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Why do we need microarray clone annotation?

Often, the result of microarray data analysis is a list of ge-
nes.
The list has to be summarized with respect to its biologi-
cal meaning. For this, information about the genes and the
related proteins has to be gathered.
If the list is small (let’s say, 1–30), this is easily done by
reading database information and/or the available literature.
Sometimes, lists are longer (100s or even 1000s of genes).
Automatic parsing and extracting of information is needed.
To get complete information, you will need the help of an ex-
perienced computational biologist (aka ‘bioinformatician’).
However, there is a lot that you can do on your own.

Databases

Sequences are contained in primary sequence databases
like EMBL/Genbank or SwissProt. Primary nucleic acid da-
tabases have a high degree of redundancy.
Some databases are curated, i.e. curators watch over the
entries and ensure quality, remove redundancy, and anno-
tate domain structure, function etc. This is a slow process,
thus curated databases are limited in size and not really up-
to-date.
Meta databases collect further information and relate them
to primary databases. Examples are OMIM (online mende-
lian inheritance in man) for disease-related genes, Locus-
Link for genomic location, PFAM for protein domain struc-
ture, and GeneCards for comprehensive information from
other databases on human genes.

The relation of clone information to genes and proteins

Microarrays are produced using information on expressed
sequences as EST clones, cDNAs, partial cDNAs etc.
At the other end, functional information is generated (and
available) for proteins. Hence, there is a need to map a clo-
ne sequence ID to a protein ID. This is non-trivial.
First, there are usually hundreds of ESTs (and several cD-
NA sequences) that map to the same gene. The Database
Unigene tries to resolve this clustering by sequence cluste-
ring.

The relation of clone information to genes and proteins II

An alternative approach is taken by Locus Link. This is a
quite stable repository of genomic loci, supposed to be a
single gene. Since the emphasis is on well-characterised
loci, Locus Link is not complete.
N.B. Locus Link has been replaced by Entrez Gene, which
contains similar information. The Bioconductor meta packa-
ges, since Release 1.6 (3-2005) link to Entrez Gene.

There are other projects like RefSeq (NCBI) or TIGR Gene
Indices. According to the cross-references available for a
certain microarray, one or the other may be advantageous.
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The Human Genome Sequence

With the completion of the human genome sequence, you’d
think that such ambiguities can be resolved. In fact, that is
not the case.
Part of the problem is due to the fact that it is hard to pre-
dict gene structure (intron/exon) without knowing the entire
mRNA sequence, which happens for about two-thirds of all
genes.
Then, there are errors in the assembly (putting together the
sequence snippets). A typical symptom is that a gene ap-
pears to map to multiple loci on the same chromosome, with
very high sequence similarity.
But there are also sequences that are nearly indentical, but
duplicated. This has happened not long ago in evolution by
means of transposable elements.

Genomic mapping: ENSEMBL Browser

Some figures

Currently, it’s estimated that the human genome contains
about 25,000 – 30,000 genes that code for 50,000 –
100,000 different transcripts (and thus, proteins).
Unigene (human section) contains 54,576 clusters, but
18,064 of them are of size 2 or less.
RefSeq DNA contains 28,118 human sequences (3,295
EST’s, 11,972 predicted seq., 17,708 mRNA’s).
ENSEMBL contains 24,194 predicted genes, 35,845 predic-
ted transcripts. Fully computational methods like Genscan
produce more than 65,000 predictions.
Entrez Gene contains 32941 genes.

Function annotation

Probably, the most important thing you want to know is what
the genes or their products are concerned with, i.e. their
function.
Function annotation is difficult: Different people use different
words for the same function, or may mean different things
by the same word. The context in which a gene was found
(e.g. “TGFβ -induced gene”) may not be particularly asso-
ciated with its function.
Inference of function from sequence alone is error-prone
and sometimes unreliable. The best function annotation sy-
stems (GO, SwissProt) use human beings who read the li-
terature before assigning a function to a gene.

