Computational Inference of Cellular Pathways

Florian Markowetz

florian.markowetz@molgen.mpg.de Max Planck Institute for Molecular Genetics Computational Diagnostics Group Berlin, Germany

Practical Microarray Analysis 2005

Coexpression

Coexpression hints to

coregulation
gene function

If genes show the same expression profiles they follow the same regulatory regimes [4, 10].

Co-expression graphs

An expression profile is a random vector $\mathbf{X} = (X_1, \ldots, X_p)$.

Correlation graph: Depict genes as vertices of a graph and draw an edge (i, j) iff the correlation coefficient $\rho_{ij} \neq 0$.

Advantage: This representation of the marginal dependence structure is easy to interpret and can be accurately estimated even if $p \gg N$.

Application: Stuart *et. al* [11] build a graph from coexpression across multiple organisms.

Differential Co-expression

Kostka and Spang [6] find sets of genes, which are correlated in one environment and lose correlation in the second environment.

Interpretation: loss (or gain) of regulatory mechanism.

Genes are controlled by common regulatory mechanism:

Genes in chaos! No regulatory mechanism to organize expression:

R-package dcoex in preparation.

Problems of co-expression based approaches

We cannot distinguish direct from indirect dependencies!

Three reasons, why X, Y, and Z are highly correlated:

As a cure: search for correlations which cannot be explained by other variables.

Part I.

Conditional independence models

Florian Markowetz, Computational Inference of Cellular Pathways, 2005

Conditional independence

Be X, Y, Z random variables with joint distribution P.

X is conditionally independent of Y given Z

$$X \perp \!\!\!\perp Y \mid Z \quad \Leftrightarrow \\ P(X = x, Y = y \mid Z = z) = P(X = x \mid Z = z) \cdot P(Y = y \mid Z = z)$$

If I already know Z, then Y offers me no new information to understand X.

Conditional independence in Gaussian models

Assume that genes are multivariate normal distributed with covariance matrix Σ . We call $K = \Sigma^{-1}$ the *concentration matrix* of the distribution.

Then it holds for two genes i and j:

$$X_i \perp \!\!\!\perp X_j \mid \mathbf{X}_{\mathsf{rest}} \iff k_{ij} = 0$$

Coexpression networks model via the correlation matrix Σ , Gaussian Graphical Models (GGMs) use the inverse $K = \Sigma^{-1}$.

Gaussian Graphical Model

What if $p \gg N$?

Full conditional relationships can only be accurately estimated if the number of samples N is relatively large compared to the number of variables p.

- Thus, if $p \gg N$, you can . . .
- either improve your estimators of partial correlations (*e.g.* Schäfer and Strimmer [9] use the Moore-Penrose pseudoinverse and bootstrap aggregation (bagging) to stabilize the estimator.)
- 2. or resort to a simpler model.

Sparse graphical modeling

Idea: Do not condition on the complete rest as in GGMs. Instead explore dependency of two variables given a single third one.

Draw an edge between genes i and j if they are correlated and no third variable can explain the correlation:

 $X_i \perp X_j \mid X_k$ for all $k \in \text{rest.}$

Implementations sparse GGMs [2, 7, 12, 13]; mutual information: ARACNE [1]

MYC targets in human B cells [1]

Florian Markowetz, Computational Inference of Cellular Pathways, 2005

Where are we?

We have seen methods to build graphs from

1. marginal dependencies

 $X_i \not \!\!\! \perp X_j \mid \emptyset$

2. full conditional dependence

 $X_i \perp X_j \mid X_{\mathsf{rest}}$

3. first order dependencies

 $X_i \perp X_j \mid X_k \quad \forall k \in \mathsf{rest}$

4. This leads use to include all higher order dependencies $X_i \perp X_j \mid \mathbf{X}_S$ for all $S \subseteq \text{rest}$

Bayesian network

A Bayesian Network for a random vector ${\bf X}$ consists of

- 1. a network structure
 - directed acyclic graph (DAG) on vertex set V,
 - node v corresponds to variable X_v ,

2. a set of local probability distributions

conditional distribution of a gene given its parents.

$$p(\mathbf{x}) = \prod_{v \in V} p(x_v \mid \mathbf{x}_{pa(v)}, \theta_v)$$

Florian Markowetz, Computational Inference of Cellular Pathways, 2005

Children depend on parents

The DAG defines families. Relationships are further characterized by local probability distributions:

$$p(x) = (0.6 \quad 0.4)$$

$$p(y) = (0.2 \quad 0.8)$$

$$p(z|x,y) = \left\{ \begin{array}{ll} (0.8 \quad 0.1 \quad 0.1) & \text{if } (X,Y) = (0,0) \\ (0.1 \quad 0.8 \quad 0.1) & \text{if } (X,Y) = (0,1) \\ (0.1 \quad 0.8 \quad 0.1) & \text{if } (X,Y) = (1,0) \\ (0.1 \quad 0.1 \quad 0.8) & \text{if } (X,Y) = (1,1) \end{array} \right.$$

A caveat [5]

If the expression of gene A is regulated by proteins B and C, then A's expression level is a function of the joint activity levels of B and C.

We treat the expression of A as a stochastic function of its regulators.

Problem 1: In most current biological data sets, however, we do not have access to measurements of protein activity levels.

Resort: Expression levels of genes as a proxy for the activity level of the proteins they encode.

Problem 2: There are numerous examples where an activation or silencing of a regulator is carried out by posttranscriptional protein modifications.

