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From microarrays to 
biological networks 
to graphs in R and
Bioconductor

Wolfgang Huber, 
EBI / EMBL

recap "generalized" or "regularized" 
log-ratios

(on popular request)

What are the measurement units of gene 
expression?

We use fold changes to describe continuous 
changes in expression
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But what if the gene is “off” (or below detection 
limit) in one condition?

ratios and fold changes
The idea of the log-ratio (base 2)

0: no change
+1: up by factor of 21 = 2
+2: up by factor of 22 = 4
-1: down by factor of 2-1 = 1/2
-2: down by factor of 2-2 = 1/4

What about a change from 0 to 500?
- conceptually
- noise, measurement precision

A unit for measuring changes in expression: assumes that 
a change from 1000 to 2000 units has a similar biological 
meaning to one from 5000 to 10000.

Sources of variationSources of variation
amount of RNA in the biopsy 
efficiencies of
-RNA extraction
-reverse transcription 
-labeling
-photodetection

PCR yield
DNA quality
spotting efficiency,

spot size
cross-/unspecific hybridization
stray signal

Calibration Error model

Systematic
o similar effect on many 
measurements
o corrections can be 
estimated from data

Stochastic
o too random to be ex-
plicitely accounted for 
o “noise”

ε= +iik ika a
ai per-sample offset

εik ~ N(0, bi
2s1

2)
“additive noise”

bi per-sample
normalization factor

bk sequence-wise
probe efficiency

ηik ~ N(0,s2
2)

“multiplicative noise”

exp( )iik k ikb b b η=

ik ik ik ky a b x= +

A simple mathematical model

measured intensity  =  offset  +       gain   × true abundance
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The two-component model

raw scale log scale

“additive” noise

“multiplicative” noise

B. Durbin, D. Rocke, JCB 2001

variance stabilization

Xu a family of random variables with
EXu=u, VarXu=v(u). 

Define

⇒ var f(Xu ) ≈ independent of u

1( )
v( )

x

f x du
u

= ∫

derivation: linear approximation
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variance stabilizing transformations

1( )
v ( )

x

f x d u
u

= ∫
1.) constant variance ( ) constv u f u= ⇒ ∝

2.) const. coeff. of variation
2( ) logv u u f u∝ ⇒ ∝

4.) microarray

2 2 0
0( ) ( ) arsinh u uv u u u s f

s
+

∝ + + ⇒ ∝

3.) offset
2

0 0( ) ( ) log( )v u u u f u u∝ + ⇒ ∝ +

the “glog” transformation

intensity
-200 0 200 400 600 800 1000

- - - f(x) = log(x)

——— hs(x) = asinh(x/s) 

( )
( )

2arsinh( ) log 1

arsinh log log 2 0lim
x

x x x

x x
? ?

= + +

− − =

P. Munson, 2001

D. Rocke & B. Durbin, 
ISMB 2002

W. Huber et al., ISMB 
2002

evaluation: effects of different data transformations
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from proof-of principle to a useful tool and building 
block: technical issues

2Yarsinh , (0, )iki
k ki ki

i

a N c
b

µ ε ε− = + :

o choice of parameterization: global background vs
stratification by print-tip, sequence, etc.
o estimation: maximum likelihood is straightforward – but 
off-the shelf it is too sensitive to outliers.
o robust variant of ML, à la Least Trimmed Sum of Squares
regression: works as long as <50% of genes are 
differentially transcribed
o iterative numerical optimization - likelihood is concave
o software needs to produce correct results (or meaningful 
error message) with default settings for all sorts of arrays, 
labs, experiments

What is the bottomline? 
Detecting differentially transcribed genes 
from cDNA array data

o Data: paired tumor/normal tissue from 19 kidney 
cancers, in color flip duplicates on 38 cDNA slides à
4000 genes.

