
— Exploring Affymetrix Data —

Robert Gentleman, Wolfgang Huber

Practical DNA Microarray Analysis, Berlin, 2006 Feb 27 - Mar 02
http://compdiag.molgen.mpg.de/ngfn/pma2006feb.shtml

1.) Preliminaries. To go through this exercise, you need to have installed R>=1.9.0, the libraries Biobase,
affy, hgu95av2, hgu95av2cdf, and vsn from the Bioconductor release 1.4.

> library(affy)

> library(estrogen)

> library(vsn)

2.) Load the data.

a. Find the directory where the example cel files are. The directory path should end in
.../R/library/estrogen/extdata.

> datadir <- system.file("extdata", package = "estrogen")

> datadir

[1] "/project/gene_expression/lib/bioconductor/release_1.7/data/estrogen/extdata"

> dir(datadir)

[1] "bad.cel" "estrogen.txt" "high10-1.cel" "high10-2.cel"
[5] "high48-1.cel" "high48-2.cel" "low10-1.cel" "low10-2.cel"
[9] "low48-1.cel" "low48-2.cel" "phenoData.txt" "workspace.RData"

> setwd(datadir)

The function system.file here is used to find the subdirectory extdata of the estrogen package on
your computer’s harddisk. To use your own data, set datadir to the appropriate path instead.

b. The file estrogen.txt contains information on the samples that were hybridized onto the arrays. Look
at it in a text editor. Again, to use your own data, you need to preprare a similar file with the appropriate
information on your arrays and samples. To load it into a phenoData object

> pd <- read.phenoData("estrogen.txt", header = TRUE, row.names = 1)

> pData(pd)

estrogen time.h
low10-1.cel absent 10
low10-2.cel absent 10
high10-1.cel present 10
high10-2.cel present 10
low48-1.cel absent 48
low48-2.cel absent 48
high48-1.cel present 48
high48-2.cel present 48

phenoData objects are where the Bioconductor Package stores information about samples, for example,
treatment conditions in a cell line experiment or clinical or histopathological characteristics of tissue
biopsies. The header option lets the read.phenoData function know that the first line in the file
contains column headings, and the row.names option indicates that the first column of the file contains
the row names.

c. Load the data from the CEL files as well as the phenotypic data into an AffyBatch object.



> a <- ReadAffy(filenames = rownames(pData(pd)),

phenoData = pd,

verbose = TRUE)

> a

AffyBatch object
size of arrays=640x640 features (25606 kb)
cdf=HG_U95Av2 (12625 affyids)
number of samples=8
number of genes=12625
annotation=hgu95av2

Figure 1: see exercise 4.

3.) Looking at the CEL file images. The image function allows us to look at the spatial distribution of
the intensities on a chip. This can be useful for quality control. Fortunately, all of the 8 celfiles that we
have just loaded do not show any remarkable spatial artifacts (see Fig. 1).

> image(a[, 1])

But we have another example:

> badc = ReadAffy("bad.cel")

> image(badc)

Note that in these images, row 1 is at the bottom, and row 640 at the top.

4.) Histograms. Another way to visualize what is going on on a chip is to look at the histogram of its intensity
distribution. Because of the large dynamic range (O(104)), it is useful to look at the log-transformed values
(see Fig. 2):

> hist(log2(intensity(a[, 4])), breaks = 100, col = "blue")

5.) Normalization.

a. Before comparing data from different arrays the probe-level data has to be summarized to represent
expression levels per gene and intensities have to be normalized between different arrays. We can
use the function expresso to choose between different methodds to normalize the data and calculate
expression values.



Histogram of log2(intensity(a[, 4]))

log2(intensity(a[, 4]))

F
re

qu
en

cy

6 8 10 12 14

0
50

00
10

00
0

20
00

0

Figure 2: see exercise 5.

> x <- expresso(a,

bg.correct = FALSE,

normalize.method = "vsn",

normalize.param = list(subsample = 1000),

pmcorrect.method = "pmonly",

summary.method = "medianpolish")

The parameter subsample determines the time consumption, as well as the precision of the calibration.
The default (if you leave away the parameter normalize.param = list(subsample=1000)) is 20000;
here we chose a smaller value for the sake of demonstration.
There is the possibility that expresso is not working properly due to memory problems (normally it
should work with 384 MB). Do not bother, the variable x is already available in the current workspace
of R, so you can simply continue with the next commands.
workspace.RData includes the expression set x and the affybatch a. Then you can continue with the
next paragraph.

b. What are other available methods for normalization, and expression value calculation? You can consult
the vignettes for the affy package for this. Choose another method (for example, MAS5 or RMA) and
compare the results. For example, look at scatterplots of the probe set summaries for the same arrays
between different methods.

