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Overview
• Introduction to microarray technologies
• Image Processing: 

Spot Identification, Spot/Background 
quantification, Quality Measures

• Normalization: 
Scaling, Quantile, Lowess, vsn

• Experimental Design: 
Comparison of typical Designs

• Affy Issues
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*****

GeneChip Affymetrix

cDNA microarray

Nylon membrane

Agilent: Long oligo Ink Jet

Illumina 
Bead Array

CGH

SAGE

Different Technologies 
for Measuring Gene 

Expression

1975: Southern Blotting 
Technology (Edward Southern)

1991: First high-density Nylon filter 
Arrays (Lennon, Lehrach)

1995: cDNA-Microarrays 
(Schena et al.)

1996: Affymetrix Genechip 
Technology (Lockhart et al.)

2003: Illumina 
Bead Arrays
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cDNA and Affymetrix (short, 25 bases) Oligo Technologies.
Long Oligos (60-75 bases) are used similar to cDNA.
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Biological verification 
and interpretation

Microarray experiment

Experimental design

Image analysis

Normalization

Biological question 
(hypothesis-driven or explorative)

TestingEstimation Discrimination
Analysis

Clustering

Experimental 
Cycle

Quality 
Measurement

Failed

Pass

Pre-processing

To call in the statistician after the experiment is done may be no 
more than asking him to perform a post-mortem examination: 
he may be able to say what the experiment died of. 

Ronald Fisher
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Preprocessing result: Gene expression Matrix

Gene

mRNA Samples

Gij: Gene expression Level for Gen i in mRNA sample j

Log(red intensity / green intensity)

Function (PM, MM) of MAS, dchip or RMA

sample1 sample2 sample3 sample4 sample5 …
1 0.46 0.30 0.80 1.51 0.90 ...
2 -0.10 0.49 0.24 0.06 0.46 ...
3 0.15 0.74 0.04 0.10 0.20 ...
4 -0.45 -1.03 -0.79 -0.56 -0.32 ...
5 -0.06 1.06 1.35 1.09 -1.09 ...

Gene expression-Data for G Genes and n
Hybridiyations. Genes times Arrays Data-Matrix:



Seite 7 Achim Tresch

Data Data (log scale)

Preprocessing result visualization: Scatterplot(s)
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Image Analysis

• Spot identification
• Spot quantification
• Probe level quality control
• Gene level quality control
• Array level quality control
• Example
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Spot Identification

• The grid structure is provided by the 
manufacturer or generated individually for 
custom-made microarrays (e.g. GAL-files)

• The grid is overlaid by hand or automatically 
onto the image (beware of column/row 
displacement errors!)

GAL-file contains 
Clone-IDs and 
defines their position 
on the grid

Columns

R
ow

s

Blocks
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Spot Identification

• Individual spots are recognized, size and shape might be 
adjusted per spot (automatically fine adjustments by hand).

• Additional manual flagging of bad (X) or non-present (NA) spots

poor spot quality good spot quality

Different Spot identification methods: Fixed circles, circles
with variable size, arbitrary spot shape (morphological
opening)

NA

X
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Histogram of pixel
intensities of a single spot

• The signal of the spots is quantified.

„Donuts“

Mean / Median / Mode / 75% quantile

Spot identification
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Background correction

• Local background is 
calculated and subtracted 
from the spot intensities

GenePix

QuantArray

ScanAlyse
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Quality control: Noise and reliable signal

• Is the signal dominated by noise? Acceptable amount of noise?

• Quantify noise (biol./technical variability)

• Quantify quality of a signal

• Guidelines for reasonable thresholds on the quality of a signal

• Defining strategies for exclusion of probes
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Gene g

Quality control: Noise and reliable signal

Arrays 1 ... n

Array level Gene levelProbe level

Probe level: quality of the expression measurement of one spot 
on one particular array

Array level: quality of the expression measurement on one 
particular glass slide

Gene level: quality of the expression measurement of one probe 
across all arrays
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Probe-level (Individual spots) quality control

• Sources of Variability:
• faulty printing, uneven distribution of probe material across the spot, 

contamination with debris
• Visual inspection:

• hairs, dust, scratches, air bubbles, dark regions, regions with haze
• Spot quality measures:

• Brightness: foreground/background ratio
• Uniformity: variation in pixel intensities and ratios of intensities within a 

spot
• Morphology: area, perimeter, circularity.
• Spot Size: number of foreground pixels

• Action:
• set measurements to NA (missing values)
• use weights for measurements to indicate reliability in later analysis.