o 6 different strategies for normalization and 
quantification of differential abundance

o Calculate for each gene & each method: 
t-statistics, permutation-p

o For threshold α, compare the number of genes the 
different methods find, #{pi | pi≤α}

evaluation

more accurate quantification of differential 
expression ⇒ higher sensitivity / specificity

one-sided test for up one-sided test for down

Another evaluation: affycomp, a benchmark for
Affymetrix genechip expression measures

o Data:
Spike-in series: from Affymetrix 59 x HGU95A, 
16 genes, 14 concentrations, complex background
Dilution series: from GeneLogic 60 x HGU95Av2,
liver & CNS cRNA in different proportions and amounts

o Benchmark:
15 quality measures regarding
-reproducibility
-sensitivity 
-specificity 
Put together by Rafael Irizarry (Johns Hopkins) 
http://affycomp.biostat.jhsph.edu

affycomp results (hgu95a chips)
good

bad

ROC curves
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Availability

Package vsn in Bioconductor:
Preprocessing of two-color, Agilent, and
Affymetrix arrays

Candidate gene 
sets from 

microarray 
studies: 

dozens…hundreds

Capacity of detailed 
in-vivo functional 

studies: 
one…few

How to close the 
gap?

sample
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Drowning by numbers

How to separate a flood 
of ‘significant’ secondary 
effects from causally 
relevant ones?

VHL: tumor suppressor 
with “gatekeeper” role 
in kidney cancers

Boer, Huber, et al. Genome Res. 2001: 
kidney tumor/normal profiling study

Drowning by numbers

Boer, Huber, et al. Genome Res. 2001

Is differential expression a good predictor 
for ’signaling’ function?

RNAi
phenotypes

Differentially regulated
genes

~ 70 280 genes

RIP/IMD
pathways

RIP

Tak1

IKK

Rel

R

Targets

Michael Boutros

Most pathway targets are not required for pathway 
function

RNAi
phenotypes

Differentially regulated
genes

~ 70 280 genes

3

RIP/IMD
pathways

RIP

Tak1

IKK
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R

Targets

Michael Boutros
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Buffering
in yeast, ~73% of gene deletions are "non-essential" 

(Glaever et al. Nature 418 (2002))

in Drosophila cell lines, only 5% show viability 
phenotype (Boutros et al. Science 303 (2004))

association studies for most human genetic diseases 
have failed to produce single loci with high penetrance

evolutionary pressure for robustness

What are the implications for functional studies?
Need to:

use combinatorial perturbations
observe multiple phenotypes with high sensitivity

understand gene-gene and gene-phenotype interactions in 
terms of graph-like models ("networks")

From association to intervention

mRNA profiling studies: association of genes with diseases

gene 1
disease

gene 2

or or…

the dilemma

oror ?
the next step: directed intervention

RNAi
+ genome wide
o specificity
- efficiency / monitoring?

Transfection (expression)
+ 100% specific
+ monitoring
- library size

Small compounds
… 

Interference/Perturbation tools

Plate reader
96 or 384 well, 1…4 measurements per well

FACS
4…8 measurements 
per cell, thousands of cells
per well

Automated Microscopy
unlimited

Monitoring tools

Cell-Assays to Challenge the Cell-Cycle

DNA Replication

BrdU incorporation

G1

G2

M

G/S  checkpoint

G2/M checkpoint

G 2 Arrest

G
0

S

Apoptosis
activated caspase 3

Cell Signaling

Erk1/2

Dorit Arlt, DKFZ

ORF-YFP Anti-BrdU/Cy5

Proliferation Assay

Measurement of fluorescence intensities

92.6,

2621.8,

1095.4

267.6YFP channel Cy5 channel 
72.0           761.0
71.0           684.1
119.7           779.0
87.3           820.2
149.5           645.6
70.2           536.1
84.7           799.5
103.1           912.8
81.0           916.7

2621.8           267.6
74.1           766.2
156.8           866.6
169.0           819.8
105.5           757.7
156.0           367.8
76.5           746.2
135.2           731.2
86.2           567.3
77.7           896.3
92.6 1095.4
104.6           633.3
481.2           567.7
539.0           663.9
95.0           726.2
156.7           842.1
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Local Regression analysis

Signal intensity (cyclin A)

… focus on small perturbations and 
weak phenotypes!

local slope

σ
= 0

0'

ˆ '( )
ˆ ( )
m

m x
z

x
Arlt, Huber, et al. 
submitted  (2005)

Signal intensity (PP2A)

Signal intensity (CFP)
Hormone 

stimulation

Epistatic Interaction Networks

Apoptosis

differentiation 
events

apoptosis

UV

different 
compounds

T1 T2 T3

T3
T2

T1

A

B

Gene needed for shape change 
(Model B)

Gene inhibits cell death or 
promotes survival (Model B?)

