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Overview

• Exploratory data analysis: Unsupervised learning

• Example: Time series

• Distance measures: Object (dis-)similarities

• Cluster algorithms: Grouping of data

• Clustering microarray data: Comparisons and hints

• Other exploratory methods for microarray data
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Interactive exploratory data analysis

YOU ARE ALL GENES…



Jörg Rahnenführer, MPI Informatik NGFN course, München, May 9, 2006

Classification tasks for microarrays

• Classification of SAMPLES
Generate gene expression profiles that can
(i) discriminate between different known cell types or 

conditions, e.g. between tumor and normal tissue,
(ii) identify different and previously unknown cell types or 

conditions, e.g. new subclasses of an existing class of tumors.

• Classification of GENES
(i) Assign an unknown cDNA sequence to one of a set of known

gene classes.
(ii) Partition a set of genes into new (unknown) functional 

classes on the basis of their expression patterns across a 
number of samples.
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Classification

Seminal microarray analysis paper (Golub et al.) 

Molecular classification of cancer: class discovery and class 
prediction by gene expression monitoring, Science 1999, 86:531-
537, see http://www.genome.wi.mit.edu/MPR

Cancer classification Class discovery Class prediction

Machine learning Unsupervised learning Supervised learning

Statistics Cluster analysis Discriminant analysis

http://www.genome.wi.mit.edu/MPR
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Classification

MESSAGE 1

Discriminant analysis:  CLASSES KNOWN

Cluster analysis:  CLASSES NOT KNOWN
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Classification

• Difference between discriminant analysis (supervised 
learning) and cluster analysis (unsupervised learning) is 
important:

• If the class labels are known, many different supervised 
learning methods are available. They can be used for 
prediction of the outcome of future objects.

• If the class labels are unknown, unsupervised learning
methods have to be used. For those, it is difficult to ascertain 
the validity of inferences drawn from the output.
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Cluster analysis

Goal in cluster analysis:
Grouping a collection of objects into subsets or “clusters”,
such that those within each cluster are more closely related to 
one another than objects assigned to different clusters.

Two ingredients are needed to group objects:

Distance measure
A notion of distance or similarity of two objects: When are two 
objects close to each other?

Cluster algorithm
A procedure to minimize distances of objects within groups 
and/or maximize distances between groups.
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Cluster analysis

The gene
expression matrix

• Clustering columns: grouping similar 
samples

• Clustering rows: Grouping genes with 
similar trajectories

Biclustering: Group genes that have similar 
partial trajectories in a subset of the 
samples

Literature:                                                   
Tanay, A., Sharan, R., and Shamir, R. 
(2002): Discovering Statistically 
Signifnicant Biclusters in Gene 
Expression Data, Bioinformatics 18,
Suppl.1, 136-144.

probes

genes

Li,j: expression level
of gene i in probe j
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Cluster analysis: Bi-Clustering

The gene
expression matrix

• Clustering columns: grouping similar 
samples

• Clustering rows: Grouping genes with 
similar trajectories

• Biclustering: Group genes that have similar 
partial trajectories in a subset of the 
samples

Literature                                                   
Tanay, A., Sharan, R., and Shamir, R. 
(2002): Discovering Statistically 
Signifnicant Biclusters in Gene 
Expression Data, Bioinformatics 18,
Suppl.1, 136-144.

probes

genes
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Time series example

Biology
Measurements of gene expression    
on 4 (consecutive) days.

Statistics
Every gene is coded by a vector       
of length 4.

• steep up:  x1 = (2, 4, 5, 6)
• up:           x2 = (2/4, 4/4, 5/4, 6/4)
• down:      x3 = (6/4, 4/4, 3/4, 2/4)
• change:    x4 = (2.5, 3.5, 4.5, 1)
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Distance measures - Time series example

Euclidean distance 
The distance between two vectors is the square root of the sum of 
the squared differences over all coordinates.

