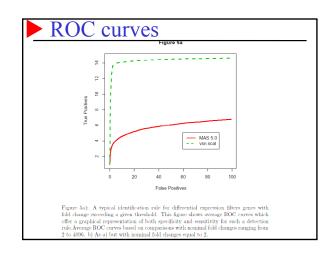
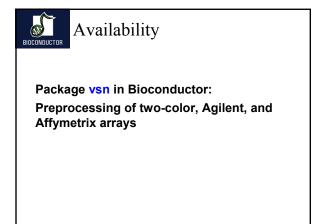
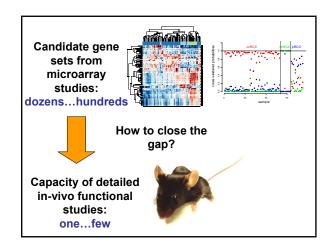
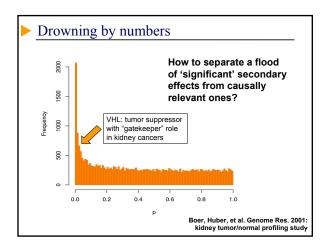
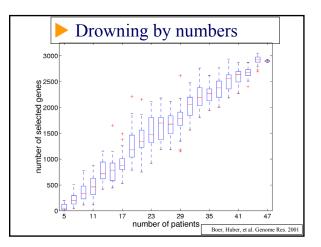

regression: works as long as <50% of genes are differentially transcribed


o iterative numerical optimization - likelihood is concave o software needs to produce correct results (or meaningful error message) with default settings for all sorts of arrays, labs, experiments

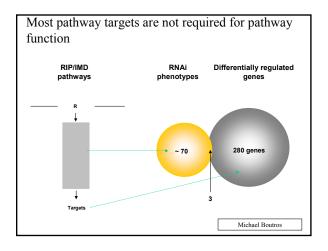








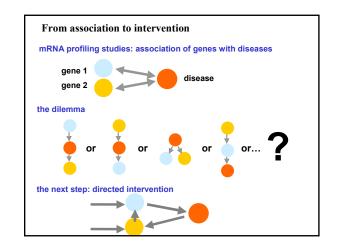


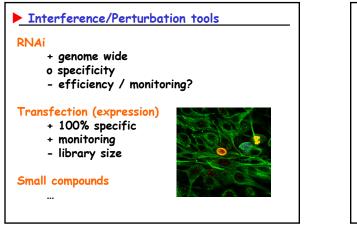


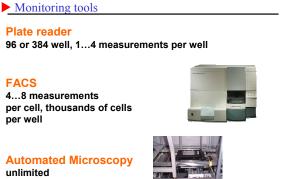
Buffering

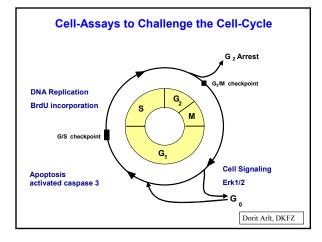
in yeast, ~73% of gene deletions are "non-essential" (Giaever et al. Nature 418 (2002))

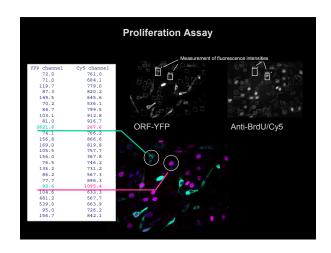
in Drosophila cell lines, only 5% show viability phenotype (Boutros et al. Science 303 (2004))

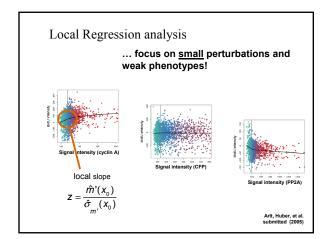

→ association studies for most human genetic diseases have failed to produce single loci with high penetrance

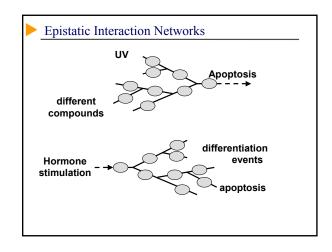

evolutionary pressure for robustness

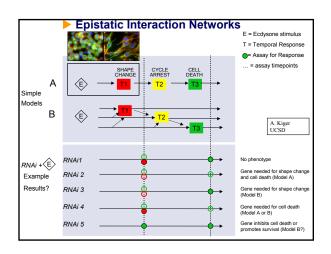

What are the implications for functional studies?