SHAPE
CHANGE

CYCLE
ARREST

CELL
DEATH

E = Ecdysone stimulus

T = Temporal Response

= Assay for Response 

… = assay timepoints

RNAi 2

RNAi 3

Simple
Models

Example

Results?

RNAi 4

RNAi 5

E

E

Gene needed for shape change 
and cell death (Model A)

Gene needed for cell death 
(Model A or B)

RNAi +
No phenotype

E RNAi1

Epistatic Interaction Networks

A. Kiger
UCSD

Graphical Models (a.k.a. Bayesian networks)
to model genetic interactions 

Probability distribution: models the (co-)
occurence of a set of events

Problem: to infer just the pairwise
correlation of n objects, need at least n2

datapoints; for tripletts n3, …

Solution: Graphical model - uses a sparse
graph to construct this probability 
distribution (graph: a collection of nodes 
and edges)

Price: need to make simplifying 
assumptions - integrate prior knowledge, 
other data

Basic formal concepts, 
software, and case 
studies

Wolfgang Huber, EBI / EMBL

Definitions
Graph := set of nodes + set of edges
Edge := pair of nodes

Edges can be 
- directed
- undirected
- weighted, typed

special cases: cycles, acyclic graphs, trees
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Network topologies

regular all-to-all

Random graph 
(after "tidy" 

rearrangement of 
nodes)

Network topologies

Scale-free 

Random Edge Graphs
n nodes, m edges

p(i,j) = 1/m

with high probability:
m < n/2: many disconnected components
m > n/2: one giant connected component: size ~ n.

(next biggest: size ~ log(n)). 
degrees of separation: log(n).

Erdös and Rényi 1960

Small worlds
Clustering
Degree distribution
Motifs

Some popular concepts:

Small world networks
Typical path length („degrees of separation“) is short

many examples:
- communications
- epidemiology / infectious diseases
- metabolic networks
- scientific collaboration networks
- WWW
- company ownership in Germany
- „6 degrees of Kevin Bacon“

But not in
- regular networks, random edge graphs

Cliques and clustering coefficient

Clique: every node connected to everyone else

Clustering coefficient:

Random network: E[c]=p
Real networks: c » p

no. edges between first-degree neighbors
maximum possible number of such edges

c =
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Degree distributions

p(k) = proportion of nodes that have k edges

Random graph: p(k) = Poisson distribution with some 
parameter λ λ ((„„scalescale““))

Many real networks: p(k) = power law, 

p(k) ~ k−γ

„scale-free“

In principle, there could be many other distributions: 
exponential, normal, …

Growth models for scale free networks
Start out with one node and continously add nodes, with 

preferential attachment to existing nodes, with probability ~ 
degree of target node.

⇒ p(k)~k-3

(Simon 1955; Barabási, Albert, Jeong 1999)

"The rich get richer"

Modifications to obtain γ≠3:
Through different rules for adding or rewiring of edges, can 

tune to obtain any kind of degree distribution

Real networks

- tend to have power-law scaling (truncated)
- are ‚small worlds‘ (like random networks)
- have a high clustering coefficient independent 

of network size (like lattices  and unlike random 
networks)

Network motifs

:= pattern that occurs more often than in
randomized networks

Intended implications
duplication: useful building blocks are reused by 

nature
there may be evolutionary pressure for 

convergence of network architectures

Network motifs
Starting point: graph with directed edges
Scan for n-node subgraphs (n=3,4) and count number of

occurence
Compare to randomized networks
(randomization preserves in-, out- and in+out- degree of 

each node, and the frequencies of all (n-1)-subgraphs)

Schematic view of motif detection
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All 3-node connected subgraphs Transcription networks

Nodes = transcription factors

Directed edge: X regulates transcription of Y

3- and 4-node motifs in transcription networks

Transcriptional regulatory networks
from "genome-wide location analysis" 

regulator := a transcription factor (TF) or a ligand of a TF
tag: c-myc epitope

106 microarrays
samples: enriched (tagged-regulator + DNA-promoter)
probes: cDNA of all promoter regions
spot intensity ~ affinity of a promotor to a certain regulator

Transcriptional regulatory networks
bipartite graph

1

1

1

1

1

1

1

106 regulators (TFs)

62
70
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promoters
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Network motifs Network motifs

Graphs with R and
Bioconductor

graph, RBGL, Rgraphviz
graph basic class definitions and 
functionality

RBGL interface to graph algorithms (e.g. 
shortest path, connectivity)

Rgraphviz rendering functionality 
Different layout algorithms. 
Node plotting, line type, color etc. can be 
controlled by the user.

