test)





|                | GO:0006955                                                                                   | GO:0009059                                                                                                                   |  |  |
|----------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--|--|
| Term name      | immune response                                                                              | macromolecule biosynthesis                                                                                                   |  |  |
| Definition     | Any process involved in the immunological reaction of an organism to an immunogenic stimulus | The formation from simpler components of macromolecules, large molecules including proteins, nucleic acids and carbohydrates |  |  |
| Ontology       | BP                                                                                           | ВР                                                                                                                           |  |  |
| # mapped genes | 780                                                                                          | 568                                                                                                                          |  |  |

### Discriminating B-cell and T-cell [Chiaretti, S., et al., 2004]

- ullet ALL dataset consists of 128 microarrays (95 patients with B-cell ALL and 33 patients with T-cell ALL).
- The Affymetrix HGU95aV2 chip used contain 12625 probes (9231 probes are annotated to BP) which induce a GO graph containing 2677 nodes.
- 515 differentially expressed genes (two-sided t-test, FDR-adjusted p-values, level  $\alpha=0.01$ ).





## Contingency table for GO:0006955

## Contingency table for GO:0009059

|                         | Significant genes | Not significant genes | Sum  |
|-------------------------|-------------------|-----------------------|------|
| ${\rm Genes\ in\ } G$   | 107               | 673                   | 780  |
| Genes in $\overline{G}$ | 452               | 8673                  | 9125 |
| Sum                     | 559               | 9346                  | 9905 |

|                                | Significant genes | Not significant genes | Sum  |
|--------------------------------|-------------------|-----------------------|------|
| $\overline{\text{Genes in }G}$ | 35                | 533                   | 568  |
| Genes in $\overline{G}$        | 524               | 8813                  | 9337 |
| Sum                            | 559               | 9346                  | 9905 |

|                                            | GO:0006955 | GO:0009059 |
|--------------------------------------------|------------|------------|
| Observed                                   | 107        | 33         |
| Expected                                   | 44.020     | 32.055     |
| Standard deviation                         | 6.186      | 5.339      |
| ${\it raw}\;p{\it -value}\;{\it (Fisher)}$ | 7.3e-19    | 0.3166     |
| adj $p$ -value (Fisher)                    | 7.3e-15    | 1          |
| $raw\ p\text{-}value\ (Z\ score)$          | 1.2e-24    | 0.291      |









The p-value for GO:0006955 is  $\color{red}0$ 





The p-value for GO:0009059 0.2492





- Gene sets enrichment
- Scoring GO Terms
- Topology based GO Terms scoring
- Evaluation on simulated data





#### Given:

- a directed acyclic graph (GO graph) and a set of items (genes) s.t.:
  - each node in the graph contains some genes
  - the parent of a node contains all the genes of its child
  - a node can contain genes that are not found in the children
- a subset of genes that we call significant genes (differentially expressed genes)

#### Goal:

• find the nodes from the graph (biological functions) that best represent the significant genes w.r.t some scoring function (some test statistic)







Note: The coloring of the nodes represent the *relative* significance of the GO terms: dark red is the most significant, light yellow is the least significant from the graph

Adrian Alexa







Note: The coloring of the nodes represent the *relative* significance of the GO terms: dark red is the most significant, light yellow is the least significant from the graph









For each GO term the counts and the p-values are displayed. < x/y > denotes that out of y genes mapped to the node, x belong to the list of interesting genes.





The main idea: Test how enriched node x is if we do not consider the genes from its significant children (x.ch[2] in our case).

#### **Algorithm:**

- 1. The nodes are processed bottom-up. This assures that all children of node  $\boldsymbol{x}$  were investigated before node  $\boldsymbol{x}$  itself.
- 2. Let removed(x) be the set of genes that were removed in a previous step by a node in the lower subgraph induced by node x. Then  $genes(x) \longleftarrow genes(x) removed(x)$ .
- 3. The p-value for node x is computed using Fisher's exact test.
- 4. If node x is found significant, we remove all the genes mapped to this node, from all its ancestors.







Top 10 significant node (the boxes) obtained with method elim



## The weight method



- We want to decide if node x is better representing the list of interesting genes (is more enriched) than any other node from its neighborhood.
- The main idea: Associate single genes mapped to a node with weights that denote their relevance. The elim algorithm uses 0-1 weights.

#### Algorithm:

- 1. Compute the p-value of node x with its current weights. Initially all its genes have weight 1.
- 2. **CASE I:** Look at the children that are more significant than node x (x.ch[1] and x.ch[4]). These children are local optima (colored with red).
- 3. For each such child down-weight all genes mapped to it in all the ancestors of node x, including x. Mark these children and GOTO step 1.







- 4. **CASE II:** If no child of node x has a p-value less than the current p-value of node x then node x is a local optimum.
- 5. The genes in these children are down-weighted and the p-values for these nodes are recomputed with the new updated weights.
- 6. The processing of node x terminates. Its p-value can be changed later, when node x is treated as a child of another node.







