First steps in R

Florian Markowetz, slight modifications by Achim Tresch
Practical DNA Microarray Analysis

This tutorial refers to the practical session on day one of the course in Practical DNA Microarray Analysis: "http://compdiag.molgen.mpg.de/ngfn/pma2005mar.shtml". We will guide you through your first steps in R. For further reading we recommend "An introduction to R " by Venables et al. which is available for free from http://cran.r-project.org or "Introductory Statistics with R"' by Peter Dalgaard, Springer 2002.

Preliminaries

From A to Ω. Invoking R depends on the platform you use. Under Windows it involves some clicking-around, under Linux/Unix you usually just type "R" at the Konsole. In our current installation at the MPI, you have to type "R-rel". You quit R with the command q(). Don't forget the parentheses!

Getting help. There are many ways to get help from R. Find out what the function library() does by using the commands help(library) or ?library. The command library() results in a list of R-packages that are already loaded and can be used by you. What happens if you type library without parentheses?

Online help. Running help.start() launches a web browser that allows the help pages to be browsed with hyperlinks. Spend some time getting used to it.

Vectors and assignments

Build a vector with entries 1 to 10 and call it x . Try different ways to do it:

```
> x = 1:10
> assign("x",1:10)
> x = c(1,2,3,4,5,6,7,8,9,10) # c = concatenate
> x = seq(1,10,by=1) # seq = sequence
> x = seq(length=10,from=1,by=1)
```

The result always is the same:

```
>
```

 [1] \(\begin{array}{lllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}\)
 The operator " $=$ " assigns the value of an expression (e.g. " $1: 10$ ") to an object (e.g. "x"). If an expression is used as a complete command, the value is printed and lost.

```
> seq(10,1,-1)
```

 [1] \(\begin{array}{lllllllllll}10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1\end{array}\)
 Compare $\mathrm{a}=1: 10-1$ to $\mathrm{b}=1:(10-1)$.

With 1s() or objects() you get on overview of the objects in your workspace. Single objects can be removed by rm() . To clear your whole workspace use $\mathrm{rm}(\mathrm{list}=1 \mathrm{~s}())$. Remove a and b.
Let's have a closer look at x. summary () gives you an overview of an objects properties. The output depends on what type of object it is. For vectors you get information on the distribution of values in it.

```
> summary(x)
> length(x)
> class(x)
```

x is a numeric vector of length 10 . The class can be changed:

```
> y = as.character(x)
> y
    [1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10"
> class(y)
[1] "character"
> class(y) = "numeric"
>y
    [1] 10
```


Vector arithmetic

Build two vectors of length 5 and try some arithmetic operations like +, -, *, /, sum, mean, ^, log, exp, sin, cos, tan, sqrt, abs, max, min, range, prod, cumsum. These operations work elementwise and can be nested.
$>\mathrm{x}=5: 1$
$>\mathrm{x}$
[1] 54321
$>y=c(4,7,3,7,6)$
$>\mathrm{y}$
[1] 47376
> $x+y$
[1] $9 \begin{array}{lllll} & 11 & 6 & 9 & 7\end{array}$
> $\mathrm{x} * \mathrm{y}$
[1] $2028 \quad 914 \quad 6$
$>\sin (x)+\cos (y)$
$[1]-1.612567896-0.002900241-0.8488724891 .663199681 \quad 1.801641271$
> $\operatorname{sum}(\sin (x)+\cos (y))$
[1] 1.0005
> sqrt(x)
[1] 2.2360682 .0000001 .7320511 .4142141 .000000
$>\operatorname{sqrt}(x)^{\wedge} 2$
[1] 54321

Let's try to calculate a more complex formula. Imagine vector x containing your n measurements. The sample variance is defined by

$$
\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)^{2}
$$

```
> sum((x-mean(x))^2)/(length(x)-1)
```

```
> var(x) # gives the same result!
```


