. %(}g. | 2, ]
S0 °® "%\M.: :ﬁ s
PP o S Begl R " : " " : "
s VR . > recap generalized" or "regularized
i log-ratios
<" =, From microarrays to &
? - biological networks “‘:f (on popular request)
oo @ 8
¢ -to graphsinRand " <7
2 Bioconductor Lo
hd o
e '{’f‘;%’w? 'jﬂ;_.g" gé?m\;\;olfgang Huber,
So asafe ® EBI/EMBI

P What are the measurement units of gene

expression? P ratios and fold changes
We use fold changes to describe continuous The idea of the log-ratio (base 2)
changes in expression 0: no change
+1: up by factor of 2'=2

3000 i ° +2: up by factor of 22 = 4

1500 [ _re -1: down by factor of 2= 1/2

1000 ® 7x1.5 -2: down by factor of 22 = 1/4

A B C
. v cen . A unit for measuring changes in expression: assumes that

But what if the gene is “off” (or below detection a change from 1000 to 2000 units has a similar biological
limit) in one condition? meaning to one from 5000 to 10000.

3000 °

5 What about a change from 0 to 500?
200 7 e - conceptuall
o o —3 P y

- noise, measurement precision

A B C
Sources of variation | » A simple mathematical model
amount of RNA in the biopsy PCR yield
efficiencies of DNA quality

measured intensity = offset + gain  x true abundance
-RNA extraction

spotting efficiency,

-reverse transcription spot size y, - 5 + b. X
-labeling cross-/unspecific hybridization Ik Ik Ik k

-photodetection stray signal

Systematic Stochastic a,=a+e, b, = b b, exp(n,)
o similar effect on many o too random to be ex- ‘ ‘ ’ b; per-sample
measurements plicitely accounted for a; per-sample offset normalization factor
o corrections can be o “noise” - .
estimated from data &~ MO, bfsr) by sequence-wise

I I “additive noise” probe efficiency
o~ N(O,s7
. ~ Nk ( Sz )
Calibration Error model

“multiplicative noise”




P The two-component model

[=)
=]
=]

=]
=]
o

CH2
1000 2000 3000 4000 500

200

0
0

0 1000 2000 3000 4000 5000 50 200 1000 5000 20000
CH CH1

raw scale log scale

B. Durbin, D. Rocke, JCB 2001

» variance stabilization

X, a family of random variables with
EX,u, VarX=vu).

Define .
_ 1
f(x) = j —'_v(u) du

= var f(X,) = independent of u

derivation: linear approximation

P> variance stabilization
] —

11.

f(x)

80 85 9.0 95 10.0

L
T T T T T T T

0 20000 40000 60000
X

P> variance stabilizing transformations

[
f(x)—.[ '_v(u) du

v(it)=const = FOvu

1.) constant variance
2.) const. coeff. of variation v(@Ouv* = fOlogu
3.) offset v(W) O (¢ )y = f O log(e+ w)

4.) microarray

+
v(v) O (v+ 4 )+ s = £ O arsinh vr b

P the “glog” transformation

- - - f(x) = log(x)
——— hy(x) = asinh(x/s)

-200 0 200 400 600 800 1000

al"Siﬂh(X) = IOg(X + Xz + 1) P. Munson, 2001

D. Rocke & B. Durbin,
1SMB 2002

lim (arsinhx —log x —log2) =0  wrumea.sue

evaluation: effects of different data transformations
a) Ay _ b) Alog(y)

©) Ah(y)

difference red-green

rank(average)




from proof-of principle to a useful tool and building
block: technical issues

.Y, —a
h ki (i
arsin —b

T

=y, +¢,, & : N(,Cc?)

o choice of parameterization: global background vs
stratification by print-tip, sequence, etc.

o estimation: maximum likelihood is straightforward — but
off-the shelf it is too sensitive to outliers.

o robust variant of ML, a la Least Trimmed Sum of Squares
regression: works as long as <50% of genes are
differentially transcribed

o iterative numerical optimization - likelihood is concave

o software needs to produce correct results (or meaningful
error message) with default settings for all sorts of arrays,
labs, experiments

P> What is the bottomline?
Detecting differentially transcribed genes
from cDNA array data

o Data: paired tumor/normal tissue from 19 kidney
cancers, in color flip duplicates on 38 cDNA slides a
4000 genes.

o 6 different strategies for normalization and
quantification of differential abundance

o Calculate for each gene & each method:
t-statistics, permutation-p

o For threshold a, compare the number of genes the
different methods find, #{p;| p;<a}

