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1.) Loading data. The data used for these exercises come from a study of Chiaretti et al. (Blood
103:2771-8, 2004) on acute lymphoblastic leukemia (ALL), which was conducted with HGU95AV2
Affymetrix arrays. The data package ALL contains an exprSet object called ALL, which con-
tains the expression data that were normalized with rma (intensities are on the log2–scale), and
annotations of the samples.

a. Load the ALL package. What is the dimension of the expression data matrix?
b. Use the function show to get an overview of the exprSet object. What are the variables

describing the samples stored in the pData slot?

> library(ALL)

> library(hgu95av2)

> library(annotate)

> data(ALL)

> show(ALL)

> dim(exprs(ALL))

> print(summary(pData(ALL)))

2.) B-cell ALL. We want to look at the B-cell ALL samples (they can be identified by the column
BT of the pData slot of the exprSet ALL). Of particular interest is the comparison of samples with
the BCR/ABL fusion gene resulting from a translocation of the chromosomes 9 and 22 (labelled
BCR/ABL in the column mol), with samples that are cytogenetically normal (labelled NEG).

a. Define an exprSet object containing only the data from the B-cell ALL samples. How many
samples belong to the cytogenetically defined groups?

> pdat <- pData(ALL)

> table(pdat$BT)

> table(pdat$mol)

> subset <- intersect(grep("^B", as.character(pdat$BT)), which(as.character(pdat$mol) %in%

+ c("BCR/ABL", "NEG")))

> eset <- ALL[, subset]

> table(eset$mol)

3.) Non-specific filtering. Many of the genes on the chip won’t be expressed in the B–cell lym-
phozytes studied here, or might have only small variability across the samples.

a. We try to remove these genes (more precisely: the corresponding probe sets) with an intensity
filter (the intensity of a gene should be above 100 in at least 25 percent of the samples), and a
variance filter (the interquartile range of log2–intensities should be at least 0.5). We create a
new exprSet containing only the probe sets which passed our filter. How many probe sets do
we get?
> library(genefilter)

> f1 <- pOverA(0.25, log2(100))

> f2 <- function(x) (IQR(x) > 0.5)

> ff <- filterfun(f1, f2)

> selected <- genefilter(eset, ff)

> sum(selected)

> esetSub <- eset[selected, ]

4.) Differential expression. Now we are ready to examine the selected genes for differential expres-
sion between the BCR/ABL samples and the cytogenetically normal ones.
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a. Use the two–sample t–test to identify genes that are differentially expressed between the two
groups. The function mt.teststat from the multtest package allows to compute several com-
monly used test statistics for all rows of a data matrix – study its help page. First, we calculate
the nominal p–values — the function pt gives the distribution function of the t–distribution.
We can get an impression of the amount of differential gene expression by looking at a histogram
of the p–value distribution.
> library(multtest)

> labels <- as.numeric(esetSub$mol == "BCR/ABL")

> t <- mt.teststat(exprs(esetSub), classlabel = labels, test = "t.equalvar")

> pt <- 2 * pt(-abs(t), df = ncol(exprs(esetSub)) - 2)

> hist(pt, 50)

b. The second possibility is to conduct a permutation test for each gene. The function mt.maxT
computes permutation p–values (rawp) and FWER-adjusted p-values by the Westfall-Young
method (adjp) at the same time. How many FWER–adjusted p–values are smaller than 0.1?
> mT <- mt.maxT(exprs(esetSub), classlabel = labels, B = 1000)

> sum(mT$adjp < 0.1)

A higher number of permutations (given by B) would be preferable, but would take more time.
Note: The function returns the p–values ordered by their size. To get them in the original
order, do the following:
> pPermRaw <- mT$rawp[order(mT$index)]

> pWestfallYoung <- mT$adjp[order(mT$index)]

c. Plot the p–values against the log–ratios (differences of mean log–intensities within the two
groups) in a volcano plot. Note the asymmetry of the volcano plot. Compare the permutation
p–values to those from the parametric t–test. Why do we obtain more extremely small p–values
with the parametric test?
> hist(pt, 50)

> logRatio <- rowMeans(exprs(esetSub)[, labels == 1]) - rowMeans(exprs(esetSub)[,

+ labels == 0])

> plot(logRatio, -log10(pt), xlab = "log-ratio", ylab = "-log10(p)")

> plot(log10(pt), log10(pPermRaw), main = "log10(p-value)", xlab = "parametric",

+ ylab = "permutation test")

d. The function mt.rawp2adjp from the multtest package contains different multiple testing pro-
cedures. Look at the help page of this function. For p–value adjustment in terms of the FDR,
we use the method of Benjamini and Hochberg. How many genes do you get when imposing
an FDR of 0.1?
> pAdjusted <- mt.rawp2adjp(pt, proc = c("BH"))

> sum(pAdjusted$adjp[, "BH"] < 0.1)

Also this function returns the adjusted p–values ordered from the smallest to the largest. To
obtain the original ordering, we do:
> pBH <- pAdjusted$adjp[order(pAdjusted$index), "BH"]