• steep up:  x1 = (2, 4, 5, 6)
• up:           x2 = (2/4, 4/4, 5/4, 6/4)
• down:      x3 = (6/4, 4/4, 3/4, 2/4)
• change:    x4 = (2.5, 3.5, 4.5, 1)

2 2 2
2

2
E 1d ( , ) = ( - ) ( - )x 2/4 ( - ) ( - ) 3 3 / 4 2.598x 4/4 52 4 5 4 46/ 6/+ + + = ≈

0 2.60 2.75 2.25

2.60 0 1.23 2.14

2.75 1.23 0 2.15

2.25 2.14 2.15 0

Matrix of pairwise distances
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Distance measures - Time series example

Manhattan distance
The distance between two vectors is the sum of the absolute 
(unsquared) differences over all coordinates.

• steep up:  x1 = (2, 4, 5, 6)
• up:           x2 = (2/4, 4/4, 5/4, 6/4)
• down:      x3 = (6/4, 4/4, 3/4, 2/4)
• change:    x4 = (2.5, 3.5, 4.5, 1)

2M 1x 2 4 5x 2/4 4/4 5/4 6/4d ( , ) = - - + - + -  = 51/4 = 1 56 2.7+

0 12.75 13.25 6.50

12.75 0 2.50 8.25

13.25 2.50 0 7.75

6.50 8.25 7.75 0

Matrix of pairwise distances
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Distance measures - Time series example

Correlation distance
Distance between two vectors is 1-ρ, where ρ is the Pearson 
correlation of the two vectors.

• steep up:  x1 = (2, 4, 5, 6)
• up:           x2 = (2/4, 4/4, 5/4, 6/4)
• down:      x3 = (6/4, 4/4, 3/4, 2/4)
• change:    x4 = (2.5, 3.5, 4.5, 1)
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Distance measures - Time series example

Comparison: 
All distances 
are normalized 
to the interval 
[0,10] and then 
rounded. 0  0  07  5  47  6  58  4  5change

7  5  40  0  04  1 1010 10 10down

7  6  54  1 100  0  09  9  0up

8  4  510 10 109  9  00  0  0steep up

changedownupsteep up

02.152.142.25

2.1501.232.75

2.141.2302.60

2.252.752.600

07.758.256.50

7.7502.5013.25

8.252.50012.75

6.5013.2512.750

00.821.181.18

0.82022

1.18200

1.18200

Euclidean                          Manhattan                    Correlation



Jörg Rahnenführer, MPI Informatik NGFN course, München, May 9, 2006

Distance measures - Time series example

Summary

• Euclidean distance measures average difference 
across coordinates.

• Manhattan distance measures average difference 
across coordinates, in a robust way.

• Correlation distance measures difference with 
respect to trends.
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Distance measures - standardization

Standardization
• Data points are normalized with respect to mean and variance:

Apply transformation                       , where       is an estimator  
of the mean (usually average across coordinates) and       is an
estimator of the variation (usually empirical standard deviation).

• After standardization, Euclidean distance and Correlation 
distance are equivalent(!):

• Standardization makes sense, if you are not interested in the 
magnitude of the effects, but in the effect itself. Results can be 
misleading for noisy data.

ˆ
ˆ

xx µ
σ
−

µ̂
σ̂

2
1 2 1 2( , ) 2 ( , )E Cd x x nd x x=
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Distance measures

MESSAGE 2

Appropriate choice of distance measure 
depends on your intention!
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Cluster algorithms

Most popular cluster algorithms:

• Hierarchical clustering algorithms
• K-means
• PAM (Partitioning around medoids)
• SOM’s (Self-Organizing Maps)

K-means and SOM's take original data directly as input.
Hierarchical cluster algorithms and PAM allow the choice of a 

dissimilarity matrix d, that assigns to each pair of objects xi and xj
a value d(xi,xj) as their distance.

Most popular cluster algorithms:

• Hierarchical clustering algorithms
• K-means
• PAM (Partitioning around medoids)
• SOM’s (Self-Organizing Maps)

• K-means and SOM's take original data directly as input.
• Hierarchical cluster algorithms and PAM allow the choice of a 

dissimilarity matrix d, that assigns to each pair of objects xi and xj
a value d(xi,xj) as their distance.
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Hierarchical cluster algorithms

• Hierarchical clustering was the first algorithm used in 
microarray research to cluster genes (Eisen et al. (1998)).