The Gene Ontology system

To overcome some of the problems, an annota-
tion system has been created: Gene Ontology
(http://www.geneontology.org). Ontology means here
the art (or science) of giving everything its correct name.
It represents a unified, consistent system, i.e. terms occur
only once, and there is a dictionary of allowed words.
Furthermore, terms are related to each other: the hierarchy
goes from very general terms to very detailed ones.

The Gene Ontology site



The Gene Ontology hierarchy Actual annotation

Gene Ontology by itself is only a system for annotating ge-
nes and proteins. It does not relate database entries to a
special annotation value.
Luckily, research communities for several model organisms
have agreed on entering Gene Ontology information into
the databases. As this is done ‘by hand’, GO annotation for
most organisms is far from complete.

Available Gene Ontology information The NetAffx System

For Affymetrix arrays, annotation is provided by the sup-
plier via the NetAffx system (http://www.affymetrix.com/
analysis/netaffx/)

Alternative pre-compiled annotation

The Institute of Genomic Research (TIGR) has its
own pre-compiled annotation for most commercial arrays
(Affymetrix, Agilent, Incyte etc.): http://www.tigr.org/
tigr-scripts/magic/r1.pl

Data packages in Bioconductor



Bioconductor metadata packages

These packages contain one-to-one and one-to-many map-
pings for frequently used chips, especially Affymetrix arrays.
Information available includes gene names, gene symbol,
database accession numbers, Gene Ontology function de-
scription, enzmye classification number (EC), relations to
PubMed abstracts, and others.
The data use the framework of the annotate package, so I
will briefly explain how it works.

Environments in R

To quickly find information on one subject in a long list, a da-
ta structure called hash table is frequently used in computer
science.
A hash table is a list of key/value pairs, where the key is
used to find the corresponding value. To go the other way
round, you have to use pattern matching, which is much
slower.
In R, hash tables are implemented as environments. For the
moment, we do not care about the philosophy behind it and
simply treat it as another word for hash table.

Setting up environments

To set up a new environment:

symbol.hash = new.env(hash=TRUE)

To create a key/value pair:

assign("1234_at", "EphA3", env=symbol.hash)

To list all keys of an environment:

ls(env=symbol.hash)

To get the value for a certain key:

get("1234_at", env=symbol.hash)

The annotate package

That’s all standard R. The annotate package gives one fur-
ther function, multiget, which retrieves more than one ent-
ry at a time, and definitions for special data, e.g. PubMed
abstracts, or chromosomal location objects.
ChromLoc objects are quite useful if you want to associate
gene expression with certain positions on a chromosome,
e.g. if aberration occurs in your samples.
You can construct a ChromLoc object on your own (→ Vi-
gnette), or use the function buildChromLocation. For chip
HGU95a v2:
library(hgu95av2)
cl.95a = buildChromLocation("hgu95av2")

Plots for ChromLocation objects

Plotting methods are available via library geneplotter
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How to get annotation for a set of genes

Suppose you have found some interesting genes. The index
in the matrix is in index.int. To get the gene names:
gnam.int = geneNames(exprset)[index.int]

To find the description:
multiget(gnam.int, env=hgu95av2GENENAME)

To get EC Numbers (relating to KEGG pathways):
multiget(gnam.int, env=hgu95av2ENZYME)



Some caveats

Because of the non-unique matching of sequences to the
genome, array features are sometimes annotated with more
than one position:
a = ls(env=hgu95av2CHRLOC)
table(sapply(mget(a, env=hgu95av2CHRLOC),
length))

1 2 3 4 5 6 7 9
11551 825 160 53 20 9 4 3

For the 800 or so sequences with more than one location,
only the first one is used, although there is no warning. It
should be desirable to resolve the ambiguities by hand, but
nobody has done yet.