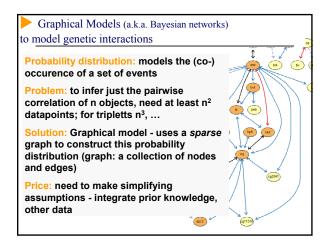

Need to:

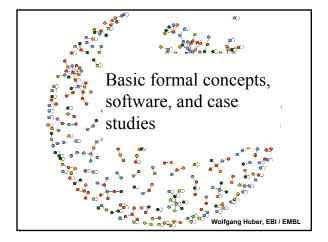

use combinatorial perturbations observe multiple phenotypes with high sensitivity understand gene-gene and gene-phenotype interactions in terms of graph-like models ("networks")

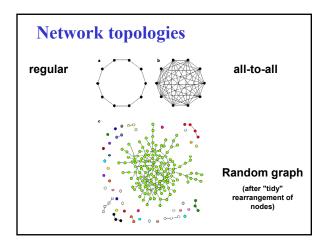


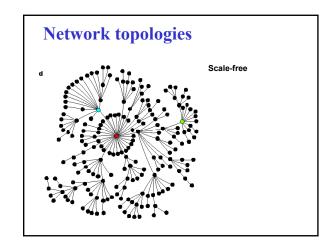









Definitions


Graph := set of nodes + set of edges Edge := pair of nodes

Edges can be

- directed
- undirected
- weighted, typed

special cases: cycles, acyclic graphs, trees

Random Edge Graphs

n nodes, m edges p(i,j) = 1/m

with high probability:

- m < n/2: many disconnected components
- m > n/2: one giant connected component: size ~ n.

(next biggest: size ~ log(n)).

degrees of separation: log(n).

Erdös and Rényi 1960

Some popular concepts:

Small worlds Clustering Degree distribution Motifs

Small world networks

Typical path length ("degrees of separation") is short

many examples:

- communications
- epidemiology / infectious diseases
- metabolic networks
- scientific collaboration networks
 WWW

- company ownership in Germany

- "6 degrees of Kevin Bacon"

But not in

- regular networks, random edge graphs

Cliques and clustering coefficient

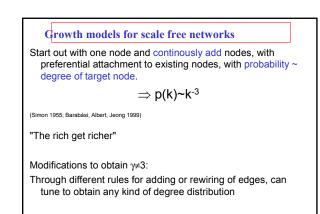
Clique: every node connected to everyone else

Clustering coefficient:

 $c = \frac{\text{no. edges between first-degree neighbors}}{c}$

maximum possible number of such edges Random network: E[c]=p Real networks: c » p

Degree distributions


p(k) = proportion of nodes that have k edges

Random graph: p(k) = Poisson distribution with some parameter λ ("scale")

Many real networks: p(k) = power law,

 $p(k) \sim k^{-\gamma}$ "scale-free"

In principle, there could be many other distributions: exponential, normal, ...

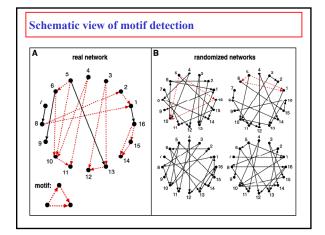
Real networks

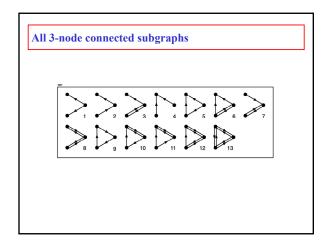
- tend to have power-law scaling (truncated)
- are ,small worlds' (like random networks)
- have a high clustering coefficient independent of network size (like lattices and unlike random networks)