Vector indexing

Individual elements of a vector can be referenced by giving the name of the vector followed by the subscripts in square brackets. You can also use logical expressions for indexing. Some examples:
$>\mathrm{x}=\mathrm{c}(5.6,5.4,2,-3.9)$
$>\mathrm{x}$
[1] $\begin{array}{lllll}5.6 & 5.4 & 2.0 & -3.9\end{array}$
> x [4]
[1] -3.9
> $\mathrm{x}[2: 3]$
[1] 5.42 .0
> $\mathrm{x}[\mathrm{c}(1,3)]$
[1] 5.62 .0

Negative indices exclude certain elements from the vector, e.g. $\mathrm{x}[-3]$ is the same as x with the third element missing.

```
\(>\mathrm{x}[-3]\)
\(\begin{array}{llll}{[1]} & 5.6 & 5.4 & -3.9\end{array}\)
> x
\(\begin{array}{lllll}{[1]} & 5.6 & 5.4 & 2.0 & -3.9\end{array}\)
```

An elegant way of indexing is the use of a logical vector
> selection $=\mathrm{c}(\mathrm{T}, \mathrm{F}, \mathrm{T}, \mathrm{F}) \quad \# \mathrm{~T}=\mathrm{TRUE}, \mathrm{F}=\mathrm{FALSE}$
$>\mathrm{x}$ [selection]
[1] $\begin{array}{ll}5.6 & 2.0\end{array}$
> $\mathrm{x}>4$
[1] TRUE TRUE FALSE FALSE
$>x[x>4]$
[1] 5.65 .4

For large vectors, indexing via "names" is very convenient

```
> names(x) = c("first","second","third","fourth")
> x
    first second third fourth
        5.6
> y=x[c("second","third")]
y
second third
    5.4 2.0
```

Note that vector y inherits the corresponding names from x , which makes subsequent acces to y considerably easier.

Matrices

Matrices (or more generally arrays) are multi-dimensional generalizations of vectors. In fact, they are vectors that can be indexed by two or more indices.

```
> M = 1:20
> dim(M) = c(4,5)
> M
\begin{tabular}{lrrrrr} 
& {\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} & {\([, 4]\)} & {\([, 5]\)} \\
{\([1]\),} & 1 & 5 & 9 & 13 & 17 \\
{\([2]\),} & 2 & 6 & 10 & 14 & 18 \\
{\([3]\),} & 3 & 7 & 11 & 15 & 19 \\
{\([4]\),} & 4 & 8 & 12 & 16 & 20
\end{tabular}
```

The second assignment gives the vector M a dimension attribute that allows it to be treated as a 4×5-matrix (a matrix with 4 rows and 5 columns). We get the same result by

```
> M = matrix (1:20,4,5)
```

We can index the elements of M in the same way we used for vectors. The only difference: now we need two indices in the square brackets, because M is two-dimensional. The first index corresponds to the rows, the second to the columns.
> M[1,2] \# first row, second column of M
[1] 5
> $M[1: 2,1: 2]$ \# the upper left corner of M
[,1] [,2]
[1,] 1 5
$[2] \quad$,
$>M[1: 2,-3]$

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$	\# the first two rows
$[1]$,	1	5	13	17	\# with the third
$[2]$,	2	6	14	18	\# column missing
$>\operatorname{dim}(\mathrm{M}[1: 2,-3])$					
$[1]$ 4					
\# 2 rows and 4 columns					

> M [2,] \# second row, all columns
[1] $2 \quad 6 \quad 101418$

Care has to be taken if the outcome of a matrix subsetting contains only one row or column

```
> class(M[1:2,1:2])
```

[1] "matrix"
> class (M[2,])
[1] "integer" \# M[2,] is an integer vector, not a matrix!
> class (M[2,,drop=F]) \# the flag "drop=F" avoids this conversion
[1] "matrix" \# and produces a 1x5 matrix

Rows and columns can be given names by letting

```
> rownames(M) = 3:6
> colnames(M) = c("a","b","c","d","e")
> M[as.character(3:4),"a",drop=F] # access M via row-/colnames
    a
31
4
> M[3:4,"a",drop=F]
```

Try M[3:4, "a", drop=F] ! Can you explain the difference?