1. First, each object is assigned to its own cluster.

2. Iteratively:
The two most similar clusters are joined, representing a 
new node of the clustering tree. The node is computed as 
average of all objects of the joined clusters.
The similarity matrix is updated with this new node 
replacing the two joined clusters.

3. Step 2 is repeated until only one single cluster remains.
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Hierarchical cluster algorithms

• Calculation of distance between two clusters is based on 
object dissimilarity between the objects from the two 
clusters.

• Instead of agglomerative clustering, sometimes divisive 
clustering is used:
Iteratively, best possible splits are calculated.

ijHjGiS dHGd
∈∈

=
,

min),(

∑∑
∈ ∈

=
Gi Hj

ij
HG

A d
NN

HGd 1),(

ijHjGiC dHGd
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=
,

max),(

Single linkage uses the smallest distance:

Complete linkage uses the largest distance:

Average linkage uses the average distance:
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Hierarchical cluster algorithms

• Visualization of hierarchical clustering through dendrogram:
Clusters that are joined are combined by a line.
Height of line is average distance between clusters. 
Cluster with smaller variation is plotted on left side.

• The procedure provides a hierarchy of clusterings, with the 
number of clusters ranging from 1 to the number of objects.

• BUT:                                                               
Parameters for distance matrix:   n(n-1)/2
Parameters for dendrogram:         n-1.

Hierarchical clustering does not show the full picture!
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Time series example

• Euclidean distance
Similar values are 
clustered together
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Time series example

• Manhattan distance
Similar values are 
clustered together 
(robust)
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Time series example

• Correlation distance
Similar trends are 
clustered together
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Clustering time series data – literature examples

Iyer et al., 
Science,
Jan 1999:

Genes from
functinal
classes are
clustered
together
(sometimes!).

Careful
interpretation
neccessary!
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Clustering time series data – literature examples

http://www.genome.wi.mit.edu/MPRGolub et al.: Leukemia dataset, 

3 cancer classes:   
25 acute myeloid 
leukemia (AML),  
47 acute lympho-
blastic leukemia 
(ALL), the latter 
9 T-cell and 38 
B-cell.

Dendrogram for 38 training 
data shows perfect separation.

http://www.genome.wi.mit.edu/MPR
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Cluster algorithms – k-means

• K-means is a partitioning algorithm with a prefixed number k of 
clusters. It tries to minimize the sum of within-cluster-variances.

• The algorithm chooses a random sample of k different objects as 
initial cluster midpoints. Then it alternates between two steps until 
convergence:

1. Assign each object to its closest of the k midpoints with respect to 
Euclidean distance.

2. Calculate k new midpoints as the averages of all points assigned to the old 
midpoints, respectively.

• K-means is a randomized algorithm, two runs usually produce 
different results. Thus it has to be applied a few times to the same 
data set and the result with minimal sum of within-cluster-
variances should be chosen.
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Cluster algorithms – Self-Organizing maps

• SOM’s are similar to k-means, 
but with additional constraints.

• Mapping from input space onto 
one or two-dimensional array of 
k total nodes.

• Iteration steps (20000-50000):
Pick data point P at random

Move all nodes in direction of P, 
the closest node most, the further a 
node is in network topology, the 
less

Decrease amount of movement 
with iteration steps

Data point     Node (cluster prototypes)

Tamayo et al. (1999): First use of SOM’s
for gene clustering from microarrays
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Cluster algorithms - PAM

• PAM (Partitioning around medoids, Kaufman and Rousseeuw
(1990))  is a partitioning algorithm, a generalization of k-means.

• For an arbitrary dissimilarity matrix d it tries to minimize the sum 
(over all objects) of distances to the closest of k prototypes.

• Objective function:                                 (d: Manhattan, Correlation, etc.)