P evaluation

one-sided test for up one-sided test for down

400

*2,- ah(y)

'+ hly)

g s Alogfloess _a Alog/loess
X & Arank(y) el XEC - Arank(y)
Alog(y-Q5) ERELT A AluggnySJ
o Alogly) ve J“‘ o Alogly;)
o Alog(y) 133 - Alog(y)
T T T T : T T T T :
o0t ted3 e e lew o0t ted3 e e ten
o a

more accurate quantification of differential
expression = higher sensitivity / specificity

Another evaluation: affycomp, a benchmark for
Affymetrix genechip expression measures

o Data:

Spike-in series: from Affymetrix 59 x HGU95A,

16 genes, 14 concentrations, complex background
Dilution series: from GeneLogic 60 x HGU95Av2,

liver & CNS cRNA in different proportions and amounts

o Benchmark:

15 quality measures regarding

-reproducibility

-sensitivity

-specificity

Put together by Rafael Irizarry (Johns Hopkins)
http://affycomp.biostat.jhsph.edu

> glffycomp results (nguvsa chips)

" T N

RMA /rafa
RMAVSN / thome
ZAM2NBG / mag
PLIER+16 / Eail_
vsn_scal / w.hub:
GCRMA /zwu
ChipMan / plaure
MAS_5.0 / rafa
PLIER/ Earl_Hut
GSVDmod / hzuz
GSVDmin / hzuz
wsn/ w.hubar
RMA_NBG /bok
dchip /afa

PM / zhangli
qn.p5/ cope

-
o
w

o
@2
W

ATP
AUC 2)
"2

median SD
AFP

AFP [2)
Auc
1aR
corr

bad —

ot
by
w
5o
3

fectian siops

i
£

» ROC curves

Figure 53

True Pesitives

1

— MAS5.0
- - vsnscal

False Positives

ification rule

omparisons with nominal

2 to 4096. b) As a) but with nominal fold changes equal to 2




S Wl Availability

BIOCONDUCTOR

Package vsn in Bioconductor:

Preprocessing of two-color, Agilent, and
Affymetrix arrays

Candidate gene
sets from
microarray
studies:
dozens...hundreds

How to close the
gap?

Capacity of detailed
in-vivo functional
studies:
one...few

Drowning by numbers

How to separate a flood
of ‘significant’ secondary
effects from causally
relevant ones?

2000
J

1500
1

VHL: tumor suppressor

with “gatekeeper” role
in kidney cancers

Frequency
1000
I

500
1

Boer, Huber, et al. Genome Res. 2001:
kidney tumor/normal profiling study

Drowning by numbers

3000

n
(51
[=]
=
.
O i R
V- CTF
+RF
e
W\

1500(

1000} E Q H E] !

5001

n

3

i=]

o

‘
'

L
_—

B i S
-
e i

O+

-
—u s

R i SRR

i R

number of selected genes

FOF -

I S

S
-

1 17 23 29 35 41 47

number of patients
[ Boer, Huber, et al. Genome Res. 2001

Is differential expression a good predictor
for ’signaling’ function?

RIP/IMD RNAI Differentially regulated
pathways phenotypes genes

- R -

v

RIP

v

Tak1

v

IKK
i »
Rel

'

Targets

> ~70 280 genes

Michael Boutros

Most pathway targets are not required for pathway
function

RIP/IMD RNAi Differentially regulated
pathways phenotypes genes
E— R _
'
RIP
'
Takt > ~70 280 genes.
' I
IKK
'
Rel
' 3
Targets




From association to intervention

Buffering

=» in yeast, ~73% of gene deletions are "non-essential” mRNA profiling studies: association of genes with diseases

(Glaever et al. Nature 418 (2002))

=> in Drosophila cell lines, only 5% show viability gene 1 g
phenotype (Boutros et al. Science 303 (2004)) gene 2 ‘ Isease

=>» association studies for most human genetic diseases
have failed to produce single loci with high penetrance

=> evolutionary pressure for robustness .
or ,

What are the implications for functional studies? . or . or or
Need to: .
use combinatorial perturbations '
observe multiple phenotypes with high sensitivity the next step: directed intervention
understand gene-gene and gene-phenotype interactions in
terms of graph-like models ("networks") . * —
)

the dilemma

» Interference/Perturbation tools » Monitoring tools

RNAi Plate reader
+ genome wide 96 or 384 well, 1...4 measurements per well
o specificity -

- efficiency / monitoring?

