
First steps in R
Florian Markowetz, Tim Beissbarth

Practical DNA Microarray Analysis

This tutorial refers to the practical session on day one of the course in Practical DNA Microarray Analysis:
http://compdiag.molgen.mpg.de/ngfn/. We will guide you through your first steps in R. For further reading we
recommend “An introduction to R” by Venables et al. which is available for free from http://cran.r-project.org
or “Introductory Statistics with R” by Peter Dalgaard, Springer 2002, or “Bioinformatics and Computational
Biology Solutions Using R and Bioconductor” by Gentleman, Carey, Huber, Springer 2005.

Preliminaries

From A to Ω. Invoking R depends on the platform you use. Under Windows it involves some clicking-around,
under Linux/Unix you usually just type “R” at the Konsole. In our current installation at the MPI, you have to
type “R-rel”. You quit R with the command q(). Don’t forget the parentheses!

Obtaining and Installing R. If you do not have R installed yet, you can obtain a copy via http://www.r-
project.org. It is available for Windows, Mac and most Linux distributions, as well as in source code. You should
also get a good text editor with syntax highlighting for R - for a list of recommendations look at the R web site
under “Related Projects - R GUIs”.

Installing R packages. Most packages are available either via CRAN (http://cran.r-project.org) and can be
installed with the command install.packages("packagename", dependencies=TRUE) from within R or via
Bioconductor (http://www.bioconductor.org) using the commands:

> source("http://www.bioconductor.org/biocLite.R"
> biocLite("packagename")

Other packages need can that sometimes can be obtained from the authors web sites can usually be installed
using the command R CMD INSTALL packagename.tar.gz from the unix command line or from a zip file in
the GUI menu of the windows version.

Getting help. There are many ways to get help from R. Find out what the function library() does by using
the commands help(library) or ?library. The command library() results in a list of R-packages that are
already loaded and can be used by you. What happens if you type library without parentheses?

Online help. Running help.start() launches a web browser that allows the help pages to be browsed with
hyperlinks. Spend some time getting used to it.

Vectors and assignments

Build a vector with entries 1 to 10 and call it x. Try different ways to do it:

> x <- 1:10
> assign("x",1:10)
> x <- seq(1,10,by=1)
> x <- seq(length=10,from=1,by=1)
> x <- c(1,2,3,4,5,6,7,8,9,10) # c = concatenate

The result always is the same:

> x
[1] 1 2 3 4 5 6 7 8 9 10

http://compdiag.molgen.mpg.de/ngfn/
http://cran.r-project.org/doc/manuals/R-intro.pdf
http://cran.r-project.org
http://www.biostat.ku.dk/~pd/ISwR.html
http://www.r-project.org
http://www.r-project.org
http://cran.r-project.org
http://www.bioconductor.org

The operator “<-” assigns the value of an expression (e.g. “1:10”) to an object (e.g. “x”). If an expression is
used as a complete command, the value is printed and lost.

> seq(10,1,-1)
[1] 10 9 8 7 6 5 4 3 2 1

Compare a <- 1:10-1 to b <- 1:(10-1).

With ls() or objects() you get on overview of the objects in your workspace. Single objects can be removed
by rm(). To clear your whole workspace use rm(list=ls()). Remove a and b.

Let’s have a closer look at x. summary() gives you an overview of an objects properties. The output depends
on what type of object it is. For vectors you get information on the distribution of values in it.

> summary(x)
> length(x)
> mode(x)

x is a numeric vector of length 10. The mode can be changed:

> y <- as.character(x)
> y
[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10"
> mode(y)
[1] "character"
> x <- as.numeric(y)

Vector arithmetic

Build two vectors of length 5 and try some arithmetic operations like +, -, *, /, sum, mean, ^, log,
exp, sin, cos, tan, sqrt, abs, max, min, range, prod, cumsum. These operations work elementwise
and can be nested.

> x <- 5:1
> x
[1] 5 4 3 2 1
> y <- c(4,7,3,7,6)
> y
[1] 4 7 3 7 6
> x+y
[1] 9 11 6 9 7
> x*y
[1] 20 28 9 14 6
> sin(x)+cos(y)
[1] -1.612567896 -0.002900241 -0.848872489 1.663199681 1.801641271
> sum(sin(x)+cos(y))
[1] 1.0005
> sqrt(x)
[1] 2.236068 2.000000 1.732051 1.414214 1.000000
> sqrt(x)^2
[1] 5 4 3 2 1

Let’s try to calculate a more complex formula. Imagine vector x containing your n measurements. The sample
variance is defined by

1
n− 1

n∑
i=1

(
xi −

1
n

n∑
i=1

xi

)2

.