• BUILD phase: Initial 'medoids‘.
SWAP phase: Repeat until convergence:

Consider all pairs of objects (i,j), where i is a medoid and j not, and make the 
i       j swap (if any) which decreases the objective function most.
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Comparative study

• Comparative study for tumor classification with microarrays: 
Comparison of hierarchical clustering, k-means, PAM and SOM’s

• Data sets:
Golub et al: Leukemia dataset, http://www.genome.wi.mit.edu/MPR,
3 cancer classes: 25 acute myeloid leukemia (AML) and 47 acute 
lymphoblastic leukemia (ALL) (9 T-cell and 38 B-cell), Affymetrix. 
Ross et al.: NCI60 cancer dataset, http://genome-www.stanford.edu/nci60,
9 cancer classes: 9 breast, 6 central nervous system, 7 colon, 8 leukemia, 8 
melanoma, 9 lung, 6 ovarian, 2 prostate, 8 renal, cDNA microarray

• Rahnenführer (2002): Efficient clustering methods for tumor 
classification with gene expression arrays, Proc. of '26th Ann. 
Conf. of the Gesellschaft für Klassifikation', Mannheim, July 2002.

http://www.genome.wi.mit.edu/MPR
http://genome-www.stanford.edu/nci60
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Comparative study – cluster validity

• If true class labels are known, the validity of the clustering can be 
verified by comparing true class labels and clustering label.

N… table of observations
nij… number of observations

in class i and cluster j

Rand index: 
Probability of 
randomly drawing 
‘consistent’ pair 
of observations
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Comparative study – method
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Comparative study - method

Color        Group
Shape       Cluster

Group 1
Group 2
Group 3
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Comparative study - method

Color        Group
Shape       Cluster

Group 1
Group 2
Group 3
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Comparative study - winners

Winners

K-means

Hierarchical,
Correlation

PAM,
Manhattan
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Comparative study - results

• Superiority of k-means with repeated runs
Similar for discriminant analysis: FLDA best (Dudoit et al., 2001)

• Superiority of PAM with Manhattan distance for noisy data

• Differences depend on the specific dataset

• Preselection of genes
Various approaches have been proposed for gene selection, 
especially in supervised learning.
For clustering samples, a practical proceeding is to choose the top 
100-200 genes with respect to variance (across samples). This 
decreases noise and computation time.



Jörg Rahnenführer, MPI Informatik NGFN course, München, May 9, 2006

Classification

MESSAGE 3

Simple cluster algorithms work better                   
in case of little model knowledge!

(But: More sophisticated methods might be more 
appropriate with more a priori knowledge)
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Recommendations

• Interest in specific genes:
If you search for genes that are co-regulated with a specific gene of you 
choice, DO SO! Don’t use clustering, but generate a list of genes close to 
your gene with respect to some distance.

• Clustering after feature selection?
NO! Do not first select genes based on the outcome of some covariable
(e.g. tumor type) for your clustering. You will ALWAYS find differences 
w.r.t. this covariable, since this is how you selected the genes!

• Number of clusters
No general rule how to select the ‘correct’ number of clusters.
Adhoc approach is to try different numbers and choose cutoff, for which 
performance of the clustering algorithm breaks down.
The quality of a clustering result depends on the concept of a cluster.
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Recommendations – silhouette plot

Heuristic approach for estimation of number of clusters
For each observation i, define silhouette width s(i) as follows:

a(i) := average dissimilarity between i and all other points of its
cluster.

For all other clusters C, let d(i,C) := average dissimilarity of i to all 
observations of C. Define b(i) := minC d(i,C).

Silhouette width:  s(i) := (b(i)-a(i)) / max(a(i),b(i)).

Maximal average silhouette width over all observations can be used 
to select the number of clusters.

Observations with s(i) close to 1 can be considered well-clustered, 
whereas observations with s(i)<1 are misclassified.
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Recommendations – silhouette plot
x = matrix(rnorm(10),ncol=2)
row.names(x) = paste("x",1:5,sep="")
y = matrix(rnorm(10)+2,ncol=2)
row.names(y) = paste("y",1:5,sep="")
data = rbind(x,y)

p = pam(data,k=2)
data1 = data[which(p$clustering==1),]
data2 = data[which(p$clustering==2),]

plot(0,10,xlim=c(-2,4),ylim=c(-2,4),xlab="",ylab="",cex.lab=2)
symbols(rbind(c(0,0),c(2,2)),squares=c(0.25,0.25),inches=F,bg="black",add=T)
symbols(data1,circles=rep(0.1,nrow(data1)),inches=F,bg="blue",add=T)
symbols(data2,circles=rep(0.1,nrow(data2)),inches=F,bg="red",add=T)
positions = data
positions[,1] = positions[,1]+0.3
text(positions,rownames(data),cex=2)