Transfection (expression)
+ 100% specific

per cell, thousands of cells

FACS —R
4...8 measurements ks d—

K F per well
+ monitoring
- library size .
[ X
Automated Microscopy = -
Small compounds unlimited ; \j

Cell-Assays to Challenge the Cell-Cycle Proliferation Assay

_ Measurement of fluorescence intensities

G, Arrest YFP channel Q5 channel

72.0 761.0
71.0 684. 1
119.7

G,/M checkpoint L
DNA Replication =
BrdU incorporation 7
621 8 267.6 ORF-YFP Anti-BrdU/Cy5

GIS checkpoint

11 Si li
Apoptosis Cell Signaling
activated caspase 3 Erk1/2

G

0

Dorit Arlt, DKFZ




Local Regression analysis

.. focus on small perturbations and
weak phenotypes!

nsity (CFP)
local slope
_'(x)

Signal intensity (PP2A)

Arlt, Huber, et al.
submitted (2005)

Epistatic Interaction Networks

uv
Apoptosis
-->
different
compounds
differentiation
Hormone events
stimulation ~

apoptosis

Epistatic Interaction Networks

E = Ecdysone stimulus
T = Temporal Response

@= Assay for Response

... = assay timepoints
CYCLE CELL
ARREST DEATH
A - —
Simple
Models
B = AeT2 i,
~ « - A. Kiger
[ S B N >
- vesp
) RNAi1 48 No phenotype
RNAI+(E>
. Gene needed for shape change
Example RNAi 2 and cell death (Model A)
Results? RNAi 3 Gene needed for shape change
(Model B)
RNAi 4 9 Gene needed for cell death
. (Model A or B)
RNAi 5 % Gene inhibits cell death or
- promotes survival (Model B?)

Graphical Models (a.k.a. Bayesian networks)
to model genetic interactions

models the (co-)
occurence of a set of events =

to infer just the pairwise /
correlation of n objects, need at'least n?
datapoints; for tripletts n3, .

Graphical model - uses 4 spar%
graph to construct this probability. /
distribution (graph: a collection of \odei/i

and edges)

need to make simplifying

other data

: o
°‘:56 Basic fbtn%l;%o@epts
‘é- 'k{ _software, and ‘case
e 4 studles oud

@ ° e
gw o e Y
% e % & & ‘P &

3 fﬁ oo P ‘\/‘f. oo o)
S o o e 5 % %% o
v @ ¢ 2

-:z}o;‘g © .Oﬁfc; ;’ I@A{,ﬁé’i;%

Definitions

Graph := set of nodes + set of edges
Edge := pair of nodes

Edges can be

- directed

- undirected

- weighted, typed

special cases: cycles, acyclic graphs, trees




Network topologies

all-to-all

Random graph

(after "tidy"
rearrangement of
nodes)

Network topologies

Scale-free

Py
T,

/l\/\

Random Edge Graphs

n nodes, m edges
p(i,j) = 1/m

with high probability:

m < n/2: many disconnected components

m > n/2: one giant connected component: size ~ n.
(next biggest: size ~ log(n)).
degrees of separation: log(n).

Erdds and Rényi 1960

Some popular concepts:

Small worlds
Clustering

Degree distribution
Motifs

Small world networks

Typical path length (,degrees of separation) is short
many examples:

- communications

- epidemiology / infectious diseases

- metabolic networks

- scientific collaboration networks

- Www

- company ownership in Germany

- ,6 degrees of Kevin Bacon*

But not in
- regular networks, random edge graphs

Cliques and clustering coefficient

Clique: every node connected to everyone else

Clustering coefficient:

o = ho. edges between first-degree neighbors

maximum possible number of such edges

Random network: E[c]=p

Real networks: ¢ » p




Degree distributions

p(k) = proportion of nodes that have k edges

Random graph: p(k) = Poisson distribution with some
parameter A (,scale®)

Many real networks: p(k) = power law,
p(k) ~ kY

,scale-free”

In principle, there could be many other distributions:
exponential, normal, ...

d(rowth models for scale free networks

Start out with one node and continously add nodes, with
preferential attachment to existing nodes, with probability ~
degree of target node.