> sum((x-mean(x))^2)/(length(x)-1)
> var(x) # gives the same result!

Vector indexing

Individual elements of a vector can be referenced by giving the name of the vector followed by the subscripts in
square brackets. You can also use logical expressions for indexing. Some examples:

> x <- c(5.6,5.4,2,9,-3.9)
> x
[1] 5.6 5.4 2.0 9.0 -3.9

> x[4]
[1] 9
> x[2:3]
[1] 5.4 2.0
> x[c(1,3)]
[1] 5.6 2.0

> x[x > 4]
[1] 5.6 5.4 9.0
> x > 4
[1] T T F T F # T = TRUE, F = FALSE

Negative indices exclude certain elements from the vector, e.g. x[-3] is the same as x with the third element
missing.

> x[-3]
[1] 5.6 5.4 9.0 -3.9
> x
[1] 5.6 5.4 2.0 9.0 -3.9

Matrices

Matrices (or more generally arrays) are multi-dimensional generalizations of vectors. In fact, they are vectors
that can be indexed by two or more indices.

> M <- 1:20
> dim(M) <- c(4,5)
> M

[,1] [,2] [,3] [,4] [,5]
[1,] 1 5 9 13 17
[2,] 2 6 10 14 18
[3,] 3 7 11 15 19
[4,] 4 8 12 16 20

The second assignment gives the vector M a dimension attribute that allows it to be treated as a 4× 5-matrix (a
matrix with 4 rows and 5 columns). We get the same result by

> M <- matrix(1:20,4,5)

We can index the elements of M in the same way we used for vectors. The only difference: now we need two
indices in the square brackets, because M is two-dimensional. The first index corresponds to the rows, the second
to the columns.

> M[1,2] # first row, second column of M
[1] 5

> M[1:2,1:2] # the upper left corner of M
[,1] [,2]

[1,] 1 5
[2,] 2 6

> M[1:2,-3]
[,1] [,2] [,3] [,4] # the first two rows

[1,] 1 5 13 17 # with the third
[2,] 2 6 14 18 # column missing
> dim(M[1:2,-3])
[1] 2 4 # 2 rows and 4 columns

> M[2,] # second row, all columns
[1] 2 6 10 14 18

Lists

A list is an object consisting of an ordered collection of objects known as its components. Components in lists
can be of different modes and types (e.g. a character vector, a logical value and a matrix). Components are
referred to by a number in double square brackets (in the form listname[[number]]) or by a name (in the form
listname$component). Some easy examples:

> Data <- list(measurements = matrix(rnorm(50),10,5),
tumor.type = factor(c("ER+","ER-","ER-","ER-","ER+")),
differential.genes = c("xxY","xYx","Yxx")
)

> summary(Data)
Length Class Mode

measurements 50 -none- numeric
tumor.type 5 factor numeric
differential.genes 3 -none- character
> Data[[3]]
[1] "xxY" "xYx" "Yxx"
> Data$differential.genes
[1] "xxY" "xYx" "Yxx"

What does Data[[3]][2] do? Give a command that shows the second row of the measurement matrix in your
data without the last entry.

for-loops and apply

> M <- matrix(rnorm(50),10,5)

This results in a 10 × 5 matrix filled with normal-distributed random numbers. Imagine we need the sum over
each row of this matrix. Idea: go through the matrix row by row and compute the sum in each step.

> for(i in 1:10){ print(sum(M[i,])) }

Ok, now collect the results of each step in a vector called results:

> results <- numeric(10)
> for(i in 1:10){ results[i] <- sum(M[i,]) }

In R you can do things like this even without using loops (which are a bit slow). The idea is to apply a certain
operation (in our case sum) to each row of the matrix at the same time:

> results2 <- apply(M,1,sum)
|
1 = rows
2 = columns

The second argument of the function apply() corresponds to the dimensions of the matrix: 1 means rows and
2 means columns. Try apply(M,2,sum).