> normalize.methods(a)

[1] "constant" "contrasts" "invariantset" "loess"
[5] "qspline" "quantiles" "quantiles.robust" "vsn"

> express.summary.stat.methods

[1] "avgdiff" "liwong" "mas" "medianpolish" "playerout"

6.) Boxplot. To compare the intensity distribution across several chips, we can look at the boxplots, both of
the raw intensities a and the normalized probe set values x (see Fig. 3):

> boxplot(a, col = "red")

> boxplot(data.frame(exprs(x)), col = "blue")

In the commands above, note the different syntax: a is an object of type AffyBatch, and the boxplot
function has been programmed to know automatically what to do with it. exprs(x) is an object of type
matrix. What happens if you do boxplot(x) or boxplot(exprs(x))?



X1 X3 X5 X7

6
8

10
12

14

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●●
●
●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●
●

●
●

●
●●

●

●
●

●

●●●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●●

●

●

●

●●●

●

●
●

●

●

●
●

●

●●

●●
●

●

●
●
●●

●

●

●

●
●
●

●●

●

●
●

●

●●●●

●

●

●●
●

●

●

●

●
●
●
●

●

●

●

●

●

●●

●

●
●

●

●
●
●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●
●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●●

●

●

●●●
●
●

●

●
●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●
●

●●

●●●

●

●

●

●

●
●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●
●

●

●

●

●●●

●
●
●

●

●
●

●
●

●●

●●●
●

●●
●●

●

●

●

●●
●

●●

●

●
●

●

●●

●

●

●

●●●

●

●

●

●

●●

●●
●

●

●

●

●

●●

●

●

●
●

●

●
●●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●
●

●

●

●
●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●●
●●

●
●●
●

●

●

●

●

●

●
●

●

●●

●

●●
●

●

●

●

●
●●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●
●

●
●●
●

●●●●

●
●

●

●

●
●
●

●

●

●

●●

●

●●

●

●

●

●●
●●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●●
●

●

●

●

●
●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●
●
●

●

●

●
●

●

●

●●●
●
●

●
●
●
●
●
●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●
●

●●

●

●

●●●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●●

●
●
●

●

●

●

●

●

●

●
●
●
●

●

●
●

●

●

●

●

●
●

●

●●●

●

●

●

●

●
●●
●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●●
●

●
●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●
●
●●

●

●

●
●
●
●
●

●●
●

●
●●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●
●

●
●

●

●
●

●

●

●

●●●

●●

●

●

●

●

●●
●
●●
●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●
●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●
●
●

●

●●

●

●

●

●
●

●●

●

●●

●

●

●●●
●●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●●●

●●

●●

●●

●

●
●
●

●

●

●

●●

●●
●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●
●●●

●

●
●

●

●

●

●●

●

●

●
●

●
●
●
●

●
●
●
●●

●

●
●

●

●

●●

●

●
●

●

●●

●
●●●●

●

●

●
●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●●
●

●

●
●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●●

●
●

●●

●

●
●
●

●
●

●

●
●

●

●●

●

●

●
●●

●

●

●

●

●

●●●
●

●

●

●●

●

●
●

●

●
●
●
●

●

●

●

●●
●●

●●

●●

●
●

●●

●

●●

●

●
●

●

●●
●

●
●●●

●

●

●

●

●
●●

●

●●

●

●
●

●
●
●
●

●●

●

●

●
●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●
●

●

●

●

● ●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●●●

●

●

●

●

●●

●

●

●

●●●

●●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●●
●

●

●
●

●

●

●●

●

●●

●

●
●●

●

●

●

●●

●

●

●

●

●●

●
●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●
●
●

●

●

●

●
●●

●

●

●

●
●
●
●

●

●

●

●
●

●
●
●

●
●

●

●

●

●
●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●●

●
●●

●●

●

●
●●

●

●
●
●
●

●

●●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●●●

●

●●

●

●
●
●
●●
●

●●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●
●

●

●

●
●

●●●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●
●
●

●

●

●

●●

●

●
●

●

●
●
●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●
●

●
●
●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●
●
●●●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●
●
●

●●

●
●●

●
●
●●●
●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●
●●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●●
●

●

●

●

●●

●
●

●

●

●

●

X1 X3 X5 X7

6
8

10
12

Figure 3: see exercise 6.