= p(k)~k?
(Simon 1955; Barabasi, Albert, Jeong 1999)

"The rich get richer"

Modifications to obtain y#3:

Through different rules for adding or rewiring of edges, can
tune to obtain any kind of degree distribution

Real networks

- tend to have power-law scaling (truncated)
- are ,small worlds’ (like random networks)

- have a high clustering coefficient independent
of network size (like lattices and unlike random
networks)

Network motifs

:= pattern that occurs more often than in
randomized networks

Intended implications
duplication: useful building blocks are reused by
nature

there may be evolutionary pressure for
convergence of network architectures

Network motifs

Starting point: graph with directed edges

Scan for n-node subgraphs (n=3,4) and count number of
occurence

Compare to randomized networks

(randomization preserves in-, out- and in+out- degree of
each node, and the frequencies of all (n-1)-subgraphs)

Schematic view of motif detection

A randomized networks

real network




All 3-node connected subgraphs

e e N e
S

Transcription networks

transcription
network

X—Y represents ® ®
=/ A/

genex geney

Nodes = transcription factors

Directed edge: X regulates transcription of Y

3- and 4-node motifs in transcription networks

Network Nodes  Edges | Meeal Meand*SD  Zscore | Nieal Meand=SD Zscore
Gene regulation X Feed- X Y Bi-fan
(transcripton) v forward ?g
Y loop
7 Z w
z
E. coli 424 519 40 T+£3 10 203 47+12 13
S. cerevisiue® 685 1,052 70 11+4 14 1812 300+40 41

Transcriptional regulatory networks
from "genome-wide location analysis"

= P —~ &

106 strains, each Chromatin IP to enrich Microarray to identify
with a tagged promoters bound promoters bound
regulator by regulator in vivo by regulator in vivo
regulator := a transcription factor (TF) or a ligand of a TF
tag: c-myc epitope

106 microarrays

samples: enriched (tagged-regulator + DNA-promoter)
probes: cDNA of all promoter regions

spot intensity ~ affinity of a promotor to a certain regulator

3
palel

Transcriptional regulatory networks
bipartite graph

106 regulators (TFs)

regulators

promoters

6270 promoter regions




Network motifs

Autoregulation Multi-Component Loop Feedforward Loop
'
+ , YAPS T
'
' T
: :
' (o (&)
' '
.
CLB2
Single Input Motif Multi-Input Motif

7N

N N N
Leus ané Enamg évws:

Network motifs

Regulator Chain

CRLINC R N

Graphs with R and
Bioconductor

graph, RBGL, Rgraphviz

basic class definitions and
functionality

interface to graph algorithms (e.g.
shortest path, connectivity)

rendering functionality
Different layout algorithms.
Node plotting, line type, color etc. can be
controlled by the user.

Creating our first graph

l'ibrary(graph); library(Rgraphviz)

edges <- list(a=list(edges=2:3),
b=li st (edges=2: 3),
c=list(edges=c(2,4)),
d=li st (edges=1))

g <- new("graphNEL", nodes=letters[1:4], edgelL=edges,

edgenode="di rected")

plot (g) e
oz |
Qg

Querying nodes, edges, degree

> nodes(g)

[1] "a" "b" "c" "d"
> edges(g)

$a

[1] "b" "c"

$b

> degree(g)
$i nDegr ee
abcd
1321
$out Degr ee
abcd
2221

(1 "o e /?
$i "p" o d" D
o O2 @\g




Adjacent and accessible nodes

> adj (g, c("b", "c"))
$b

[1] "b" "c"

N &
=T
= Qa

$c

[1] "b" "d" ”
> acc(g, c("b", "c"))

: 5 ©
acd

312 o

¢

Undirected graphs, subgraphs, boundary graph

> ug <- ugraph(g)
> pl ot (ug)

> sg <- subGraph(c("a", "b",
"et, "f'), ug)

> plot(sg)

> boundary(sg, ug)

> $a N
>[1] "d" VRN
: fgar acter (0) ({) \\

> $c \& /

S[1] "d" N

> $f J

>[1] "e" "g"

Weighted graphs

> edges <- list(a=list(edges=2:3,
+ b=li st (edges=2: 3,

wei ght s=1: 2),
wei ghts=c(0.5, 1)),

+ c=list(edges=c(2,4), weights=c(2:1)),
+ d=li st (edges=1, wei ghts=3))

> g <- new("graphNEL", nodes=letters[1:4],

edgelL=edges, edgenpde="directed")

> edgeWei ght s(g)

Graph manipulation

Vv

gl <- addNode("e", g)

> g2 <- renoveNode("d", g)

> ## addEdge(from to, graph, weights)
> g3 <- addEdge("e", "a", gl, pi/2)