Creating our first graph
library(graph); library(Rgraphviz)

edges <- list(a=list(edges=2:3), 
b=list(edges=2:3),
c=list(edges=c(2,4)), 
d=list(edges=1))

g <- new("graphNEL", nodes=letters[1:4], edgeL=edges,
edgemode="directed")

plot(g)

Querying nodes, edges, degree
> nodes(g)
[1] "a" "b" "c" "d"

> edges(g)
$a
[1] "b" "c"
$b
[1] "b" "c"
$c
[1] "b" "d"
$d
[1] "a"

> degree(g)
$inDegree
a b c d
1 3 2 1
$outDegree
a b c d
2 2 2 1
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Adjacent and accessible nodes
> adj(g, c("b", "c"))
$b
[1] "b" "c"
$c
[1] "b" "d"

> acc(g, c("b", "c"))
$b
a c d
3 1 2

$c
a b d
2 1 1

Undirected graphs, subgraphs, boundary graph

> ug <- ugraph(g)

> plot(ug)

> sg <- subGraph(c("a", "b", 

"c", "f"), ug)

> plot(sg)

> boundary(sg, ug)
> $a
>[1] "d"
> $b
> character(0)
> $c
>[1] "d"
> $f
>[1] "e" "g"

Weighted graphs
> edges <- list(a=list(edges=2:3, weights=1:2),
+               b=list(edges=2:3, weights=c(0.5, 1)),
+               c=list(edges=c(2,4), weights=c(2:1)),
+               d=list(edges=1, weights=3))

> g <- new("graphNEL", nodes=letters[1:4],
edgeL=edges, edgemode="directed")

> edgeWeights(g)
$a
2 3
1 2
$b

2   3
0.5 1.0
$c
2 4
2 1

$d
1
3

Graph manipulation
> g1 <- addNode("e", g)

> g2 <- removeNode("d", g)

> ## addEdge(from, to, graph, weights)

> g3 <- addEdge("e", "a", g1, pi/2)

> ## removeEdge(from, to, graph)

> g4 <- removeEdge("e", "a", g3)

> identical(g4, g1)

[1] TRUE

Graph algebra Random graphs

Random edge graph: randomEGraph(V, p, edges)
V: nodes
either p: probability per edge
or edges: number of edges

Random graph with latent factor: randomGraph(V, M, p, weights=TRUE)
V: nodes
M: latent factor
p: probability
For each node, generate a logical vector of length length(M), with 
P(TRUE)=p. Edges are between nodes that share >= 1 elements. Weights 
can be generated according to number of shared elements.

Random graph with predefined degree distribution:
randomNodeGraph(nodeDegree)

nodeDegree: named integer vector
sum(nodeDegree)%%2==0
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Random edge graph

100 nodes 
50 edges

degree 
distribution

Graph representations

node-edge list: graphNEL
list of nodes
list of out-edges for each node

from-to matrix

adjacency matrix

adjacency matrix (sparse) graphAM (to come)

node list + edge list: pNode, pEdge (Rgraphviz)
list of nodes
list of edges (node pairs, possibly ordered)

Ragraph: representation of a laid out graph

Graph representations: from-to-matrix

> ft
[,1] [,2]

[1,]    1    2
[2,]    2    3
[3,]    3    1
[4,]    4    4

> ftM2adjM(ft)
1 2 3 4

1 0 1 0 0
2 0 0 1 0
3 1 0 0 0
4 0 0 0 1

GXL: graph exchange language

<gxl>
<graph edgemode="directed" id="G">
<node id="A"/>
<node id="B"/>
<node id="C"/>
…
<edge id="e1" from="A" to="C">
<attr name="weights">
<int>1</int>
</attr>
</edge>
<edge id="e2" from="B" to="D">
<attr name="weights">
<int>1</int>
</attr>
</edge>
…