Seite 16 Achim Tresch

Gene-level quality control: Poor Hybridization and Printing

• Sources of Variability:

• Some probes will not hybridize well to the target RNA

• Printing problems such that all spots of a given print tip will have poor 
quality.

• A well may be of bad quality (contamination, wrong RNA)

• Quality measure: Genes with a consistently low signal in the reference 
channel are suspicious: Median of the background adjusted signal < 200*

*or other appropriate choice
• Action: Exclude gene from further analysis
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Gene-level quality control:
Probe quality control based on duplicated spots

• Printing different probes that target the same gene or printing multiple 
copies of the same probe.

• Mean squared difference of log2 ratios between spot r and s:

MSDLR = Σ(xjr – xjs)²/J sum over arrays j = 1, …, J

recommended threshold to assess disagreement: MSDLR > 1

• Disagreement between copies: printing problems, contamination, 
mislabeling. Not easy if there are only 2 or 3 slides.

Jenssen et al (2002) Nucleic Acid Res, 30: 3235-3244. Theoretical background
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Array-level quality control

• Problems:
• array fabrication defect
• problem with RNA extraction
• failed labeling reaction
• poor hybridization conditions
• faulty scanner (wrong calibration)

• Quality measures:
• Percentage of spots with no signal (~30% exlcuded spots) 
• Range of intensities
• (Av. Foreground)/(Av. Background) > 3 in both channels
• Distribution of spot signal area
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Swirl Data

• Experiment to study early development in zebrafish.

• Swirl mutant vs. wild-type zebrafish affecting development of dorsal-ventral 
structures

• Two sets of dye-swap experiments.

• Microarray containing 8448 cDNA probes

• 768 control spots (negative, positive, normalization)

• printed using 4x4 print-tips, each grid contains a 22x24 Spot matrix

RR R Console

> library(marray)

> data(swirl)

> ll()

member class mode dimension
1  swirl marrayRaw list c(8448,4)
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24 x 22
spots per 
print-tip

Mutant Type – R
Wild Type - G

Mutant Type – G
Wild Type - R

Hybr. I

Hybr. II

Swirl Data



Seite 21 Achim Tresch

4 x 4 sectors

Sector:
24 rows
22 columns

8448 spots

Mean signal intensity

Visual inspection

RR R Console

> image(swirl[,1])

81: image of M
1 2 3 4

4

3

2

1

-5

-3.9

-2.8

-1.7

-0.56
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2.8

3.9
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81: image of Rb
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Visual inspection – Foreground and Background intensities

RR R Console

> Gcol <- maPalette(
low = "white", 
high = "green", 
k = 50)

> Rcol <- maPalette(
low = "white",
high = "red", 
k = 50)

> image(swirl[,1]
xvar="maRb",
col=Rcol)

> image(swirl[,1]
xvar="maRf",
col=Rcol)

> image(swirl[,1]
xvar="maGb",
col=Gcol)

> image(swirl[,1]
xvar="maRf",
col=Gcol)
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swirl.1.spot

Foreground versus Background intensities

RR R Console

> plot(
maRf(swirl[,1]),
maRb(swirl[,1]),
log="xy") 

> abline(0,1)
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Normalization Methods

• Sources of Variation
• Scaling Methods
• Quantile Normalization
• Lo(w)ess Normalization
• Variance Stabilization
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Sources of Variation:  Bias and Variance

biased unbiased

low noise

high noise
x
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Sources of Variation for Microarray-Data

Normalization Error model

Systematic Stochastic
• similar effect on many 

measurements
• corrections can be 

estimated from data

• Effects on single spots
• random effects that cannot 

be estimated, „noise“

Remove bias Quantify variance



Seite 27 Achim Tresch

tissue contamination

spot size
hybridization efficiency and specificity

amplification efficiency

stray-/background signal

Sources of Variation for Microarray-Data

Systematic Stochastic
amount of RNA in biopsy

efficiency of: RNA extraction, reverse 
transcription, labeling, photodetection

DNA support binding

spotting efficiency

reverse transcription efficiency

DNA quality

stray-/background signal RNA degradation

DNA quality

efficiency of: RNA extraction, reverse 
transcription, labeling, photodetection

stray-/background signal RNA degradation

spotting efficiency

reverse transcription efficiency DNA support binding

amount of RNA in biopsy

tissue contamination

amplification efficiency

hybridization efficiency and specificity
spot size
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Array 2
Cy3 Cy5Array 1

Cy3 Cy5

median

Q3=75% Quantile

Q1=25% Quantile

Minimum

Maximum

Displaying Variability of Microarray-Data
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• Identify and remove sources of systematic variation, other than 
differential expression, in the measured fluorescence intensities.