> ## renoveEdge(from to, graph)

> g4 <- renoveEdge("e", "a", g3)

> identical (g4, gl)
[1] TRUE

$a
23
12
$b
2 3
0.5 1.0
$c $d
24 1
21 3
Graph algebra
[
@
complement{un2) intersection(ugt, ug2) vt ug?)
® ®
N
/N

‘ Random graphs

Random edge graph: randonEG aph(V, p, edges)
V. nodes

either p:  probability per edge

or edges: number of edges

Random graph with latent factor: randonGraph(V, M p, wei ghts=TRUE)
V. nodes

M latent factor

p: probability

For each node, generate a logical vector of length | engt h( M , with
P(TRUE)=p. Edges are between nodes that share >= 1 elements. Weights
can be generated according to number of shared elements.

Random graph with predefined degree distribution:
randonNodeG aph( nodeDegr ee)
nodeDegr ee: named integer vector
sum(nodeDegree)%%2==




Random edge graph

100 nodes
50 edges _ o, 0%0 o,
Oo(lO gé}
e °
OOO % OO
o
O%O oo S}
Q o o
(o]
og % ° %
Oo—Op o OO
o
[e]
oL,
©o

Frequency
2

degree
distribution

Graph representations

node-edge list: gr aphNEL
list of nodes
list of out-edges for each node

from-to matrix

adjacency matrix

adjacency matrix (sparse) gr aphAM (to come)

node list + edge list: pNode, pEdge (Rgraphviz)

list of nodes

list of edges (node pairs, possibly ordered)

Ragr aph: representation of a laid out graph

Graph representations: from-to-matrix

> ft
[.1] [, 2]
[1,] 1 2
[2,] 2 3
[3,] 3 1
[4,] 4 4
> ftMadj Mft)
1234
10100
20010
31000
40001

GXL: graph exchange language

<gxl| >
<graph edgenode="directed" id="G'>
<node id="A"/>
<node id="B"/>
<node id="C'/>

<edge id="el" fron¥"A" to="C'>
<attr name="wei ghts">
<int>1</int>
</attr>
</ edge>
<edge id="e2" from"B" to="D'>
<attr name="wei ghts">
<int>1</int>
</attr>
</ edge>

</ graph>
</ gxl| >

from graph/GXL/kmstEx.gx|

GXL
(www.gupro.de/GXL)
is "an XML
sublanguage
designed to be a
standard exchange
format for graphs™.
The graph package
provides tools for
im- and exporting
graphs as GXL

RBGL: interface to the Boost Graph Library

Connected components
cc = connConp(rg)
tabl e(listLen(cc))
1 2 3 4 15 18
3 7 3 2 1 1

Choose the largest component
wh = which. max(listLen(cc))
sg = subG aph(cc[[wh]], rg)

Depth first search
df sres = dfs(sg, node = "N14")
nodes(sg) [ df sres$di scover ed]

[1] "N14" "N94" "N40" "N69" "NO2" "N67"
[9] "N28" "N46" "N51" "N64" "NO7" "N19"

[17] "N48" "NO9"

"“NAG" "
Ny

depth / breadth first search

a connected subgraph

df s(sg, "N14")

bfs(sg, "N14")




connected components

sc = strongConp(g2)

nattrs = nakeNodeAttrs(g2,
fillcolor="")

for(i in 1:length(sc))
nattrs$fillcolor[sc[[i]]] =
nyCol ors[i]
we = connConp(g2)
plot(g2, "dot", nodeAttrs=nattrs)

T R]T
K‘D

minimal spanning tree ‘

km <-
fromGXL(file(systemfile("GXL/knst Ex
.gxl", package = "graph")))

shortest path algorithms

Different algorithms for different types of graphs
o all edge weights the same
o positive edge weights
o real numbers

...and different settings of the problem
o single pair
o single source
o single destination
o all pairs |