</graph>
</gxl>

from graph/GXL/kmstEx.gxl

GXL 
(www.gupro.de/GXL) 

is "an XML
sublanguage

designed to be a 
standard exchange 
format for graphs".
The graph package 

provides tools for
im- and exporting 

graphs as GXL

RBGL: interface to the Boost Graph Library

Connected components
cc = connComp(rg) 
table(listLen(cc)) 
1   2   3   4  15  18 
36   7   3   2   1   1

Choose the largest component
wh = which.max(listLen(cc))
sg = subGraph(cc[[wh]], rg)

Depth first search
dfsres = dfs(sg, node = "N14")
nodes(sg)[dfsres$discovered] 
[1] "N14" "N94" "N40" "N69" "N02" "N67" "N45" "N53" 
[9] "N28" "N46" "N51" "N64" "N07" "N19" "N37" "N35" 
[17] "N48" "N09"

rg

depth / breadth first search

dfs(sg, "N14")
bfs(sg, "N14")
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connected components
sc = strongComp(g2)

nattrs = makeNodeAttrs(g2,
fillcolor="")

for(i in 1:length(sc))
nattrs$fillcolor[sc[[i]]] =

myColors[i]

plot(g2, "dot", nodeAttrs=nattrs)
wc = connComp(g2)

minimal spanning tree

km <-
fromGXL(file(system.file("GXL/kmstEx
.gxl", package = "graph")))

ms <- mstree.kruskal(km)

e <- buildEdgeList(km)
n <- buildNodeList(km)

for(i in 1:ncol(ms$edgeList)) 

e[[paste(ms$nodes[ms$edgeList[,i]], 
collapse="~")]]@attrs$color

<- "red"

z <- agopen(nodes=n, edges=e,
edgeMode="directed", name="")

plot(z)

shortest path algorithms

Different algorithms for different types of graphs 
o all edge weights the same
o positive edge weights
o real numbers

…and different settings of the problem
o single pair
o single source
o single destination
o all pairs

Functions
bfs
dijkstra.sp
sp.between
johnson.all.pairs.sp 

shortest path

1

set.seed(123)
rg2 = randomEGraph(nodeNames, edges = 100)
fromNode = "N43"
toNode = "N81"
sp = sp.between(rg2,

fromNode, toNode)

sp[[1]]$path 
[1] "N43" "N08" "N88" 
[4] "N73" "N50" "N89" 
[7] "N64" "N93" "N32" 
[10] "N12" "N81" 

sp[[1]]$length 
[1] 10

shortest path

ap = johnson.all.pairs.sp(rg2)
hist(ap)

minimal spanning tree

mst = mstree.kruskal(gr)gr
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connectivity

Consider graph g with single connected 
component.
Edge connectivity of g: minimum 
number of edges in g that can be cut to 
produce a graph with two components. 
Minimum disconnecting set: the set of 
edges in this cut.

> edgeConnectivity(g)
$connectivity
[1] 2

$minDisconSet
$minDisconSet[[1]]
[1] "D" "E"

$minDisconSet[[2]]
[1] "D" "H"

Rgraphviz: the different layout engines

dot: directed graphs.  Works  best  on DAGs
and other  graphs  that can be drawn as 
hierarchies.

neato: undirected graphs using ’spring’ models

twopi: radial layout. One node (‘root’) chosen as 
the center. Remaining nodes on a sequence of 
concentric circles about the origin, with radial  
distance proportional to graph distance. Root 
can be specified or chosen heuristically.

Rgraphviz: the different layout engines

Rgraphviz: the different layout engines domain combination graph
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ImageMap

lg = agopen(g, …)

imageMap(lg, 
con=file("imca-frame1.html", open="w")
tags= list(HREF   = href,

TITLE  = title,
TARGET = rep("frame2", length(AgNode(nag)))),

imgname=fpng, width=imw, height=imh)

Show drosophila interaction 
network example

Using GO to interprete gene lists

Using GO to interprete gene lists

Packages:
Gostats,
Rgraphviz

A pathway graph

A pathway graph

Probabilistic tree model for DNA copy 
number data (matrix CGH).

oncotree package by Anja von Heydebreck
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