A first summary

- Conditional independence is the central concept of statistical network models;
- Graphical models ask: "Can the correlation between two genes be attributed to other genes?"
- Increasing order of resolution: Clustering, Graphical Gaussian models, Bayesian networks;
- 4. Models don't capture signaling on protein level.

Part II.

Learning from interventions

Florian Markowetz, Computational Inference of Cellular Pathways, 2005

Motivation

S-genes (for "signaling" or "silenced"): candidate pathway genes. E-genes (for "effects"): reporters for S-gene activity.

Silencing schemes

A pathway topology allows prediction of intervention effects.

We summarize predictions in a silencing scheme Φ : also a directed graph on S-genes, but transitively closed.

Framework flexible to include epistatic effects by local logics.

Experiments and Data

Do microarrays for:

Negative controls no signal, no interventions
 Positive controls pathway activated by signal, no interventions
 Interventions while signal is on!

Data: binary matrix $D = (e_{ik})$, where $e_{ik} = 1$ if E-gene E_i shows in experiment k the same expression as in the negative controls.

Likelihood

The silencing scheme Φ allows **prediction** of E-gene states (when position is known).

We expect a number of **false positive and false negative** observations.

The **likelihood** $P(D|\Phi, \Theta)$ is a product over atomic terms:

 $P(e_{ik}|\Phi,\theta_i=j) = \begin{cases} \begin{array}{ccc} e_{ik} = 1 & e_{ik} = 0 \\ \hline \alpha & 1-\alpha \\ 1-\beta & \beta \end{array} & \text{if } \Phi \text{ predicts no effect} \\ \text{if } \Phi \text{ predicts effect} \end{cases}$

Marginal likelihood

Computation of likelihood requires that E-gene positions are known. In reality this is not true.

$$P(D|\Phi) = \int P(D|\Phi,\Theta)P(\Theta|\Phi) d\Theta$$
$$= \frac{1}{n^m} \prod_{i=1}^m \sum_{j=1}^n \prod_{k=1}^l P(e_{ik}|\Phi,\theta_i=j)$$

Application to Drosophila data

Limits of identification

- Prediction equivalence Multiple pathway topologies result in the same silencing scheme, if they only differ in transitive edges.
- Likelihood equivalence Two hypotheses with different silencing schemes can produce identical data:

Conclusion

- The algorithm reconstructs pathway features from the nested structure of affected down-stream genes.
- Pathway features are encoded as silencing schemes. They contain all information to predict a cell's behaviour to an external intervention.
- Not shown: in simulation studies we confirmed small sample size requirements and high accuracy.
- Limitations only result from the information content of indirect observations.

On true models

A quote from Edwards [3]:

"Any method (or statistician) that takes a complex multivariate dataset and, from it, claims to identify one true model, is both naive and misleading."

What we have found is just a simple model consistent with the data.

Graphical models in R

www.r-project.org/gR

ggm: Gaussian Graphical Models

deal: Bayesian networks with mixed variables

www.bioconductor.org

GeneTS: large GGMs

compdiag.molgen.mpg.de/software

dcoex: finding groups of differentially coexpressed genes

References

- [1] Katia Basso, Adam A Margolin, Gustavo Stolovitzky, *et al.* Reverse engineering of regulatory networks in human B cells. *Nat Genet*, Mar 2005.
- [2] Alberto de la Fuente, Nan Bing, Ina Hoeschele, and Pedro Mendes. Discovery of meaningful associations in genomic data using partial correlation coefficients. *Bioinformatics*, 20(18):3565–3574, 2004.
- [3] David Edwards. Introduction to Graphical Modelling. Springer, 2000.
- [4] MB Eisen, PT Spellman, PO Brown, and D Botstein. Cluster analysis and display of genome-wide expression patterns. *Proc Natl Acad Sci U S A*, 95(25):14863–8, Dec 1998.
- [5] Nir Friedman. Inferring Cellular Networks Using Probabilistic Graphical Models. Science, 303(5659):799–805, 2004.
- [6] Dennis Kostka and Rainer Spang. Finding disease specific alterations in the co-expression of genes. *Bioinformatics*, 20 Suppl 1:I194–I199, Aug 2004.
- [7] Paul M Magwene and Junhyong Kim. Estimating genomic coexpression networks using first-order conditional independence. *Genome Biol*, 5(12):R100, 2004.
- [8] Florian Markowetz, Jacques Bloch, and Rainer Spang. Non-transcriptional pathway features reconstructed from secondary effects of RNA interference. *Bioinformatics*, 2005.
- [9] Juliane Schäfer and Korbinian Strimmer. An empirical Bayes approach to inferring large-scale gene association networks. *Bioinformatics*, 21(6):754–64, Mar 2005.
- [10] PT Spellman, G Sherlock, MQ Zhang, *et al.* Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. *Mol Biol Cell*, 9(12):3273–97, Dec 1998.
- [11] Joshua M Stuart, Eran Segal, Daphne Koller, and Stuart K Kim. A gene-coexpression network for global discovery of conserved genetic modules. *Science*, 302(5643):249–55, Oct 2003.
- [12] Anja Wille and Peter Bühlmann. Tri-graph: a novel graphical model with application to genetic regulatory networks. Technical report, Seminar for Statistics, ETH Zrich, 2004.
- [13] Anja Wille, Philip Zimmermann, Eva Vranová, *et al.* Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana. *Genome Biol*, 5(11):R92, 2004.