Some caveats

Looking at the number of chromosomal annotations
table(sapply(mget(a,env=hgu95av2CHRLOC),\\

function(x){length(unique(names(x)))}))
0 1 2 3

997 11574 53 1

There are even 54 probe sets on HGU95A v2 that map to 2
or more chromosomes; however, most of these are located
on some special extrachromosomal segment and annota-
ted with “X” and “Y”.
N.B. There is a special annotation package for Affymetrix
arrays, annaffy. It does not provide much other functionality
than annotate, but allows to do the same things differently
(and maybe more conveniently).

Pattern matching

To find something in character vectors or character lists, so-
me pattern matching is required.
If you have real full names, use match, e.g.
match("1234_at", rownames(exprs(exprset)) )

This will give you the index of ‘‘1234 at’’. It works also
with more than one gene:
match(gnam.int, rownames(exprs(exprset)) )

will give all indeces for genes in gnam.int.
If you want to use regular expression matching, use grep.

Export of annotation to HTML

annotate is able to export tables of gene annotations to
HTML, which is much nicer to browse than text tables
Suppose, from a t-test you have for some genes igenes:
mean of genes in class 1, igenes.gp1, mean in class 2,
igenes.gp2, and P-value igenes.pval. To construct pretty
HTML output:
igenes.ll = multiget(igenes, env=hgu95av2LOCUSID)

igenes.sym = multiget(igenes, env=hgu95av2SYMBOL)

ll.htmlpage(igenes.ll, "HOWTO.igenes", "Some genes",

list(igenes,sym, igenes, round(igenes.gp1,3),

round(igenes.gp2,3),round(igenes.pval,3)))

The result Pathways

For biological interpretation of function, most people want
to use pathways
A pathway is something like a bunch of interacting proteins
and/or nucleic acids that allow for mass flux (metabolism)
or information flux (signal transduction)
The problem is that interaction information for proteins is
quite rare (except for yeast)
Some textbook pathways exist, but only few in computer-
readable format



Pathway databases

For metabolic pathways, some databases exist: KEGG
(http://www.genome.ad.jp/kegg/), and EcoCyc (http://
ecocyc.org), HumanCyc (http://humancyc.org) from SRI

Signal transduction information

KEGG has some very limited information on signal trans-
duction
The database TRANSPATH wants to cover signal transduc-
tion. But information is incomplete, and you have to pay for
part of the information (available via HNB)
Other sources are www.biocarta.com and www.stke.org
(requires registration)

Some software packages for function analysis

There are some packages that allow to map gene expressi-
on profiles to biological information, like pathways.
One example is GeneMAPP (www.genemapp.org) which al-
so has a collection of user-contributed pathways.
GoMiner (http://discover.nci.nih.gov/gominer) tries
to find statistically significantly enriched terms in a gene list.
This is, however, very crude and tends to favor annotations
with very few total number of associated genes.
Ingenuity (http://www.ingenuity.com) has its own data-
base with interaction information, and software to infer pa-
thways from microarray experiments. It seems to be quite
capable, but is also expensive

Dealing with GO annotations

Since the annotation system is hierarchical, i.e. for each
term there is a hierarchical list of more general terms, we
can compare functions of genes on every level we wish.
Technically, this amounts to the problem of finding the least
common parent node between to genes of interest.
This can be used to find clusters of functionally related ge-
nes in a list that comes out of some other analysis.

Comparing GO-annotated genes

Intracellular
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GO functional clusters as a graph



Graphs as analysis tools

Graphs are quite useful for bioinformatic analysis, and have
a long-standing history in sequence analysis.
Recently, some functionality has been built into R to de-
al with graphs (graph, Rgraphviz, RBGL). Certainly, the
most useful capability is to visualize graphs via Rgraphviz.
The R package is an interface to the external program
graphviz (from AT&T). Big graphs should be visualized by
means of ggobi, however.
Some other immediate use is to construct PubMed co-
citation graphs for genes of interest. Functions for this exist.
However, for many other applications the meaning of gra-
phs or graph-theoretic algorithms is not clear, so a lot of
work remains to be done. Thank you for your attention!


