Differential gene expression

Anja von Heydebreck

Dept. of Bio- and Chemoinformatics, Merck KGaA

anja.von.heydebreck@merck.de

Slides partly adapted from S. Dudoit and A. Benner

Outline

- O Statistical tests: introduction
- O Multiple testing
- O Prefiltering of genes
- O Linear models
- Gene screening using ROC curves

Identifying differentially expressed genes

O Aim: find genes that are differentially expressed between different conditions/phenotypes, e.g. two different tumor types.

O Estimate effects/differences between groups by (generalized) log-ratio, i.e., the difference between group means on the log scale.

• To assess the statistical significance of differences, conduct a statistical test for each gene.

Statistical tests – example

• The two–sample *t*–statistic

$$T_g = \frac{\bar{X}_{g1} - \bar{X}_{g2}}{s_g \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

is used to test equality of the group means μ_1, μ_2 .

O The *p*-value p_g is the probability under the null hypothesis (here: $\mu_1 = \mu_2$) that the test statistic is at least as extreme as the observed value T_g .

Statistical tests: Examples

 \bigcirc standard *t*-test: assumes normally distributed data in each class (almost always questionable), equal variances within classes

 \bigcirc Welch *t*-test: as above, but allows for unequal variances

O Wilcoxon test: non-parametric, rank-based

 \bigcirc permutation test: estimate the distribution of the test statistic (e.g., the *t*-statistic) under the null hypothesis by permutations of the sample labels:

The *p*-value p_g is given as the fraction of permutations yielding a test statistic that is at least as extreme as the observed one.

Permutation tests

Statistical tests: Different settings

O comparison of two classes (e.g. tumor vs. normal)

O paired observations from two classes: e.g. the t-test for paired samples is based on the within-pair differences.

O more than two classes and/or more than one factor (categorical or continuous): tests may be based on linear models

Example

Golub data, 27 ALL vs. 11 AML samples, 3,051 genes.

t-test: 1045 genes with p < 0.05.

Multiple testing: the problem

Multiplicity problem: thousands of hypotheses are tested simultaneously.

- Increased chance of false positives.
- E.g. suppose you have 10,000 genes on a chip and not a single one is differentially expressed. You would expect 10000 * 0.01 = 100 of them to have a *p*-value < 0.01.

Multiple testing methods allow to assess the statistical significance of findings.

Multiple hypothesis testing

From Benjamini & Hochberg (1995).

Type I error rates

1. Family-wise error rate (FWER). The FWER is defined as the probability of at least one Type I error (false positive) among the genes selected as significant:

FWER = Pr(V > 0).

Type I error rates

 False discovery rate (FDR). The FDR (Benjamini & Hochberg 1995) is the expected proportion of Type I errors (false positives) among the rejected hypotheses:

FDR = E(Q),

with

$$Q = \begin{cases} V/R, & \text{if } R > 0, \\ 0, & \text{if } R = 0. \end{cases}$$

FWER: The Bonferroni correction

Suppose we conduct a hypothesis test for each gene $g = 1, \ldots, m$, producing

an observed test statistic: T_g

```
an unadjusted p-value: p_g.
Bonferroni adjusted p-values:
```

 $\tilde{p}_g = \min(mp_g, 1).$

Selecting all genes with $\tilde{p}_g \leq \alpha$ controls the FWER at level α , that is, $Pr(V > 0) \leq \alpha$.

Example

Golub data, 27 ALL vs. 11 AML samples, 3,051 genes.

98 genes with Bonferroni-adjusted $\tilde{p}_g < 0.05 \Leftrightarrow p_g < 0.000016$

FWER: Alternatives to Bonferroni

 \bigcirc There are alternative methods for FWER *p*-value adjustment, which can be more powerful.

• The permutation-based Westfall-Young method takes the correlation between genes into account and is typically more powerful for microarray data.

• See the Bioconductor package multtest.

More is not always better

O Suppose you use a focused array with 500 genes you are particularly interested in.

 \bigcirc If a gene on this array has an unadjusted *p*-value of 0.0001, the Bonferroni-adjusted *p*-value is still 0.05.

O If instead you use a genome-wide array with, say, 50,000 genes, this gene would be much harder to detect, because roughly 5 genes can be expected to have such a low p-value by chance.

• Therefore, it may be worthwile focusing on genes of particular biological interest from the beginning.

Controlling the FDR (Benjamini/Hochberg)

- O FDR: the expected proportion of false positives among the significant genes.
- O Ordered unadjusted *p*-values: $p_{r_1} \leq p_{r_2} \leq \ldots \leq p_{r_m}$.

$$j^{\star} = \max\{j : p_{r_j} \le (j/m)\alpha\}.$$

Reject the hypotheses H_{r_j} for $j = 1, \ldots, j^{\star}$.

O Is valid for independent test statistics and for some types of dependence. Tends to be conservative if many genes are differentially expressed. Implemented in multtest.

Controlling the FDR (Benjamini/Hochberg)

Golub data: 681 genes with BH–adjusted p < 0.05.

FWER or FDR?

O Choose control of the FWER if high confidence in all selected genes is desired. Loss of power due to large number of tests: many differentially expressed genes may not appear significant.

• If a certain proportion of false positives is tolerable: Procedures based on FDR are more flexible; the researcher can decide how many genes to select, based on practical considerations.

 \bigcirc For some applications, even the unadjusted *p*-values may be most appropriate (e.g. comparison of functional categories of affected vs. unaffected genes).