Aims of normalization:

Enable the estimation of

• True fold changes

• Significance of differential expression

These aims can be adverse! Depending on the further
analysis steps, different normalization strategies may
be appropriate!
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Normalization via rescaling

boxplots

• Location and scale are basic statistical concepts for data description:

Location
normalization: corrects for spatial or dye bias

Scale
normalization: homogenizes the variability 
across arrays

Normalized log-intensity ratios are given by   

Mnorm = (M-location) / scale

“Location and scale of different MA measurements
should be (approximately) the same.“
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• Location: Robust estimation of a “rescaling” Factor, e.g. based on 
the median of gene expression values on the chip. The underlying
assumption is that the majority of genes and hence the center of
the expression values should not change between different 
measurements. The median is used as a robust measure for the 
center of a dataset. 

• Scale: Use some measure for the variability of the data, e.g.
MAD  = MedianAbsoluteDifference  

= median{ |x1-median|, …, |xn-median| }
( the MAD is a more robust measure of scale than the variance)

→ Median centering: Subtract the median of all expression values 
of one chip and divide by the MAD.

• Housekeeping genes

• Spiked in control genes 

Normalization via rescaling
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Swirl array 93: pre-norm

PrintTip

M

81 82 93 94

-2
0

2
4

Swirl arrays: pre--normalization

M

RR R Console

> boxplot(swirl[, 3], xvar = "maPrintTip", yvar = "maM")

> boxplot(swirl, yvar = "maM")

marray – Swirl Data: Raw data
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Swirl array 93: post-norm

PrintTip

M

marray – Swirl Data: Post Normalization

RR R Console

> swirl.norm <- maNorm(swirl, norm = "p")

> boxplot(swirl.norm[, 3], xvar = "maPrintTip", yvar = "maM")

> boxplot(swirl.norm, yvar = "maM")
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Swirl Data – M values, raw vs preprocessed and rescaled

81: image of M
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Normalization procedure was not able to remove scratch
RR R Console

> image(swirl[,1])

> image(swirl.norm[,1])
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Problems with Median-Centering

Log Green

Lo
g 

R
ed

Scatterplot of log-Signals 
after Median-centering

A =  (Log Green + Log Red) / 2        

M
 =

 L
og

 R
ed

 -
Lo

g 
G

re
en

   
 

M-A Plot of the same data

Median-Centering is a global Method. It does not adjust for local effects, 
intensity dependent effects, print-tip effects, etc.

(M for Minus, A for Average)
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Quantile Normalization

−4
−2

0
2

4

0.00.10.20.30.4

QQ-plot

Distribution 1

Distribution 2
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Quantile Normalization

The basic idea of Quantile-Normalization is very simple:

„The Histograms of all Slides are made identical“

Tightens the idea of Median-Centering. Not only the 50%-Quantile is 
adjusted, but all Quantiles.

Boxplot and QQ-plot after Quantile normalization
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The Algorithm:

• For each array, sort the genes by expression

• Let Mn be the mean value of the nth genes of 
each array. Replace the values for the nth gene
by Mn in each array.

• Do this for all positions n.

Disadvantage: For genes at the extreme ends of the distribution, the
expression values of the nth genes have a high variance, so the
mean may vary strongly. In general, quantile normalization tends to 
underestimate expression values at the high end and vice versa at 
the low end.

Before using quantile normalization, measurement data for each
chip should be on the same scale!

Quantile Normalization
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A =  (Log Green + Log Red) / 2       

M
 =

 L
og

 R
ed

 -
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g 
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Assumption: There is an intensity-
dependent bias of the fold change,

and hence
where δj is the “true“ log fold change for
gene j. The true fold change distribution
is approximately a zero-symmetric
normal distribution.

Task: Find f, replace yj by yj - f(xj).