Functions

bfs

dijkstra.sp

sp. bet ween
johnson.all.pairs.sp

ns <- nstree. kruskal (km

e <- bu? | dEdgeL? st (km ﬂ)

n <- buil dNodeLi st (km w‘

for(i in 1:ncol (ns$edgeList)) Q ‘\

e[ [ past e(ms$nodes[ ns$edgelist[,i]], / ]
col I:}ps"er o )11 @ttrs$col or /

z <- agopen(nodes=n, edges= @

edgeMode="di rect ed”, name= \

plot(z) e

shortest path

set.seed(123)

rg2 = randonEG aph(nodeNanmes, edges = 100)

fromNode = "N43"

toNode = "N81"

sp = sp. between(rg2, 6 0 0 O O °
fronNode, toNode) o° ° °

sp[[1]] $path

[1] "N43" "NO8" "N88"
[4] "N73" "N50" "N89"
[7] "N64" "N93" "N32"
[10] "N12" "N81"

sp[[1]]$l ength
[1] 10

shortest path

20
|
]
1200
|

m ap = johnson. all.pairs.sp(rg2)
= hi st (ap)

Frequency
10
1
Frequency
600 800 1000
L |

400
L

| e | [ e s |
0 2 4 6 8 10 0 2 4 6 8 10

distances from N43 all pairwise distances

minimal spanning tree

O)
a\/%
%@)
)

gr nmst = mstree. kruskal (gr)




connectivity

Consider graph g with single connected
component.

Edge connectivity of g: minimum
number of edges in g that can be cut to
produce a graph with two components.

Minimum disconnecting set: the set of
edges in this cut. (
> edgeConnecti vity(g)

$connectivity ™~

[1 2

$ni nDi sconSet @ —
$mi nDi sconSet [[1]]
[1] "D "E" T~

$m nDi sconSet [[2]]
[1] "D "H

®
®
O

RBGL functions Comments
Travoreals

ves BFS

afs DFS

Shorlest. paidss
dijkstra.sp
bellman.ford.op
aag. sp
johnson a11.pairs.sp

single-source, nonnegative weights

single source, gencral weighto
single-source, DAG
retarms, distance matrix

Miutimal spaming lises
mstree. kruskal
prin.minST

returns edge list and weights
ac above

Comnectivity
connact.edComp
strongComp
edgeConnectivity

1n1t.1ncremental . conponents
incramental.conponents
saue . component

retarms, Tisk of nadesets

a3 above

returns index and minimum
dizconnecting aet

special processing for
evolving graphs

boolenn in Ure incremential selling

Maximum flow alzorithms
cdmundo . karp. max. flow
push.re label . max. tlow

Vertex ordering.
tsort
cuthill.nckee .ordering
sloan.ordering
min. degree .ordering

liot of max flow, and edge
specific flows

vaalngl Al sort,
b

heuristic

Othar fimctions
Urans il ive .closure
isonorphisn

reburs from-lo maiix
boolean

‘brandes . betwcomness . contrality  indiccs and dominance measure

circle. layour
Kanada. kau:

ing. Tayont:

returns vertex coordinates

retnrns vertax caordinaten

Table 21.1. Nam
axe provided in

fnctions in RRGI . Working sxamples for all finetions
Loge manual page

Rgraphviz: the different layout engines

dot: directed graphs. Works best on DAGs
and other graphs that can be drawn as
hierarchies.

neato: undirected graphs using ’spring’ models

twopi: radial layout. One node (‘root’) chosen as
the center. Remaining nodes on a sequence of
concentric circles about the origin, with radial
distance proportional to graph distance. Root
can be specified or chosen heuristically.

Rgraphviz: the different layout engines

dot layout

/?\4? “oa

‘? /Q
= “f

Q
Q/O

neato layout

twopi layout

/O

Rgraphviz: the different layout engines

dot layout neato layout twopi layout

m

[ o e

‘ domain combination graph




ImageMap ‘ Using GO to interprete gene lists

g = agopen(g, )

i mgeMap(l g,
con=file("inca-franel. htnl ", open="w')
tags= list(HREF = href,

TITLE title,
TARGET = rep("frame2", |ength(AgNode(nag)))),
i mgname=f png, w dt h=i nw, hei ght =i nh)

Show drosophila interaction
network example

Figure 224, The induced GO graph for the selected genes, truncated GO
identifiers are used as labels,

‘ A pathway graph

‘ Using GO to interprete gene lists

?

Packages:
Gostats,
Rgraphviz

Figure 225. The induced GO graph colored according to unadjusted
Hypergeometric p-values, whose values are given in the nodes.

Tigure 22.7. The intearin mediated cell adhesion network.

A pathway graph ‘ celllines

a) pie chart graph for BCRIABL

+8:128.4 (RP1-80K22)>

+13:26.2 (RP11-44J9)

+20:53.4 (RP5-1075G21)

1
6 O Noba

O s

E s'r“‘* Probabilistic tree model for DNA copy
(] number data (matrix CGH).
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