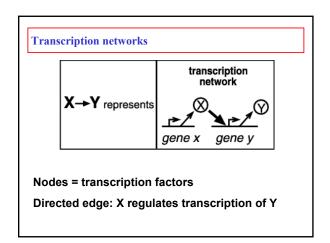
Network motifs

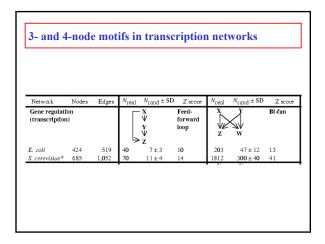
:= pattern that occurs more often than in randomized networks

Intended implications

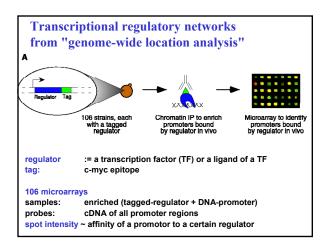

- duplication: useful building blocks are reused by nature
- there may be evolutionary pressure for convergence of network architectures

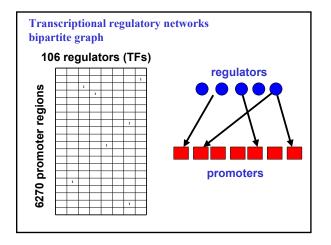

Network motifs

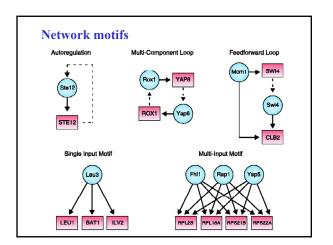

Starting point: graph with directed edges

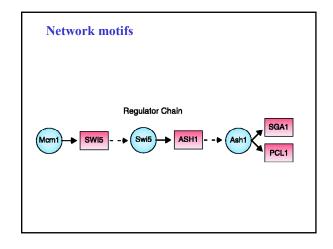

- Scan for n-node subgraphs (n=3,4) and count number of occurence
- Compare to randomized networks

(randomization preserves in-, out- and in+out- degree of each node, and the frequencies of all (n-1)-subgraphs)