Lo(w)ess Normalization

)()(ˆ xfxf x=

f

)(AfM =

jjj xfy δ+= )(

The idea of local regression is that f can be estimated locally at a point x by 
a simple (and easy-to-fit) function fx. For each point x, we then estimate f by
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In practice, fx is a polynomial of low order (≤ 2). Which points (and with 
which weights) are used to estimate fx is determined by a kernel weight 
function K.

Lo(w)ess Normalization

Taken from Tibshirani et al., „Elements of Statistical Learning“
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lowess = LOcally Weighted regrESSion

(default)
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Lo(w)ess Normalization on all Genes vs. Spike-ins

M = log R/G = logR - logG A = ( logR + logG) /2

Positive Controls
(spotted with different concentrations)Negative 

Controls

Empty 
Spots

Lowess 
Curve
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External 
Controls

From Van de Peppel et al, 2003

Lowess Regression 
fitted to spike-ins

External 
Controls

Lowess Regression 
fitted to all genes

Lo(w)ess Normalization on all Genes vs. Spike-ins
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Swirl array 93: pre-norm MA-Plot
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Swirl array 93: post-norm MA-Plot

A
M

(1,1)
(2,1)
(3,1)
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(4,3)

(1,4)
(2,4)
(3,4)
(4,4)

Non-parametric smoother: loess, 
lowess, local regression line, 
generalizes the concept of moving 
average.

marray – Swirl Data: Print-tip lowess Normalization

RR R Console

> plot(swirl[, 3], xvar = "maA", yvar = "maM", 
zvar = "maPrintTip")

> plot(swirl.norm[, 3], xvar = "maA", yvar = "maM", 
zvar = "maPrintTip")
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Variance Stabilizing Normalization (VSN): model and theory

• Huber et al. (2002) Bioinformatics, 18:S96–S104

• Model for measured probe intensity 
Rocke DM, Durbin B (2001) Journal of Computational Biology, 8:557–569

• log-transformation is replaced by a transformation (arcsinh) based on 
theoretical grounds.

• Estimation of transformation parameters (location, scale) based on ML 
paradigm and numerically solved by a least trimmed sum of squares 
regression.

• vsn–normalized data behaves close to the normal distribution
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Variance stabilizing transformations

• Let Xμ , μ є [a,b], be a family of random variables Xμ with expectation
value

E(Xμ ) = μ
and variance

Var(Xμ) = v(μ).

v(μ)

v(μ)

Xμ

μ μ

v(μ)
(realizations of)

We seek a transformation T: IR→IR such that

Var(T(Xμ)) ≈ const.
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What are variance stabilizing transformations good for? 

After variance stabilization with T the data are homoskedastic, i.e. the
variance of the transformed random variables T(Xμ ), μ є [a,b], is
(approximately) constant (the antonym of homosketasticity is
heteroskedasticity. Regarding the replicate measurements of the
expression of a gene with mean expression μ as realizations of a 
random variable Xμ , the Xμ , μ є [a,b], are heteroskedastic).

Homoskedastic data enable the application of more powerful statistical
tests. E.g. the requirements for the application of the t-test as a test for
differential expression are better fulfilled with transformed, 
homoskedastic data.

Variance Stabilizing Transformations
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Deduction of the Variance Stabilizing Transformation

Original scale

Tr
an

sf
or

m
ed

sc
al

e

y=T(x)

μ
δ δ

Tangent to the graph T at the point (μ,T(μ))

T(μ)
T´(μ)·δ

T´(μ)·δ

A differentiable function T:IR→IR can be approximated linearly in the
neighourhood of μ by

T(x) ≈ T(μ) + T´(μ)·(x-μ)
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Hence for given Transformation T we have:

T(Xμ) ≈ T(μ) + T´(μ)·(Xμ -μ)

And we can calculate the variance of T(Xμ) as

Var(T(Xμ ))  ≈ Var( T(μ) + T´(μ)·(Xμ -μ) )

= (T´(μ))2 Var(Xμ -μ) 

= (T´(μ))2 Var(Xμ )

= (T´(μ))2 v(μ) 

Deduction of the Variance Stabilizing Transformation

All that rests is to “whish“ Var(T(Xμ )) to be constant, 1 say, and solve the
resulting equation for T.

ttvT

vT

d )(1    )(

)(1    )´(

0
∫=

=
μ

μ

μμ

)())´((    ))((    1 2 μμμ vTXTVar ≈=

→

→ (modulo an 
additive constant)
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Determination of v(μ): The Two-Component Error Model

raw scale log scale

“additive” noise

“multiplicative” noise

B. Durbin, D. Rocke, JCB 2001
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The Two-Component Error Model (for one gene)

a constant background Constant for all probes of one array and one colour, 
varies with array and colour (Cy5/Cy3)