The *p*-value of a node is computed by applying Fisher's exact test on a weighted contingency table. The quantity

$$|sigGenes \cap genes(u)|$$

is replaced with

$$\left[\sum_{i \in \{sigGenes \cap genes(u)\}} weight[i]\right].$$

 $\triangleright$  The weights for node x and one of its children are obtained by

$$\operatorname{sigRatio}(ch,x) = \frac{\log(p\operatorname{-value}(ch))}{\log(p\operatorname{-value}(x))} \qquad \qquad \operatorname{or} \qquad \qquad \operatorname{sigRatio}(ch,x) = \frac{p\operatorname{-value}(x)}{p\operatorname{-value}(ch)}$$

If sigRatio() > 1 then node ch is more significant than its parent, node x.

The weights are updated using vector operators: minimum on the components, the product of the components, etc.



March 2, 2005





Top 10 significant node (the boxes) obtained with method weight



# **Advantages & Disadvantages**





GO:0008629 <0.000114>
GO:0008629 <1.000000>
GO:000084 <1.000000>
GO:00008631 <1.000000>
GO:0006977 <1.000000>
GO:0008631 <1.000000>
GO:0008631 <1.000000>

classic method

elim method



GO:0000084 GO:0042770 GO:0008629 GO:0045005 <1.000000> <1.000000> <1.000000> <1.000000> <8.12e-05> GO:004277 GO:0030330 GO:000007 <1.000000> GO:0006298 <1.000000 <1.000000 <0.000114> GO:0008631 <1.000000> GO:000697 <1.000000> GO:0006978 <1.000000> GO:0008630 <6.19e-06>

weight method

elim method (slightly modified)





|              | classic | elim   | weight.log | weight.ratio |
|--------------|---------|--------|------------|--------------|
| classic      | 1.000   | 0.310  | 0.226      | -0.102       |
| elim         | 0.310   | 1.000  | -0.006     | 0.388        |
| weight.log   | 0.226   | -0.006 | 1.000      | 0.462        |
| weight.ratio | -0.102  | 0.388  | 0.462      | 1.000        |

Rank correlation for a sample of significant GO terms.

- > For each method we retrieve the 100 most significant GO terms.
- The union set of all resulting GO terms is compiled. There are 138 distinct GO terms in this case.
- For these GO terms we retrieve the raw *p*-values assigned by each method forming a matrix with 4 columns, one column for each method, and 147 rows.

Since the correlation between the results of the algorithms is rather small, we can combine all the algorithms into an ensemble method.



# **Advantages & Disadvantages**



|    | GO ID      | Term                      | Observed | Expected | Annotaated | $p	ext{-values}$ |         |            |              |         |
|----|------------|---------------------------|----------|----------|------------|------------------|---------|------------|--------------|---------|
|    |            |                           |          |          |            | classic          | elim    | weight.log | weight.ratio | all.M   |
| 1  | GO:0006952 | defense response          | 112      | 46.913   | 836        | 6.1e-15          | 1.000   | 1.0e-11    | 5.4e-12      | 1.5e-05 |
| 2  | GO:0006955 | immune response           | 102      | 42.816   | 763        | 2.0e-13          | 5.9e-09 | 9.3e-09    | 1.000        | 3.2e-10 |
| 3  | GO:0009607 | response to biotic stimul | 116      | 54.264   | 967        | 2.4e-12          | 1.000   | 9.3e-07    | 1.000        | 1.9e-05 |
| 4  | GO:0019882 | antigen presentation      | 17       | 1.683    | 30         | 1.2e-10          | 0.647   | 2.5e-10    | 5.9e-08      | 0.00062 |
| 5  | GO:0030333 | antigen processing        | 17       | 1.796    | 32         | 4.2e-10          | 0.647   | 3.5e-10    | 0.757        | 0.00083 |
| 6  | GO:0019884 | antigen presentation, exo | 12       | 0.898    | 16         | 4.1e-09          | 1.2e-08 | 3.0e-06    | 1.000        | 4.6e-08 |
| 7  | GO:0019886 | antigen processing, exoge | 12       | 1.01     | 18         | 3.2e-08          | 7.6e-08 | 9.9e-05    | 1.000        | 3.8e-07 |
| 8  | GO:0009605 | response to external stim | 127      | 79.235   | 1412       | 3.2e-05          | 1.000   | 0.0020     | 1.000        | 0.92887 |
| 9  | GO:0050874 | organismal physiological  | 129      | 89.897   | 1602       | 0.012            | 1.000   | 0.0071     | 1.000        | 1.00000 |
| 10 | GO:0016126 | sterol biosynthesis       | 9        | 1.515    | 27         | 0.019            | 0.047   | 0.0187     | 0.062        | 0.11467 |
| 11 | GO:0050896 | response to stimulus      | 137      | 98.146   | 1749       | 0.020            | 1.000   | 0.0726     | 1.000        | 0.87163 |

Statistics for significant GO terms for the ALL data set. The column *Expected* represents the expected number of interesting genes mapped to the GO term if the interesting genes were randomly distributed over all GO terms.