Few replicates – moderated t–statistics

• With the t-test, we estimate the variance of each gene individually. This is fine if we have enough replicates, but with few replicates (say 2–5 per group), the variance estimates are unstable.

O In a moderated *t*-statistic, the estimated gene–specific variance s_g^2 is augmented with s_0^2 , a global variance estimator obtained from pooling all genes. This gives an interpolation between the *t*-test and a fold–change criterion.

$$T_g \sim \frac{\bar{X}_{g1} - \bar{X}_{g2}}{\sqrt{\mu s_g^2 + \lambda s_0^2}}.$$

• Bioconductor packages limma, siggenes.

Prefiltering

• What about prefiltering genes (according to intensity, variance etc.) to reduce the proportion of false positives?

• Can be useful: Genes with low intensities in most of the samples or low variance across the samples are less likely to be interesting.

O In order to maintain control of the type I error, the criteria have to be independent of the distribution of the test statistic under the null hypothesis.

Prefiltering by intensity and variability

Golub data. Ranks of interquartile range and 75%–quantile of intensities vs. absolute *t*–statistic.

Linear models

O Linear models are a flexible framework for assessing the associations of phenotypic variables with gene expression.

O The expression y_i of a given gene in sample *i* is modeled as linearly depending on one or several attributes (factors; could be cell type, treatment, etc., encoded in x_{ij}) of the sample:

$$y_i = a_1 x_{i1} + \ldots + a_m x_{im} + \epsilon_i$$

O Estimated coefficients a_j and their standard errors are obtained using least squares, assuming normally distributed errors ϵ_i (R function lm); or with a robust method (R function rlm).

Linear models

 \bigcirc Contrasts, that is, differences/linear combinations of the coefficients, express the differences between phenotypes and can be tested for significance (*t*-test).

O Example: Consider a study of three different types of kidney cancer. For each gene set up a linear model:

 $y_i = a_1 x_{i1} + a_2 x_{i2} + a_3 x_{i3} + \epsilon_i$

where $x_{ij} = 1$ if tumor sample *i* is of type *j*, and 0 otherwise. The coefficients \hat{a}_i estimated by least squares are the mean expression levels in the classes.

O The contrast $a_1 - a_2$ expresses the mean difference between class 1 and 2.

Linear model analysis with the Bioconductor package limma

O The phenotype information for the samples is to be entered as a design matrix (x_{ij} from the above formula). The rows of the matrix correspond to the arrays, and the columns to the coefficients of the linear model.

O Contrasts are extracted after fitting the linear model.

O The significance of contrasts is assessed with a moderated t-statistic.

References

O Y. Benjamini and Y. Hochberg (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. *Journal of the Royal Statistical Society B*, Vol. 57, 289–300.

O S. Dudoit, J.P. Shaffer, J.C. Boldrick (2003). Multiple hypothesis testing in microarray experiments. *Statistical Science*, Vol. 18, 71–103.

O J.D. Storey and R. Tibshirani (2003). SAM thresholding and false discovery rates for detecting differential gene expression in DNA microarrays. In: *The analysis of gene expression data: methods and software.* Edited by G. Parmigiani, E.S. Garrett, R.A. Irizarry, S.L. Zeger. Springer, New York.

O V.G. Tusher et al. (2001). Significance analysis of microarrays applied to the ionizing radiation response. *PNAS*, Vol. 98, 5116–5121.

O M. Pepe et al. (2003). Selecting differentially expressed genes from microarray experiments. *Biometrics*, Vol. 59, 133–142.

Gene screening using ROC curves

- Rank genes according to their ability to distinguish between two phenotypes (e.g. disease and control).
- ROC: receiver operating characteristic
- Pepe et al., Biometrics 2003.

Sensitivity vs. Specificity

Gene screening by ROC analysis

and

Let Y_g^i denote the relative expression level of gene g in sample $i=C_p D$ after normalization.

Each point on the ROC- curve, $\{t, ROC(t)\}$, corresponds to a different gene expression level u with

 $t = 1 - P[Y_g^C < u]$ (1-specificity/false positive)

 $ROC(t) = P[Y_q^D \ge u]$ (sensitivity/true positive).

- AUC (~Mann-Whitney statistic) scores for discrimination ability (and equals 0.5 for a random classifier)
- Besides AUC, the area under the full ROC curve, more interest is on the ROC curve at low values of *t*, corresponding to a maximum tolerable false positive rate t₀.

- Summary measures are defined by $AUC = \int_{0}^{1} ROC(t) dt$,

$$ROC(t_0) = P[Y_g^D \ge Y_{(1-t_0)}^C]$$
 and $pAUC(t_0) = \int_0^{t_0} ROC(t) dt$

where t_0 is a given false positive rate and $\mathcal{Y}_{(1-t_0)}^C$ is the corresponding $(1-t_0)$ quantile of the distribution of Y_a^C .

The value $ROC(t_0)$ gives the proportion of target samples with expression levels above the $(1-t_0)$ quantile of control samples.

The partial area under the curve, $pAUC(t_0)$, averages this proportion across values of $t \le t_0$.

ROC curve screening in Bioconductor: package ROC

Suppose we have an *exprSet* object **eset** and a binary phenotype variable **labels** for the samples. We can compute the partial area under the ROC curve as follows:

Example: B-cell ALL with/without the **BCR/ABL** translocation

0. 0.8 sensitivity 0.0 0.2 0.6 0.0 0.8 1.0 0.4 - specificity

1636 g at

Bioconductor data package ALL.

'Disease' class: samples with BCR/ABL translocation.

The probe set 1636_g_at, which represents the ABL1 gene, has the highest value of pAUC(0.1).