ε background noise iid for each spot

b constant amplification 
factor

Constant for all probes of one array and one colour, 
varies with array and colour (Cy5/Cy3)

η random amplification 
fluctuations

iid for each spot

For small η, 
both variants are
practically equivalentη

μ

μ

με

ημε

exp

)1(

⋅⋅++=

+⋅⋅++=

baX

baX

μ : “true“ gene expression

Xμ : measured gene expression
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Calculation of the variance stabilizing transformation
for different model specifications

),0(~  ,  ),0(~

)1(
22 τησε

ημεμ

NN

baX +⋅⋅++=

a) No multiplicative noise (τ =0) :

2    )(   

 )(    )(    )(

σε

μεμ μ

==

⋅++==

Var

baVarXVarv

σ
μσμ

μμ

    d 1d )(1    )(   
0

2

0

===⇒ ∫∫ tttvT

T is merely a proportional rescaling

Specified
error model
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b) No additive noise (σ =0) :

22222     )(   
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T is (up to rescaling) the logarithmic transformation
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Calculation of the variance stabilizing transformation
for different model specifications
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c) Unrestricted model :
2222      ))1((    )( τμσημεμ bbaVarv +=+⋅⋅++=

 arcsinh                        

  d  1d )(1    )(   
1

2222

1

⎟
⎠
⎞
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⎝
⎛=

+==⇒ ∫∫

σ
μ

τσμ
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ttbttvT

up to rescaling

( )1xxlog    arcsinh(x)  2 ++=Recall:

Calculation of the variance stabilizing transformation
for different model specifications
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The „glog“-Transformation

intensity
-200 0 200 400 600 800 1000

- - - f(x) = log(x)

——— hσ(x) = arcsinh(x/σ) 

)2log(    ))log()(arcsinh(x lim

)1log(xarcsinh(x) 2

⎯⎯→⎯−

++=
→∞x

x

x
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The Two-Component Model for the whole Array

ε= +iik ika a
ai per-sample offset

εik ~ N(0, bi
2s1

2)
“additive noise”

bi per-sample
normalization factor

bk sequence-wise
probe efficiency

ηik ~ N(0,s2
2)

“multiplicative noise”

exp( )iik k ikb b b η=

ik ik ik ky a b x= +
measured intensity  =  offset  +       gain   × true abundance

Cave: This model applies only to the
unaltered genes, which are supposed to 
account for at least 50% of all genes. 
A robust fitting method for the estimation of 
the parameters ai ,bi ,s1 ,s2 has been
developed by W.Huber and A.v.Heydebreck.

The resulting transformation method has 
been implemented in the R package vsn. 
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The „glog“-Transformation

Additive component
Variance:

multiplicative component P. Munson, 2001

D. Rocke & B. Durbin, ISMB 2002

W. Huber et al., ISMB 2002

no transformation log transformed glog transformed
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rank(average)

Normality of residuals: QQ-plot

Evalutation: Effects of different Data Transformations
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Swirl Data: Lowess versus VSN

RR R Console
> plot(maA(swirl.norm[,3]), maM(swirl.norm[,3]), ylim=c(-3,3))

> library(vsn); library(limma);

> A.vsn<-log2(exp(exprs(swirl.vsn[,6])+exprs(swirl.vsn[,5])))/2

> M.vsn<-log2(exp(exprs(swirl.vsn[,6])-exprs(swirl.vsn[,5])))

> plot(A.vsn, M.vsn, ylim=c(-3,3)
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RR R Console

> M.lowess<-maM(swirl.norm)

> M.vsn<-log2(exp(exprs(
swirl.vsn[,c(2,4,6,8)])-
exprs(swirl.vsn[,c(1,3,5,7)]
)))

> par(mfrow=c(2,2))

> plot(M.lowess[,1},
M.vsn[,1], pch=20)

> abline(0,1, col="red")

> plot(M.lowess[,1},
M.vsn[,1], pch=20)

> abline(0,1, col="red")

> plot(M.lowess[,1},
M.vsn[,1], pch=20)

> abline(0,1, col="red")

> plot(M.lowess[,1},
M.vsn[,1], pch=20)