> class(x)

[1] "exprSet"
attr(,"package")
[1] "Biobase"

> class(exprs(x))

[1] "matrix"

7.) Scatterplot. The scatterplot is a visualization that is useful for assessing the variation (or reproducibility,
depending on how you look at it) between chips. We can look at all probes, the perfect match probes only,
the mismatch probes only, and of course also at the normalized, probe-set-summarized data: (see Fig. 4):
Why are the arrays that were made at t = 48h much brighter than those at t = 10h? Look at histograms
and scatterplots of the probe intensities from chips at 10h and at48h to see whether you can find any
evidence of saturation, changes in experimental protocol, or other quality problems. Distinguish between
probes that are supposed to represent genes (you can access these e.g. through the functions pm()) and
control probes.

> plot(exprs(a)[, 1:2], log = "xy", pch = ".", main = "all")

> plot(pm(a)[, 1:2], log = "xy", pch = ".", main = "pm")

> plot(mm(a)[, 1:2], log = "xy", pch = ".", main = "mm")

> plot(exprs(x)[, 1:2], pch = ".", main = "x")



Figure 4: see exercise 7.

8.) Heatmap. Heatmaps are a quick and easy way to visualize and see structures in medium sized tables of
data. Here we do a rough selection of the 50 genes with the highest variation (standard deviation) across
chips. (see Fig. 5):

> rsd <- apply(exprs(x), 1, sd)

> sel <- order(rsd, decreasing = TRUE)[1:50]

> heatmap(exprs(x)[sel, ], col = gentlecol(256))

9.) ANOVA.

A better way to select genes is to estimate the variation between different types of experiments in the
data. One way to do this is ANOVA. We set up a linear model with main effects for the level of estrogen
(estrogen) and the time (time.h). Both are factors with 2 levels. Now we can start analysing our data
for biological effects.



Figure 5: see exercise 8.

> lm.coef <- function(y) lm(y ~ estrogen * time.h)$coefficients

> eff <- esApply(x, 1, lm.coef)

For each gene, we obtain the fitted coefficients for main effects and interaction:

> dim(eff)

[1] 4 12625

> rownames(eff)

[1] "(Intercept)" "estrogenpresent" "time.h" "estrogenpresent:time.h"

> affyids <- colnames(eff)

Let’s bring up the mapping from the vendor’s probe set identifier to gene names.

> library(hgu95av2)

> ls("package:hgu95av2")

[1] "hgu95av2" "hgu95av2ACCNUM" "hgu95av2CHR" "hgu95av2CHRLENGTHS"
[5] "hgu95av2CHRLOC" "hgu95av2ENZYME" "hgu95av2ENZYME2PROBE" "hgu95av2GENENAME"
[9] "hgu95av2GO" "hgu95av2GO2ALLPROBES" "hgu95av2GO2PROBE" "hgu95av2LOCUSID"



estrogen main effect

eff[2, ]

F
re

qu
en

cy

−1 0 1 2

0
50

0
10

00
15

00

Figure 6: see exercise 9.

[13] "hgu95av2MAP" "hgu95av2MAPCOUNTS" "hgu95av2OMIM" "hgu95av2ORGANISM"
[17] "hgu95av2PATH" "hgu95av2PATH2PROBE" "hgu95av2PFAM" "hgu95av2PMID"
[21] "hgu95av2PMID2PROBE" "hgu95av2PROSITE" "hgu95av2QC" "hgu95av2QCDATA"
[25] "hgu95av2REFSEQ" "hgu95av2SUMFUNC" "hgu95av2SYMBOL" "hgu95av2UNIGENE"

Let’s now first look at the estrogen main effect, and print the top 3 genes with largest effect in one
direction, as well as in the other direction. Then, look at the estrogen:time interaction.

> lowest <- sort(eff[2, ], decreasing = FALSE)[1:3]

> mget(names(lowest), hgu95av2GENENAME)

$"36617_at"
[1] "inhibitor of DNA binding 1, dominant negative helix-loop-helix protein"

$"846_s_at"
[1] "BCL2-antagonist/killer 1"

$"37294_at"
[1] "B-cell translocation gene 1, anti-proliferative"

> highest <- sort(eff[2, ], decreasing = TRUE)[1:3]

> mget(names(highest), hgu95av2GENENAME)

$"910_at"
[1] "thymidine kinase 1, soluble"

$"31798_at"
[1] "trefoil factor 1 (breast cancer, estrogen-inducible sequence expressed in)"



$"40117_at"
[1] "MCM6 minichromosome maintenance deficient 6 (MIS5 homolog, S. pombe) (S. cerevisiae)"

> hist(eff[4, ], breaks = 100, col = "blue", main = "estrogen:time interaction")

> highia <- sort(eff[4, ], decreasing = TRUE)[1:3]

> mget(names(highia), hgu95av2GENENAME)

$"1651_at"
[1] "ubiquitin-conjugating enzyme E2C"

$"40412_at"
[1] "pituitary tumor-transforming 1"

$"1945_at"
[1] "cyclin B1"