X11()
color = c(rep("blue",nrow(data1)),rep("red",nrow(data2)))
plot(silhouette(p),col=rev(color),do.col.sort=F)
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Recommendations – silhouette plot
x = matrix(rnorm(10),ncol=2)
row.names(x) = paste("x",1:5,sep="")
y = matrix(rnorm(10)+2,ncol=2)
row.names(y) = paste("y",1:5,sep="")
data = rbind(x,y)

p = pam(data,k=2)
data1 = data[which(p$clustering==1),]
data2 = data[which(p$clustering==2),]

plot(0,10,xlim=c(-2,4),ylim=c(-2,4),xlab="",ylab="",cex.lab=2)
symbols(rbind(c(0,0),c(2,2)),squares=c(0.25,0.25),inches=F,bg="black",add=T)
symbols(data1,circles=rep(0.1,nrow(data1)),inches=F,bg="blue",add=T)
symbols(data2,circles=rep(0.1,nrow(data2)),inches=F,bg="red",add=T)
positions = data
positions[,1] = positions[,1]+0.3
text(positions,rownames(data),cex=2)

X11()
color = c(rep("blue",nrow(data1)),rep("red",nrow(data2)))
plot(silhouette(p),col=rev(color),do.col.sort=F)
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Other exploratory methods

• PCA: Principal Component Analysis
Data are projected on lower dimensional space.          
Iteratively, the direction with largest variance is selected as i-th
principal component (orthogonality constraint).                    
Can be used as preprocessing step, but low interpretability.

• Correspondence Analysis                                    
Genes and samples are projected into two-dimensional plane to 
show associations between them.

• ISIS: A class discovery method                          
Search for class distinctions that are characterized by 
differential expression of just a small set of genes, not by 
global similarity of the gene expression profile.
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Other exploratory methods - CAST

• CAST (Cluster Affinity Search Technique) 
Ben-Dor A, Shamir R, Yakhini Z (1999): Clustering gene 
expression patterns. J. Comput Biology 6: 281-97.

• Input: Similarity matrix and a threshold parameter.

• Iteratively, clusters are generated one at a time. Genes are 
added to an open cluster, as long as their average similarity 
(affinity) exceeds the threshold. Then a new cluster is started.

• After termination of the assignment process, objects can still 
be added or removed from clusters.

• This improves standard hierarchical clustering.
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Other exploratory methods - Bi-Clustering

Tanay A, Sharan R, Shamir R (2002):
Discovering Statistically Significant 
Biclusters in Gene Expression Data. 
Bioinformatics 18, Suppl.1, 136-144.

• Graph-theoretic algorithm coupled with 
statistical modeling.

• Genes and samples both represented as 
nodes of a bipartite graph and connected 
with weights according to the expression 
of the respective gene and sample.

• The heaviest subgraph is determined with 
an algorithm that runs in polynomial time.

The gene
expression matrix

probes
genes
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Cluster validity

• Yeung et al. (Bioinformatics, 2001)
Framework for assessing quality of algorithms for gene clustering.
Apply algorithm to data from all but one condition (sample) and 
use the remaining condition to assess predictive power of the 
resulting clusters (leave-one-out scenario).

• Dudoit and Fridlyand (Genome Biology, 2002)
Prediction-based resampling method Clest to estimate the number 
of clusters in a dataset.

• Smolkin and Ghosh (BMC Bioinformatics, 2003) 
Cluster stability scores for microarray data in cancer studies, based 
on subsampling techniques.
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R commands and libraries

• library(mva)
Hierarchical clustering: hclust()
Kmeans: kmeans()
Principal components: princomp()

• library(cluster)
PAM: pam()
Silhouette information: silhouette()

• ISIS package: http://www.molgen.mpg.de/~heydebre
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SUMMARY

MESSAGE 1:
Discriminant analysis:  CLASSES KNOWN 
Cluster analysis:  CLASSES NOT KNOWN

MESSAGE 2:
Appropriate choice of distance measure depends on 

your intention!

MESSAGE 3:
Simple cluster algorithms work better                   

in case of little model knowledge!
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