> abline(0,1, col="red")

Swirl: LOWESS versus VSN
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Fold change Estimation: Bias-Variance tradeoff

The traditional log-ratio                      is replaced by the „glog“-ratio

2
2

2
22

2
1

2
11log

cxx

cxx
h

++

++
=

2

1log
x
xq =

estim
ated log-foldchange

( c1,c2 parameters estimated by vsn)

signal intensity

The glog-ratio is a so-called
shrinkage estimator: In exchange of 
an increased bias towards zero
(relative to the log ratio), the
variance of the glog ratio is smaller
than that of the log ratio. Such an 
estimator is particularly useful in the
case of low replicate numbers and 
thus large expected variances.



Seite 61 Achim Tresch

Summary

• What makes a good measurement: Precision and Unbiasednes

• Need to normalize.

• Normalization is not something trivial, has many practical and 
theoretical implications which need to be considered.

• What is the best way to normalize?

• How dependent is the result of your analysis from the 
normalization procedure?
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Experimental Design

• Different levels of Replication
• Pooling vs. non Pooling
• Different Strategies to pair
hybridization Targets on cDNA  
Arrays

• Direct vs. indirect Comparisons



Seite 63 Achim Tresch

Two main aspects of array design
Design of the array Allocation of mRNA samples to the

slides 

Arrayed Library
(96 or 384-well plates of 
bacterial glycerol stocks)

cDNA
cDNA “A”
Cy5 labeled

cDNA “B”
Cy3 labeled

Hybridization

Spot as microarray
on glass slides

affy

MTWT
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A Types of Samples
• Replication – technical, biological
• Pooled vs individual samples
• Pooled vs amplification samples

B Different design layout 
• Scientific aim of the experiment
• Robustness
• Extensibility
• Efficiency

2. Allocation of samples to the slides

This relates to both
Affymetrix and 
two color spotted arrays

Applies to 
two color spotted 
arrays only
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Preparing mRNA samples:
Mouse model
Dissection of 

tissue

RNA 
Isolation

Amplification

Probe
labelling

Hybridization
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Mouse model
Dissection of 

tissue

RNA 
Isolation

Amplification

Probe
labelling

Hybridization

Biological Replicates

Preparing mRNA samples:
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Mouse model
Dissection of 

tissue

RNA 
Isolation

Amplification

Probe
labelling

Hybridization

Technical 
replicates

Preparing mRNA samples:
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Pooling: looking at very small amount of tissues
Mouse model
Dissection of 

tissue

RNA 
Isolation

Pooling

Probe
labelling

Hybridization



Seite 69 Achim Tresch

Design 1

Design 2

Pooled vs. Individual samples

Taken from 
Kendziorski etl al (2003)

Bottleneck: Not enough chips available
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Pooled versus Individual samples

Pooling is seen as “biological averaging”.

Trade off between
• Cost of performing a hybridization.
• Cost of the mRNA samples.

• Case 1: Cost or mRNA samples << Cost per hybridization
Pooling can assist reducing the number of hybridizations.

• Case 2: Cost or mRNA samples >> Cost per hybridization
Hybridize every sample on an individual array to get the maximum amount of 
information.
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amplification

amplification

Original samples Amplified samples

amplification

amplification

pooling

pooling

Design A

Design B

Amplification 
vs. Pooling

Bottleneck: Not enough mRNA available
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Pooled vs Amplified samples

• In the cases where we do not have enough material from one biological 
sample to perform one array (chip) hybridizations, pooling or amplification 
are necessary.

• Amplification 
• Introduces more noise.
• Non-linear amplification (??), different genes amplified at different rate.
• Enables to perform more hybridizations.

• Pooling
• Increased effort to obtain sufficiently large number of samples
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A Types of Samples
• Replication – technical, biological 
• Pooled vs individual samples
• Pooled vs amplification samples

B Different design layout
• Scientific aim of the experiment
• Robustness
• Extensibility
• Efficiency

2. Allocation of samples to the slides
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Design of a Dye-Swap Experiment

• Repeats are essential to control 
the quality of an experiment.

• One example for Replicates is the 
Dye-Swap, i.e. Replicates with 
the same mRNA Pool but with 
swapped labels.

• Dye-Swap shows whether there is 
a dye-bias in the Experiment.
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Graphical representation

Vertices: mRNA samples;
Edges: hybridization;
Direction: dye assignment. 

