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• coregulation
• gene function

If genes show the same
expression profiles they follow
the same regulatory regimes
[4, 10].

Florian Markowetz, Computational Inference of Cellular Pathways, 2005 1
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Co-expression graphs

An expression profile is a random vector X = (X1, . . . , Xp).

Correlation graph: Depict genes as vertices of a graph and draw
an edge (i, j) iff the correlation coefficient ρij 6= 0.

Advantage: This representation of the marginal dependence
structure is easy to interpret and can be accurately estimated
even if p � N .

Application: Stuart et. al [11] build a graph from coexpression
across multiple organisms.

Florian Markowetz, Computational Inference of Cellular Pathways, 2005 2
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Differential Co-expression

Kostka and Spang [6] find sets of genes, which are correlated in
one environment and lose correlation in the second environment.

Interpretation: loss (or gain) of regulatory mechanism.

Genes are
controlled by

common regulatory
mechanism:

Genes in chaos!
No regulatory
mechanism to

organize
expression:

R-package dcoex in preparation.

Florian Markowetz, Computational Inference of Cellular Pathways, 2005 3
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Problems of co-expression based approaches

We cannot distinguish direct from indirect dependencies!

Three reasons, why X, Y , and Z are highly correlated:

X Y Z X Z

Y
X Z

Y

H

As a cure: search for correlations which cannot be explained by
other variables.

Florian Markowetz, Computational Inference of Cellular Pathways, 2005 4
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Part I.

Conditional independence models

Florian Markowetz, Computational Inference of Cellular Pathways, 2005 5
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Conditional independence

Be X, Y, Z random variables with joint distribution P .

X is conditionally independent of Y given Z

X |= Y | Z ⇔
P (X = x, Y = y|Z = z) = P (X = x|Z = z) · P (Y = y|Z = z)

If I already know Z,
then Y offers me no new information

to understand X.

Florian Markowetz, Computational Inference of Cellular Pathways, 2005 6
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Conditional independence in Gaussian models

Assume that genes are multivariate normal distributed with
covariance matrix Σ. We call K = Σ−1 the concentration matrix
of the distribution.

Then it holds for two genes i and j:

Xi |= Xj | Xrest ⇔ kij = 0

Coexpression networks model via the correlation matrix Σ,
Gaussian Graphical Models (GGMs) use the inverse K = Σ−1.

Florian Markowetz, Computational Inference of Cellular Pathways, 2005 7
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Gaussian Graphical Model

2 3

4

1
Missing edges indicate
independencies:

Xi |= Xj | Xrest

X1 |= X4 | {X2, X3}
X2 |= X3 | {X1, X4}
X2 |= X4 | {X1, X3}

Florian Markowetz, Computational Inference of Cellular Pathways, 2005 8
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What if p � N?

Full conditional relationships can only be accurately estimated
if the number of samples N is relatively large compared to the
number of variables p.

Thus, if p � N , you can . . .

1. either improve your estimators of partial correlations
(e.g. Schäfer and Strimmer [9] use the Moore-Penrose
pseudoinverse and bootstrap aggregation (bagging) to stabilize
the estimator.)

2. or resort to a simpler model.

Florian Markowetz, Computational Inference of Cellular Pathways, 2005 9
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Sparse graphical modeling

Idea: Do not condition on the complete rest as in GGMs. Instead
explore dependency of two variables given a single third one.

Draw an edge between genes i and j if they are correlated and
no third variable can explain the correlation:

Xi |=/ Xj | Xk for all k ∈ rest.

Implementations
sparse GGMs [2, 7, 12, 13]; mutual information: ARACNE [1]

Florian Markowetz, Computational Inference of Cellular Pathways, 2005 10
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MYC targets in human B cells [1]

Florian Markowetz, Computational Inference of Cellular Pathways, 2005 11
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Where are we?

We have seen methods to build graphs from

1. marginal dependencies
Xi |=/ Xj | ∅

2. full conditional dependence
Xi |=/ Xj | Xrest

3. first order dependencies
Xi |=/ Xj | Xk ∀k ∈ rest

4. This leads use to include all higher order dependencies
Xi |=/ Xj | XS for all S ⊆ rest

Florian Markowetz, Computational Inference of Cellular Pathways, 2005 12
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Bayesian network

A Bayesian Network for a random vector X consists of

1. a network structure

• directed acyclic graph (DAG) on vertex set V ,
• node v corresponds to variable Xv,

2. a set of local probability distributions

• conditional distribution of a gene given its parents.

p(x) =
∏

v∈V

p(xv | xpa(v), θv)

Florian Markowetz, Computational Inference of Cellular Pathways, 2005 13
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Children depend on parents

The DAG defines families.
Relationships are further characterized by
local probability distributions:

0   1
X

0  1  2
Z

0   1
Y

p(x) = (0.6 0.4)

p(y) = (0.2 0.8)

p(z|x, y) =


(0.8 0.1 0.1) if (X, Y ) = (0, 0)
(0.1 0.8 0.1) if (X, Y ) = (0, 1)
(0.1 0.8 0.1) if (X, Y ) = (1, 0)
(0.1 0.1 0.8) if (X, Y ) = (1, 1)

Florian Markowetz, Computational Inference of Cellular Pathways, 2005 14
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A caveat [5]

If the expression of gene A is regulated by proteins B and C, then A’s
expression level is a function of the joint activity levels of B and C.