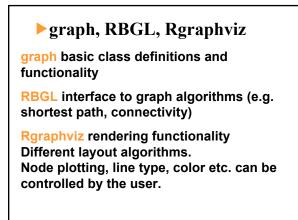


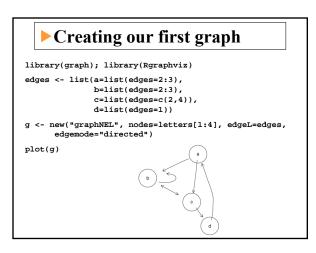


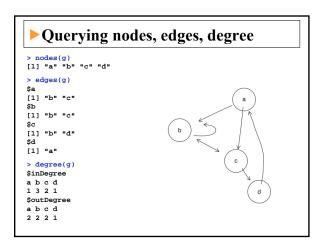


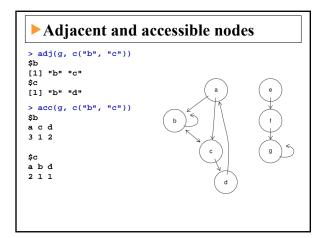


-	Network	Nodes	Edges	Num	N Lond & SC	2 10010	N _{aral}	N 100d & SD	Zicole	Nteal	N _{cond} = SC	Zscare
	Gene regulati		Loges	16.4	X	Tent	X	Y	E-fan	184	1.004	- Kat
	(transcription				Ψ	forward		4		1		
					¥.	loop	VZ Z	70		1		
				>	z		~			1		
	E coli	424	519	40	7 ± 3	10	203	47 ± 12	13	1		
	S. cerevisive*	685	1,052	70	11 ±4	14	1812	300±40	41			
	Neurons			Г	¥ ₩	Feed - forward	1 K	X	Bi-fan	¥×	4	Bi- parallel
					ý.	loco	VZ	Sal V		×.		paratter
				6	Ŵ		Ł	w		۳ ,	r .	
	Celeanut	252	509	125	Z 90±10	3.7	127	55 ± 13	5.3	227	35 ± 10	20
1	Food webs				x ¥	Three			Bi-			
						chain	¥	4	parallel			
					Ŷ		"4	K				
					z		w			1		
	Little Rock Yihan	92 83	954 391	3219	3120±50 1020±20	2.1	7295	2220 ± 210 230 ± 50	25 23	1		
	St. Martin	42	205	460	450 ± 10	NS	382	130 4 20	12	1		
	Chesapeake	31	67	30	82±4	NS	26	5 ± 2	8	1		
	Conchella Skipwith	29 25	243	279 184	235 ± 12 150 ± 7	3.6	181	80 ± 20 80 ± 25	5			
	B. Brook	25	104	184	130±7	3.3 7.4	267	30±25 30±7	32			
	Electronic cire			Г	¥	Feed -	x	Y.	Bi-fan	U.X	N	Bi-
	(forward logic	chips)			ř.	forward loop				ιć.	z	parallel
					¥	tool	Z	W		۱×,	ĸ	
					z					· · ·		
	s 15850 s 78584	10,383 20,717	14,240 34,204	424	2 ± 2 10 ± 3	285 120	1040	1±1 6±2	1200	480 711	2±1 9±2	335 320
	s38417	23,843	33,661	612	3 4 2	400	2004	1 4 1	2550	531	242	340
	19234	5,844	8,197	211	2 ± 1	140	754	1 ± 1	1050	209	1 ± 1	200
-	s 13207 Electronic cir	8,651	11,831	403	2 ± 1	225 Three-	4445	1±1	4950 Bi-fan	264	2±1 ⇒v	200 Four-
	(digital fraction		(ensile	1	·	node	1 N	7	BITAN		1	node
				1	7	feedback	VZ	Sal V			*	feedback
				۲<	— z	losp	z	w		ż<	W	loop
	±206	122	189	10	1 4 1	9	4	1 4 1	3.8	5	1 ± 1	5
	s420 s838±	252 512	309 819	20 40	141	18 38	10 22	141	10	23	1 ± 1	11 25
	ssis‡ Workl WideV		017	~~>	121	38 Feed back	22 X	121	Fally	23 X	121	Uplinked
				-	0	with two	1	1	connected	1	7	matual
					X .	mutaal	1 e	~ 2	triad	lŕ≪⇒	≽`z	d yest b
					ž	d yads						
	nd.eda§	325,729	1.46e6	1.LeS	2e3 ± 1e2	800	6.8e6	Se444e2	15,000	1.2e6	1e4 ± 2e	2 5000
1				_			_			_		