Cy3 
sample

Cy5 
sample
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• The structure of the graph determines which effects can be estimated and 
the precision of the estimates. 

• Two mRNA samples can be compared only if there is a path joining the 
corresponding two vertices. 

• The precision of the estimated contrast then depends on the number of 
paths joining the two vertices and is inversely related to the length of 
the paths.

• Direct comparisons within slides yield more precise estimates than 
indirect ones between slides.

Graphical representation
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The first design question: 
Direct versus indirect comparisons

Two samples (A vs B)
e.g.  KO vs. WT or mutant vs. WT

A B
A

B
R

Direct Indirect

σ2 /2 2σ2

(log (A/B) + log(B/A)) / 2 log (A / R) – log (B / R )

These calculations assume independence of replicates: the reality is not so simple.
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Direct vs. Indirect - revisited

A B
A

B
R

Direct Indirect

y = (a – b) + (a’ – b’)

Var(y/2) = σ2 /2 + χ1

y = (a – r) - (b – r’)

Var(y) = 2σ2 - 2χ1

Two samples (A vs B)
e.g.  KO vs. WT or mutant vs. WT

σ2/2 = χ1    efficiency ratio (Indirect / Direct) = 1
χ1 = 0  efficiency ratio (Indirect / Direct) = 4

= Correlation of replicatesχ1
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Experimental results

• 5 sets of experiments with similar 
structure.

• Compare (Y axis)
Direct) StdErr for aveMmt
Indirect) StdErr for aveMmt –

aveMwt

• Theoretical ratio of (A / B) is 1.6

• Experimental observation is 1.1 to 
1.4.

S
E
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Experimental design
• Create highly correlated reference samples to overcome inefficiency in 

common reference design.

• Not advocating the use of technical replicates in place of biological 
replicates for samples of interest.

• Efficiency can be measured in terms of different quantities
• number of slides or hybridizations;
• units of biological material, e.g. amount of mRNA for one channel.

• In addition to experimental constraints, design decisions should be guided 
by the knowledge of which effects are of greater interest to the
investigator.
E.g. which main effects, which interactions. 

• The experimenter should thus decide on the comparisons for which he 
wants the most precision and these should be made within slides to the 
extent possible.
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L P

A

w

LPA

w

LPA

22 22

I (a) Common reference I (b) Common reference II Direct comparison

Number of Slides N = 3 N=6 N=6

mean Variance 2 1 0.67 

Efficiency rate (Design I(b) / Design II) = 1.5 

used Material A = P = L = 1 A = P = L = 2 A = P = L = 2

Experimental design

2 2

2
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Common reference design

• Experiment for which the common reference design is appropriate
Meaningful biological control (C) Identify genes that responded differently  / 
similarly across two or more treatments relative to control.
Large scale comparison.  To discover tumor subtypes when you have many 
different tumor samples.

• Advantages:
Ease of interpretation.
Robustness against failure of microarrays
Extensibility - extend current study or to compare the results from current 
study to other array projects.

T1

Ref

T2 Tn-1 Tn
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Indirect A balance of direct and indirect

I) II) III) IV)

0.67

0.43

0.67

# Slides N = 6

Main effect A 0.5 0.5 NA

Main effect B 0.5 0.5 0.3

Interaction 
A.B

1.5 1 0.67

C

A.BBA

B

C

A.B

A

B

C

A.B

A

B

C

A.B

A

Table entry: variance Ref: Glonek & Solomon (2002)

2x2 Factorial experiments
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t vs t+1 t vs t+2Design choices in time series

A) T1 as common reference 1 2 2 1 2 1 1.5N=3

N=4

B) Direct Hybridization

C) Common reference

1 1 1 2 2 3 1.67

T1T2 T2T3 T3T4 T2T4 T1T4

2 2

1.67

1

.75

1.67

2

1

.75.75

1 .75

2

.67

.75

.75

2

.67

.75

1

T1T3 Ave

2 2

D) T1 as common ref + more .67 1.06

E) Direct hybridization choice 1 1 .83

F) Direct Hybridization choice 2 .75 .83

T2 T3 T4T1

T2 T3 T4T1
Ref

T2 T3 T4T1

T2 T3 T4T1

T2 T3 T4T1

T2 T3 T4T1

Time series experiments
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Affy Chips: 

PM versus MM and

summary information
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Affymetrix GeneChips: Technical details