March 2, 2005



- Gene sets enrichment
- Scoring GO Terms
- Topology based GO Terms scoring
- **Evaluation on simulated data**



## Simulation setup



- ➤ We use the GO graph structure (2311 nodes), and all the genes from HGU95aV2 Affymetrix chip (9623 mapped to the GO graph)
- $\triangleright$  Select only the nodes that have the no. of mapped genes in some range (10...100)
- Choose randomly a number of nodes (50 in our case) from the selected nodes. These nodes represent the enriched nodes.
- > Set as significant genes all the genes from the enriched nodes.
- > Some noise can be introduce:
  - Pick 10% from all significant genes
  - Remove them from the significant list
  - Replace the genes that we removed with other genes
- > The goal is to recover as best as possible the enriched nodes.









Adrian Alexa









 $\succ$  To assess the performance of each method  $\mathcal M$  the following scores are used:

$$score_k^0(\mathcal{M}) = |top_k(\mathcal{M}) \cap enriched|.$$

- i.e. the number of enriched nodes found among the top k nodes.
- To get more insight into how each method accounts for the topology of the graph, the following scores are defined:

$$score_k^1(\mathcal{M}) = \left| level_k^1(\mathcal{M}) \cap enriched \right|,$$

$$score_k^{1p}(\mathcal{M}) = \left| level_k^{1p}(\mathcal{M}) \cap enriched \right|$$

with

$$level_k^1 = top_k(\mathcal{M}) \cup parents(top_k(\mathcal{M})) \cup children(top_k(\mathcal{M})),$$
  
 $level_k^{1p} = top_k(\mathcal{M}) \cup parents(top_k(\mathcal{M})).$ 

Methods that obtain a higher score better retrieve the true enriched nodes.





| k   | class | weight.log | weight.ratio | elim | all.M |
|-----|-------|------------|--------------|------|-------|
| 25  | 5.5   | 13         | 14           | 17   | 15.5  |
| 50  | 14.5  | 25.5       | 28           | 27.5 | 28.5  |
| 75  | 22.5  | 35.5       | 38           | 31   | 38    |
| 100 | 31    | 42         | 39.5         | 33.5 | 43.5  |

| k  | Score | class | weight.log | weight.ratio | elim | all.M |
|----|-------|-------|------------|--------------|------|-------|
|    | 0     | 14.5  | 25.5       | 28           | 27.5 | 28.5  |
|    | 1p    | 15    | 26         | 29           | 40   | 31    |
| 50 | 1     | 23    | 32         | 35           | 41   | 36    |
|    | 2p    | 15    | 26         | 29           | 43   | 31    |
|    | 2     | 29    | 36         | 39           | 45   | 40    |

Average numbers of correctly identified *enriched nodes* over 100 simulation runs with 50 true *enriched nodes*, 10% noise level, and between 10 and 50 genes annotated to the *enriched nodes*.



## **Quality of GO scoring methods**



Each curve represents the average of the numbers of preselected GO terms, over 100 simulation runs, that are among the top k GO terms. The left plot represents  $score_k^0$  and the right plot represents  $score_k^{1p}$ .

10 to 50 genes annotated 10% noise level.





10 to 1000 genes annotated 40% noise level.









- Draghici, S. et al., Global functional profiling of gene expression, Genomics 81, 2003
- Ashburner, M. et al., Gene Ontology: tool for the unification of biology, Nature genetics, Vol. 25, 2000
- Berrar, D., Werner, D., Granzow, M., A Practical Approach to Microarray Data Analysis, Kluwer Academic, 2003
- Beissparth, T. and Speed, T., GOstat: Find statistically overrepresented Gene Ontologies within a group of genes, Bioinformatics, Vol. 1 no 1, 2004
- Benjamini, Y. and Yekutieli, D., The control of the false discovery rate in multiple testing under dependency, Annals of Statistics, 29(4):1165–1188, 2001
- Chiaretti, S. et al., Gene expression profile of adult T-cell acute lymphocytic leukemia identifies distinct subsets of patients with different response to therapy and survival, Blood, 103(7):2771–2778, 2004
- Gentleman, R., Using GO for Statistical Analyses, Bioconductor Vignettes, 2004
- Khatri, P. and Draghici, S. Ontological analysis of gene expression data: current tools, limitations, and open problems Bioinformatics, 21(18):3587-3595, 2005
- Lehmann, E. L., Testing Statistical Hypotheses, Springer Texts in Statistics, Springer-Verlang, New York, second edition, 1986

