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Structured Analysis of Microarrays

Tumor Diagnosis/Prognosis with ...

expression profiles

Tens of thousands of genes

Tens to hundreds of patients

Patients are labeled

Genes
fa

E.g. Disease (D) / Control (C)

Predict the label of a new patient given

his/her expression profile

Statistical Context

The high dimensionality of the expression data causes
when fitting multivariate models to the data

The solution are additional constraints in the models:

What are these constraints:

- A small maximal number of genes allowed in the model

- Likelihood penalties
- Informative priors
- Large Margins

The models identify genes that are informative for the class
distinction. We call such a model a

Typical frustrations

The predictive model seems to work very well for 80% of the
patients and for the remaining 20% of patients you get wrong
predictions although the pattern in the expression profiles seem to
be quite obvious.

If you look at the list of genes that drive the model the list does not
tell you a unique biological story. You observe some genes that
are expected to be there and many more genes that look like being
randomly collected.

Implicit assumptions of standard
approaches

The models aim to identify characteristic expression pattern for
the whole patient groups ( global molecular signatures )

This is often not the case

There might be many different molecular phenotypes with a
poor treatment outcome

This ignores that for many genes we already know a lot about
their function and the biological processes they are involved in




Our approach:

1. Sub-class finding instead of global class prediction

2. Use of functional annotations of genes

Global class prediction vs. Subclass finding

Find a molecular
signature that
separates D from C and
generalizes to new

T patients

and a molecular
signature that
separates D‘ from C

1
l Find a Subclass D ¢ D
‘
‘

| We call this signature a

associated to D

Exploiting functional
annotations of genes

Statistical Functional
Data > Analysis Annotations

( suggested here)

What are we looking for?

We are looking for groups of genes involved in a common biological
process with a profile of patients
having a certain disease with this disease

DNA Repair

Apoptosis

Cell Proliferation
HOX Genes . l

Data
\ Statistical
Analysis
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Annotations
The Annotation
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Structured Analysis of Microarrays
(StAM)

Train a classifier for every leave node using
some regularized multivariate model ...this
gives us local signatures in the leave nodes

Gene 1023
Gene 12975

Gene 22666

Combine the diagnostic results in the children

to a diagnosis for an inner node ... this gives us Gene 311

signatures in the inner nodes Gene 314
Gene 22666

Get rid of noisy but non informative branches

(Tibshirani et al 2002)
DLDA-like Discrimination

Discriminant function via
the distance to the
shrunken class centroids
d(C), d(D)

Variable selection via )
centroid shrinkage —
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To get rid of uninformative branches of the Gene Ontology, we
shrink the weights in the progression step by a constant A

wh = (w; — A)T
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Ais chosen by crossvalidation

Expression data from a leukemia study

Yeoh et al., Cancer Cell 2002
Diagnosis of

Study on acute lymphoblastic cytogenetic subtypes
leukaemia (ALL) 327 of ALLs:
12625 (Affymetrix HG-
U95Av2) 20 MLL - ()
27 E2A-PBX1
15 BCR-ABL
My focus in this talk: 79 TEL-AML1

87 Hyperdiploid

7 Hypodiploid

29 Pseudodiploid

18 nomal (B-cell ALL)
43 T-ALL

MLL - () vs. Others

Selectivity/ Color:
Specificity MLL-Score
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Differential Expression

Molecular disease mechanisms constitute
of genes

Alterations in gene regulation typically result in

Differential Coexpression
Differential Coexpression
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genes
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Questions

control disease

genes

How can we differential coexpression patterns ?

Do these pattern
Are they biologically
Did we really

in real data ?

?

to find them ?

How can we find differential
coexpression patterns ?

How did we find differential expression patterns ?

By screening one gene after the other

Differential expression is a property of a single gene, differential
coexpression is

... we need to screen all subsets of genes on the chip
... this is hard and can only be done heuristically

The problem of finding differential coexpression is mainly a




A: Decide on a score for differential coexpression

B: Greedy stochastic downhill search

1. Choose a random set of genes and

2. Randomly select a neighboring set ( no more than k
different genes ) and

3. Ifthe score of the new set is lower, change to the new set
otherwise keep the old set

4. Iterate until you find a local minimum of the score

The computational costs for a candidate set are
of the algorithm

The algorithm is stochastic. Restarting it several times can
result in different local minima corresponding to different
differential coregulation patterns

A score for differential coexpression of
several genes

Normal

( borrowed from Cheng and Church ):

Calculating S is computationally expensive, but

much cheaper than for the correlation coefficient

Neighborhood structure:
Neighboring sets differ only by a single gene.

Given a group of genes | we wish to exclude gene & :

We include / exclude a F—fraction of the genes that
meet the criterion for a reduced score

To tune the size of the finally found gene sets we
introduce a tuning parameter «.

The final criterion for including or excluding a gene
now reads:

Do these pattern exist in real data ?

Acute Lymphoblastic Leukemia

¢ About 1/3 of all pediatric cancers

« Different cytogenetic risk groups (e.g. 70% overall cure rate vs.
30% in phil+)

* We compared cytogenetically normal children to those with the
phil+ translocation

Differential coexpression in phil+ leukemia




Are the patterns biologically meaningful ?

Pattorn 1 (M gens)

I
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Pattern 2 (21 geos)

=» Involved in degradation of p27 ( prognostic factor in B-cell
lymphoma )

Did we really need a new method to find the patterns?

The genes in the two
patterns have ranks
between 106-6114
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