2424µµmm

Millions of copies of a specificMillions of copies of a specific
oligonucleotide probe oligonucleotide probe 
synthesized in situ (synthesized in situ (““growngrown””))

Image of Hybridized Probe ArrayImage of Hybridized Probe Array

>200,000 different>200,000 different
complementary probes complementary probes 

Single stranded, Single stranded, 
labeled RNA targetlabeled RNA target

Oligonucleotide probeOligonucleotide probe

* *
*

*
*

1.28cm1.28cm

GeneChipGeneChip Probe ArrayProbe Array
Hybridized Probe CellHybridized Probe Cell
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5‘ 3‘

PM:  ATGAGCTGTACCAATGCCAACCTGG
MM: ATGAGCTGTACCTATGCCAACCTGG

16-20 probe 
pairs per gene

16-20 probe pairs: HG-U95a
11 probe pairs: HG-U133

64 pixels; Signal intensity is upper
quartile of the 36 inner pixels

Stored in CEL file

Affymetrix technology
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Affymetrix expression measures

• PMijg, MMijg = Intensity for perfect match and mismatch probe j for gene 
g in chip i.

• i = 1,…, n one to hundreds of chips
• j = 1,…, J usually 16 or 20 probe pairs
• g = 1,…, G 8…20,000 probe sets.

• Tasks:
• calibrate (normalize) the measurements from different chips 

(samples)
• summarize for each probe set the probe level data, i.e., 20 PM and 

MM pairs, into a single expression measure.
• compare between chips (samples) for detecting differential 

expression.
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Low – level -Analysis

• Preprocessing signals: background correction, normalization, PM-
adjustment, summarization.

• Normalization on probe or probe set level?

• Which probes / probe sets used for normalization

• How to treat PM and MM levels?
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Arguments against the use of d = PM-MM

• Difference is more variable. Is there a gain in bias to compensate
for the  loss of precision?

• MM detects signal as well as PM

• PM / MM results in a bias.

• Subtraction of MM is not strong enough to remove probe effects,
nothing is gained by subtraction
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Example LPS: Expression Summaries
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How to approach the quantification of gene 
expression:Three data sets to learn from

• Mouse Data Set (A)
5 MG-U74A GeneChip® arrays, 20% of the probe pairs were
incorrectly sequenced, measurements read for these probes are
entirely due to non-specific binding

• Spike-In Data Set (B)
11 control cRNAs were spiked-in at different concentrations

• Dilution Data Set (C)
Human liver tissues were hybridised to HG-U95A in a range of
proportions and dilutions.
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Normalization – Baseline Array

Data C
Raw PM Raw PM-MM

Normalized PM Normalized PM-MM
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• Graphical tool to evaluate summaries of Affymetrix probe level
data.

• Plots and summary statistics

• Comparison of competing expression measures

• Selection of methods suitable for a specific investigation

• Use of benchmark data sets

What makes a good expression measure: leads to good and precise 
answers to a research question. 

AffyComp
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> affycompTable(rma.assessment, mas5.assessment)

RMA MAS.5.0 whatsgood Figure

Median SD 0.08811999 2.920239e-01 0 2

R2 0.99420626 8.890008e-01 1 2

1.25v20 corr 0.93645083 7.297434e-01 1 3

2-fold discrepancy 21.00000000 1.226000e+03 0 3

3-fold discrepancy 0.00000000 3.320000e+02 0 3

Signal detect slope 0.62537111 7.058227e-01 1 4a

Signal detect R2 0.80414899 8.565416e-01 1 4a

Median slope 0.86631340 8.474941e-01 1 4b

AUC (FP<100) 0.82066051 3.557341e-01 1 5a

AFP, call if fc>2 15.84156379 3.108992e+03 0 5a

ATP, call if fc>2 11.97942387 1.281893e+01 16 5a

FC=2, AUC (FP<100) 0.54261364 6.508575e-02 1 5b

FC=2, AFP, call if fc>2 1.00000000 3.072179e+03 0 5b

FC=2, ATP, call if fc>2 1.71428571 3.714286e+00 16 5b

IQR 0.30801579 2.655135e+00 0 6

Obs-intended-fc slope 0.61209902 6.932507e-01 1 6a

Obs-(low)int-fc slope 0.35950904 6.471881e-01 1 6b

AffyComp
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good

bad
W. Huber

affycomp results (28 Sep 2003)
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