
First steps in R
Florian Markowetz
Practical DNA Microarray Analysis

This tutorial refers to the practical session on day one of the course in Practical DNA Microarray Analysis:http://compdiag.molgen.mpg.de/ngfn/. We will guide you through your �rst steps in R. For further reading werecommend \An introduction to R" by Venables et al. which is available for free from http://cran.r-project.orgor \Introductory Statistics with R" by Peter Dalgaard, Springer 2002.
Preliminaries
From A to
. Invoking R depends on the platform you use. Under Windows it involves some clicking-around,under Linux/Unix you usually just type \R" at the Konsole. In our current installation at the MPI, you have totype \R-rel". You quit R with the command q(). Don't forget the parentheses!
Getting help. There are many ways to get help from R. Find out what the function library() does by usingthe commands help(library) or ?library. The command library() results in a list of R-packages that arealready loaded and can be used by you. What happens if you type library without parentheses?
Online help. Running help.start() launches a web browser that allows the help pages to be browsed withhyperlinks. Spend some time getting used to it.
Vectors and assignments
Build a vector with entries 1 to 10 and call it x. Try di�erent ways to do it:
> x <- 1:10> assign("x",1:10)> x <- seq(1,10,by=1)> x <- seq(length=10,from=1,by=1)> x <- c(1,2,3,4,5,6,7,8,9,10) # c = concatenate
The result always is the same:
> x[1] 1 2 3 4 5 6 7 8 9 10
The operator \<-" assigns the value of an expression (e.g. \1:10") to an object (e.g. \x"). If an expression isused as a complete command, the value is printed and lost.
> seq(10,1,-1)[1] 10 9 8 7 6 5 4 3 2 1
Compare a <- 1:10-1 to b <- 1:(10-1).
With ls() or objects() you get on overview of the objects in your workspace. Single objects can be removedby rm(). To clear your whole workspace use rm(list=ls()). Remove a and b.
Let's have a closer look at x. summary() gives you an overview of an objects properties. The output dependson what type of object it is. For vectors you get information on the distribution of values in it.
> summary(x)> length(x)> mode(x)

http://compdiag.molgen.mpg.de/ngfn/
http://cran.r-project.org/doc/manuals/R-intro.pdf
http://cran.r-project.org
http://www.biostat.ku.dk/~pd/ISwR.html

x is a numeric vector of length 10. The mode can be changed:
> y <- as.character(x)> y[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10"> mode(y)[1] "character"> x <- as.numeric(y)
Vector arithmetic
Build two vectors of length 5 and try some arithmetic operations like +, -, *, /, sum, mean, ^, log,exp, sin, cos, tan, sqrt, abs, max, min, range, prod, cumsum. These operations work elementwiseand can be nested.
> x <- 5:1> x[1] 5 4 3 2 1> y <- c(4,7,3,7,6)> y[1] 4 7 3 7 6> x+y[1] 9 11 6 9 7> x*y[1] 20 28 9 14 6> sin(x)+cos(y)[1] -1.612567896 -0.002900241 -0.848872489 1.663199681 1.801641271> sum(sin(x)+cos(y))[1] 1.0005> sqrt(x)[1] 2.236068 2.000000 1.732051 1.414214 1.000000> sqrt(x)^2[1] 5 4 3 2 1
Let's try to calculate a more complex formula. Imagine vector x containing your n measurements. The samplevariance is de�ned by 1n� 1

nX
i=1
 xi � 1n

nX
i=1 xi

!2 :
> sum((x-mean(x))^2)/(length(x)-1)> var(x) # gives the same result!
Vector indexing
Individual elements of a vector can be referenced by giving the name of the vector followed by the subscripts insquare brackets. You can also use logical expressions for indexing. Some examples:
> x <- c(5.6,5.4,2,9,-3.9)> x[1] 5.6 5.4 2.0 9.0 -3.9
> x[4][1] 9

> x[2:3][1] 5.4 2.0> x[c(1,3)][1] 5.6 2.0
> x[x > 4][1] 5.6 5.4 9.0> x > 4[1] T T F T F # T = TRUE, F = FALSE
Negative indices exclude certain elements from the vector, e.g. x[-3] is the same as x with the third elementmissing.
> x[-3][1] 5.6 5.4 9.0 -3.9> x[1] 5.6 5.4 2.0 9.0 -3.9
Matrices
Matrices (or more generally arrays) are multi-dimensional generalizations of vectors. In fact, they are vectorsthat can be indexed by two or more indices.
> M <- 1:20> dim(M) <- c(4,5)> M [,1] [,2] [,3] [,4] [,5][1,] 1 5 9 13 17[2,] 2 6 10 14 18[3,] 3 7 11 15 19[4,] 4 8 12 16 20
The second assignment gives the vector M a dimension attribute that allows it to be treated as a 4� 5-matrix (amatrix with 4 rows and 5 columns). We get the same result by
> M <- matrix(1:20,4,5)
We can index the elements of M in the same way we used for vectors. The only di�erence: now we need twoindices in the square brackets, because M is two-dimensional. The �rst index corresponds to the rows, the secondto the columns.
> M[1,2] # first row, second column of M[1] 5
> M[1:2,1:2] # the upper left corner of M[,1] [,2][1,] 1 5[2,] 2 6
> M[1:2,-3][,1] [,2] [,3] [,4] # the first two rows[1,] 1 5 13 17 # with the third[2,] 2 6 14 18 # column missing> dim(M[1:2,-3])

[1] 2 4 # 2 rows and 4 columns
> M[2,] # second row, all columns[1] 2 6 10 14 18
Lists
A list is an object consisting of an ordered collection of objects known as its components. Components in listscan be of di�erent modes and types (e.g. a character vector, a logical value and a matrix). Components arereferred to by a number in double square brackets (in the form listname[[number]]) or by a name (in the formlistname$component). Some easy examples:
> Data <- list(measurements = matrix(rnorm(50),10,5),tumor.type = factor(c("ER+","ER-","ER-","ER-","ER+")),differential.genes = c("xxY","xYx","Yxx"))> summary(Data) Length Class Modemeasurements 50 -none- numerictumor.type 5 factor numericdifferential.genes 3 -none- character> Data[[3]][1] "xxY" "xYx" "Yxx"> Data$differential.genes[1] "xxY" "xYx" "Yxx"
What does Data[[3]][2] do? Give a command that shows the second row of the measurement matrix in yourdata without the last entry.
for-loops and apply

> M <- matrix(rnorm(50),10,5)
This results in a 10 � 5 matrix �lled with normal-distributed random numbers. Imagine we need the sum overeach row of this matrix. Idea: go through the matrix row by row and compute the sum in each step.
> for(i in 1:10){ print(sum(M[i,])) }
Ok, now collect the results of each step in a vector called results:
> results <- numeric(10)> for(i in 1:10){ results[i] <- sum(M[i,]) }
In R you can do things like this even without using loops (which are a bit slow). The idea is to apply a certainoperation (in our case sum) to each row of the matrix at the same time:
> results2 <- apply(M,1,sum)|1 = rows2 = columns
The second argument of the function apply() corresponds to the dimensions of the matrix: 1 means rows and2 means columns. Try apply(M,2,sum).