5.) Annotation.

a. Now we want to see which genes are the most significant ones, and look at their raw and
adjusted p–values from the different methods. Gene symbols are provided in the annotation
package hgu95av2 .
> diff <- pAdjusted$index[1:10]

> genesymbols <- mget(geneNames(esetSub)[diff], hgu95av2SYMBOL)

> pvalues <- cbind(pt, pPermRaw, pWestfallYoung, pBH)[diff, ]

> colnames(pvalues) <- c("pt", "pPermRaw", "pWestfallYoung", "pBH")

> rownames(pvalues) <- genesymbols

> print(pvalues)
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b. The top 3 probe sets represent the ABL1 gene, which is affected by the translocation char-
acterizing the BCR/ABL samples. Now we want to see whether there are further probe sets
representing this gene, and whether these have been selected by our non–specific filtering.
> geneSymbols = mget(geneNames(ALL), hgu95av2SYMBOL)

> ABL1probes <- which(geneSymbols == "ABL1")

> selected[ABL1probes]

c. So the other 5 probe sets representing ABL1 have been filtered out because of low intensities
or low variance. Now we want to see whether they also indicate differential expression of the
ABL1 gene.
> tABL1 <- mt.teststat(exprs(eset)[ABL1probes, ], classlabel = labels,

+ test = "t.equalvar")

> ptABL1 <- 2 * pt(-abs(tABL1), df = ncol(exprs(esetSub)) - 2)

> sort(ptABL1)

We see that only three out of the eight ABL1 probe sets show evidence (in fact, very strong
evidence) for differential expression! It might be interesting to further investigate the ABL1
probe sets regarding e.g. their location in the ABL1 transcript sequence – indeed the BCR/ABL
fusion gene resulting from the translocation differs from the normal ABL1 gene.

6.) Gene Ontology.

a. Many of the effects due to the BCR/ABL translocation are mediated by tyrosine kinase activity.
Let’s look at the probe sets that are annotated at the GO term protein-tyrosine kinase
activity, which has the identifier GO:0004713.
> gN <- geneNames(esetSub)

> tykin <- unique(lookUp("GO:0004713", "hgu95av2", "GO2ALLPROBES"))

> str(tykin)

> sel <- (gN %in% tykin)

b. We can now check whether there are more differentially expressed genes among the tyrosine
kinases than among the other genes. Fisher’s exact test for contingency tables is used to check
whether the proportions of differentially expressed genes are significantly different in the two
gene groups.
> tab <- table(pt < 0.05, sel, dnn = c("p < 0.05", "tykin"))

> print(tab)

> fisher.test(tab)

7.) Limma. A t–test analysis can also be conducted with functions of the limma package.

a. First, we have to define the design matrix. One possibility is to use an intercept term that
represents the mean log–intensity of a gene across all samples (first column consisting of 1’s),
and to encode the difference between the two classes in the seond column.
> library(limma)

> design <- cbind(mean = 1, diff = labels)

b. A linear model is fitted for every gene by the function lmFit, and Empirical Bayes moderation
of the standard errors is done by the function eBayes.
> fit <- lmFit(esetSub, design)

> fit2 <- eBayes(fit)

> topTable(fit2, coef = "diff", adjust.method = "fdr")

c. When you compare the resulting p–values with those from the parametric t–test (Exercise
4.a), you will see that they are almost identical. Because of the large number of samples, the
Empirical Bayes moderation is not so relevant in this data set — the gene–specific variance
can well be estimated from the data of each gene.
> plot(log10(pt), log10(fit2$p.value[, "diff"]), xlab = "two-sample t-test",

+ ylab = "limma")

> abline(c(0, 1), col = "Red")
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8.) ROC curve screening.

a. We want to find marker genes that are specifically expressed in leukemias with the BCR/ABL–
translocation. At a specificity of at least 0.9, we would like to identify the genes with the
best sensitivity for the BCR/ABL phenotype. This can be expressed by the partial area under
the ROC curve (pAUC, we choose t0 = 0.1). To limit the computation time, we compute the
pAUC–statistic only for the first 100 probe sets.
> library(ROC)

> mypauc1 <- function(x) {

+ pAUC(rocdemo.sca(truth = labels, data = x, rule = dxrule.sca),

+ t0 = 0.1)

+ }

> pAUC1s <- esApply(esetSub[1:100, ], 1, mypauc1)

b. Select the 2 probe sets with the maximal value of our pAUC–statistic, and plot the correspond-
ing ROC curves. Look for a comparison at the t–test p–values for these genes.
> best <- order(pAUC1s, decreasing = T)[1:2]

> x11()

> par(mfrow = c(1, 2))

> for (pS in best) {

+ RC <- rocdemo.sca(truth = labels, data = exprs(esetSub)[pS,

+ ], rule = dxrule.sca)

+ plot(RC, main = geneNames(esetSub)[pS])

+ }

> print(pt[best])
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