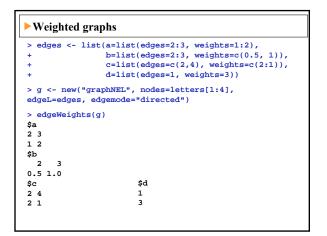


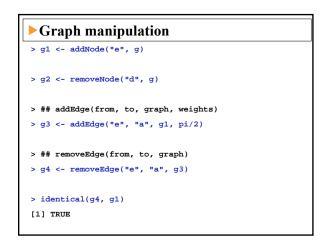


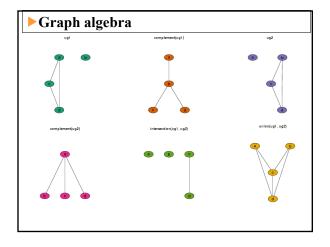


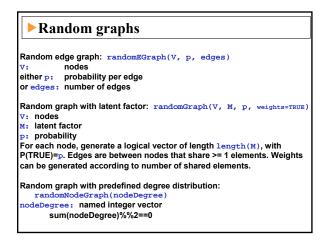


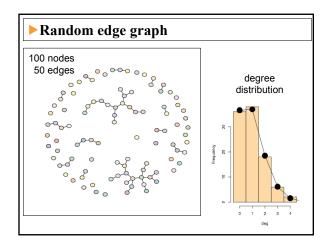
Graphs with R and Bioconductor

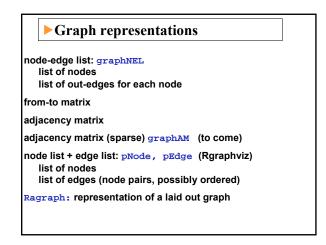


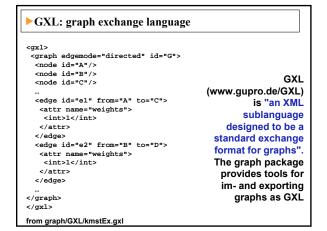


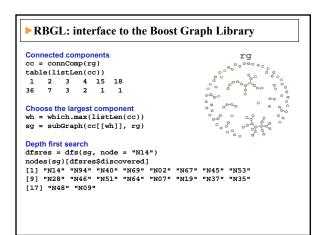


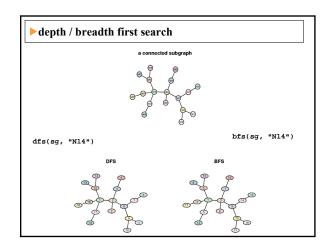


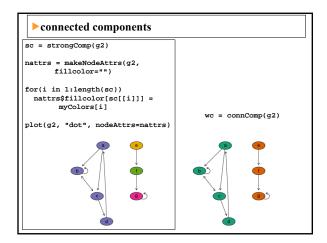


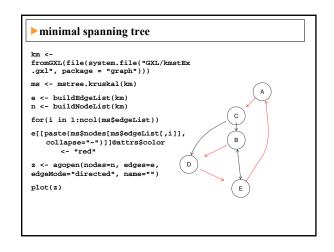


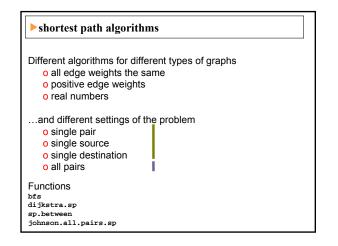


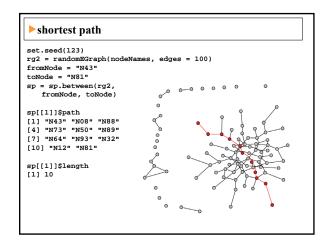


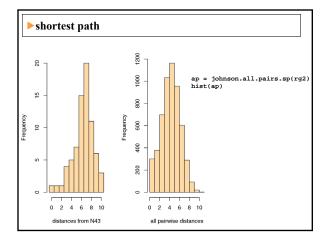


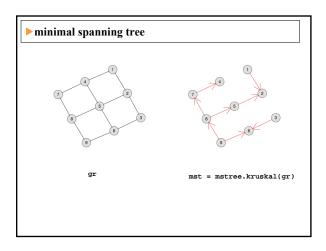


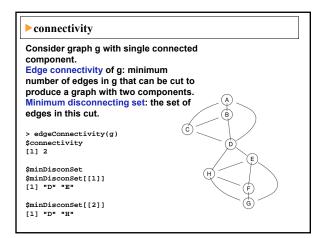

► Graph repres	entations: from-to-matrix	
> ft		
[,1]	[,2]	
[1,] 1	2	
[2,] 2	3	
[3,] 3	1	
[4,] 4	4	
<pre>> fttM2adjt 1 2 3 4 1 0 1 0 0 2 0 0 1 0 3 1 0 0 0 4 0 0 0 1</pre>	:(ft)	