Lists

A list is an object consisting of an ordered collection of objects known as its components. Components in lists can be of different modes and types (e.g. a character vector, a logical value and a matrix). Components are referred to by a number in double square brackets (in the form listname [[number]]) or by a name (in the form listname\$component). Some easy examples:

```
> Data = list(measurements = matrix(rnorm(50),10,5),
    tumor.type = factor(c("ER+","ER-","ER-","ER-","ER+")),
    differential.genes = c("xxY","xYx","Yxx")
    )
> summary(Data)
\begin{tabular}{lcl} 
& Length Class Mode \\
measurements & 50 & -none- numeric \\
tumor.type & 5 & factor numeric \\
differential.genes & 3 & -none- character
\end{tabular}
> Data[[3]]
[1] "xxY" "xYx" "Yxx"
> Data$differential.genes
[1] "xxY" "xYx" "Yxx"
```

What does Data[[3]] [2] do? Give a command that shows the second row of the measurement matrix in your data without the last entry.

```
for-loops and apply
> set.seed(0) # initialize the random number generetor (for reproducibility reasons)
> M = matrix(rnorm(15),nrow=3,ncol=5)
>M
\begin{tabular}{lrrrrr} 
& {\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} & {\([, 4]\)} & {\([, 5]\)} \\
{\([1]\),} & 1.2629543 & 1.2724293 & -0.928567035 & 2.4046534 & -1.1476570 \\
{\([2]\),} & -0.3262334 & 0.4146414 & -0.294720447 & 0.7635935 & -0.2894616 \\
{\([3]\),} & 1.3297993 & -1.5399500 & -0.005767173 & -0.7990092 & -0.2992151
\end{tabular}
```

This results in a 3×5 matrix filled with normal-distributed random numbers. Imagine we need the sum over each row of this matrix. Idea: go through the matrix row by row and compute the sum in each step. We would like to calculate the sum of each row

```
> results = numeric(3)
> for(i in 1:3){ results[i] = sum(M[i,]) }
> results
[1] 2.8638130 0.2678195 -1.3141423
```

In R you can do things like this even without using loops (which are a bit slow). The idea is to apply a certain operation (in our case sum) to each row of the matrix at the same time:

```
> results2 = apply(M,1,sum)
    |
    1 = rows
    2 = columns
```

> results2

```
[1] 2.8638130 0.2678195 -1.3141423
```

The second argument of the function apply () corresponds to the dimensions of the matrix: 1 means rows and 2 means columns. Try apply (M, 2, sum).

Functions

One might want to define own functions. For example, let us perform a single sample t-test against the null hypothesis $\mu=0$. The t-statistic for a vector $x=\left(x_{1}, \ldots, x_{n}\right)$ is given by

$$
t=\frac{\bar{x}}{\sqrt{\frac{1}{n(n-1)} \sum_{j=1}^{n}(x-\bar{x})^{2}}}
$$

with $\bar{x}=\frac{1}{n} \sum_{j=1}^{n} x_{j}$. Translate this into R :
> tvalue $=$ function(x)
$+\left\{t=\operatorname{mean}(x) / \operatorname{sqrt}\left(\operatorname{sum}\left((x-\operatorname{mean}(x))^{\wedge} 2\right) / n /(n-1)\right)\right.$
$+\quad$ return(t) \}

Here, tvalue is the name of the function, x is an object that is passed on to tvalue (call by value). The object which will be returned by the function is specified by return(). Now you can apply tvalue like any predefined function in R
> tvalue(c(1, 2, 0, 1, -1, 3))
[1] 5.215362

If M were a genes \times measurements matrix, it would be a one-line task to compute the t-statistic for each gene (no matter if this makes sense or not):
> apply(M,1,tvalue)
[1] $3.05904650 .8756684-2.0383207$