We treat the expression of A as a stochastic function of its regulators.

Problem 1: In most current biological data sets, however, we do not have
access to measurements of protein activity levels.

Resort: Expression levels of genes as a proxy for the activity level of the
proteins they encode.

Problem 2: There are numerous examples where an activation or silencing of
a regulator is carried out by posttranscriptional protein modifications.

Florian Markowetz, Computational Inference of Cellular Pathways, 2005 15
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A first summary

1. Conditional independence is the central concept of statistical
network models;

2. Graphical models ask: “Can the correlation between two genes
be attributed to other genes?”

3. Increasing order of resolution:
Clustering, Graphical Gaussian models, Bayesian networks;

4. Models don’t capture signaling on protein level.

Florian Markowetz, Computational Inference of Cellular Pathways, 2005 16
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Part II.

Learning from interventions

Florian Markowetz, Computational Inference of Cellular Pathways, 2005 17
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Motivation

Response to microbial challenge
(Boutros et al., Dev Cell, 2002)

Columns: silenced genes.
Rows: effects on other genes.

Results:
1. Silencing tak1 reduces expression

of all LPS-inducible transcripts.

2. Silencing rel (key) or mkk4/hep
reduces expression of separate
sets of induced transcripts.

Figures from (Boutros et al., 2002)

Florian Markowetz, Computational Inference of Cellular Pathways, 2005 18
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The model [8]

SSS S S

Signal

EEE E

S-genes (for “signaling” or “silenced”): candidate pathway genes.

E-genes (for “effects”): reporters for S-gene activity.

Florian Markowetz, Computational Inference of Cellular Pathways, 2005 19
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Silencing schemes

A pathway topology allows prediction of intervention effects.

We summarize predictions in a silencing scheme Φ: also a
directed graph on S-genes, but transitively closed.

S1 S2 S3Signal 

Framework flexible to include epistatic effects by local logics.

Florian Markowetz, Computational Inference of Cellular Pathways, 2005 20
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Experiments and Data

Do microarrays for:

1. Negative controls no signal, no interventions
2. Positive controls pathway activated by signal,

no interventions
3. Interventions while signal is on!

Data: binary matrix D = (eik),
where eik = 1 if E-gene Ei shows in experiment k the same
expression as in the negative controls.

Florian Markowetz, Computational Inference of Cellular Pathways, 2005 21
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Likelihood

S2

S1

S3
RNAi

E2E1

The silencing scheme Φ allows prediction of
E-gene states (when position is known).

We expect a number of false positive and
false negative observations.

The likelihood P (D|Φ,Θ) is a product over
atomic terms:

eik = 1 eik = 0
α 1− α if Φ predicts no effect

P (eik|Φ, θi = j) =
{

1− β β if Φ predicts effect

Florian Markowetz, Computational Inference of Cellular Pathways, 2005 22
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Marginal likelihood

Computation of likelihood requires that E-gene positions are
known. In reality this is not true.

P (D|Φ) =
∫

P (D|Φ,Θ)P (Θ|Φ) dΘ

=
1

nm

m∏
i=1

n∑
j=1

l∏
k=1

P (eik|Φ, θi = j)

S2

S1

S3

E

? ?

?

Florian Markowetz, Computational Inference of Cellular Pathways, 2005 23
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Application to Drosophila data
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Limits of identification

Prediction equivalence — Multiple pathway topologies result in
the same silencing scheme, if they only differ in transitive edges.

Likelihood equivalence — Two hypotheses with different
silencing schemes can produce identical data:

S S S

E E E

S S S

EE E

Signal Signal

Florian Markowetz, Computational Inference of Cellular Pathways, 2005 25
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Conclusion

• The algorithm reconstructs pathway features from the nested
structure of affected down-stream genes.

• Pathway features are encoded as silencing schemes. They
contain all information to predict a cell’s behaviour to an external
intervention.

• Not shown: in simulation studies we confirmed small sample
size requirements and high accuracy.

• Limitations only result from the information content of indirect
observations.

Florian Markowetz, Computational Inference of Cellular Pathways, 2005 26
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On true models

A quote from Edwards [3]:

“Any method (or statistician) that takes a complex multivariate
dataset and, from it, claims to identify one true model, is both
naive and misleading.”

What we have found is just
a simple model consistent with the data .

Florian Markowetz, Computational Inference of Cellular Pathways, 2005 27
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Graphical models in R

www.r-project.org/gR

ggm : Gaussian Graphical Models

deal : Bayesian networks with mixed variables

www.bioconductor.org

GeneTS: large GGMs

compdiag.molgen.mpg.de/software

dcoex : finding groups of differentially coexpressed genes

Florian Markowetz, Computational Inference of Cellular Pathways, 2005 28
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