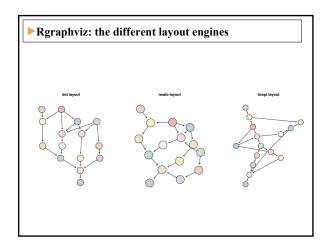




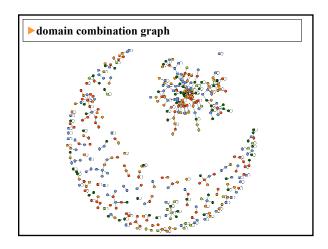


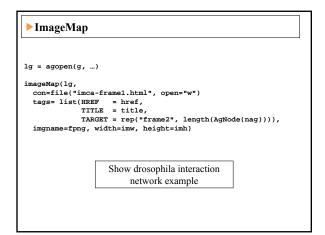


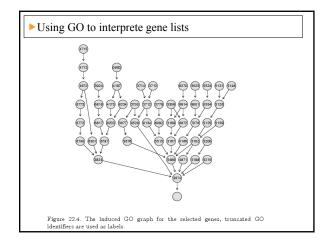


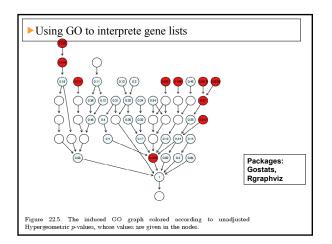


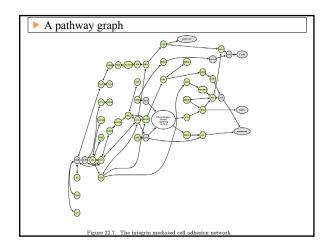


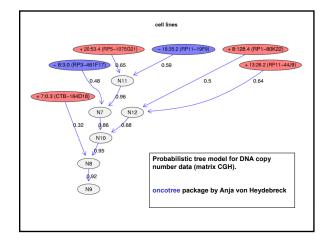



RBGL functions	Comments
Traversals	
bis	BFS
dfs	DFS
Shortest paths	
dijkstra.sp	single-source, nonnegative weights
bollman.ford.op	single source, general weights
dag.sp	single-source, DAG
johnson.all.pairs.sp	returns distance matrix
Minimal spanning trees	
nstree.kruskal	returns edge list and weights
prim.minST	as above
Connectivity	
connectedComp	returns list of node-sets
strongComp	as above
edgeConnectivity	returns index and minimum
	disconnecting set
init.incremental.components	special processing for
incremental.components	evolving graphs.
same.component	boolean in the incremental setting
Maximum flow algorithms	
cdmunds.karp.max.flow	list of max flow, and edge
push.relabel.max.flow	specific flows
Vertex ordering	
tsort	topological sort
cuthill.mckee.ordering	reduces bandwidth
sloan.ordering	reduces wavefront
min.degree.ordering	heuristic
Other functions	
transitive.closure	returns from-to matrix
isomorphism	boolean
brandos.botwconnoss.contrality	indices and dominance measure
circle.layout	returns vertex coordinates returns vertex coordinates
kamada.kawai.spring.layout	


Rgraphviz: the different layout engines
 dot: directed graphs. Works best on DAGs and other graphs that can be drawn as hierarchies.
 neato: undirected graphs using 'spring' models
 twopi: radial layout. One node ('root') chosen as the center. Remaining nodes on a sequence of concentric circles about the origin, with radial distance proportional to graph distance. Root can be specified or chosen heuristically.







Acknowledgements

- R project: R-core team www.r-project.org
- Bioconductor project: Robert Gentleman, Vince Carey, Jeff Gentry, and many others www.bioconductor.org
- graphviz project: Emden Gansner, Stephen North, Yehuda Koren (AT&T Research) www.graphviz.org
- Boost graph library: Jeremy Siek, Lie-Quan Lee, Andrew Lumsdaine, Indiana University www.boost.org/libs/graph/doc

References

Can a biologist fix a radio? Y. Lazebnik, *Cancer Cell* 2:179 (2002)

Social Network Analysis, Methods and Applications. S. Wasserman and K. Faust, Cambridge University Press (1994)

Bioinformatics and Computational Biology Solutions using R and Bioconductor. R. Gentleman, V. Carey, W. Huber, R. Irizarry, S. Dudoit. Springer, available in summer 2005.