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Motivating examples

Regulatory network:

components = gene products

interactions = regulation of transcription, translation,

phosphorylation...

Metabolic network:

components = metabolites, enzymes

interactions = chemical reactions
Physical interaction network:

components = molecules

interactions = binding to each other (e.g. complex)
Probabilistic network:

components = events

interactions = conditioning of each other's probabilities
Genetic interaction network:

components = genes

interactions = synthetic, epistatic, ... phenotypes




Objectives

Representation of experimental data
a convenient way to represent and visualize
experimental data
Map
(visual) tool to navigate through the world of
gene products, proteins, domains, etc.
Predictive Model
complete description of causal connections that
allows to predict and engineer the behavior of a
biological system, like that of an electronic
circuit



Definitions

Graph := set of nodes + set of edges
Edge := pair of nodes

Edges can be

- directed

- undirected

- weighted, typed

special cases: cycles, acyclic graphs, trees



Network topologies

regular all-to-all

Random graph

(after "tidy"
rearrangement of
nodes)




Network topologies

Scale-free
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Random Edge Graphs

n nodes, m edges
p(i,j) = 1/m

with high probability:

m < n/2: many disconnected components

m > n/2: one giant connected component: size ~ n.
(next biggest: size ~ log(n)).
degrees of separation: log(n).

Erdos and Rényi 1960



Some popular concepts:

Small worlds
Clustering

Degree distribution
Motifs



Small world networks

Typical path length (,,degrees of separation®) is short

many examples:

- communications

- epidemiology / infectious diseases
- metabolic networks

- scientific collaboration networks

- WWW

- company ownership in Germany

- ,,6 degrees of Kevin Bacon*

But not in
- regular networks, random edge graphs



Cliques and clustering coefficient

Clique: every node connected to everyone else

Clustering coefficient:

. = ho. edges between first-degree neighbors

maximum possible number of such edges

Random network: E[c]=p

Real networks: c » p %



Degree distributions

p(k) = proportion of nodes that have k edges

Random graph: p(k) = Poisson distribution with
some parameter A (,,scale®)

Many real networks: p(k) = power law,
p(k) ~ k™

,scale-free*

In principle, there could be many other
distributions: exponential, normal, ...



Growth models for scale free networks

Start out with one node and continously add
nodes, with preferential attachment to existing
nodes, with probability ~ degree of target node.

= p(k)~k-3

(Simon 1955; Barabasi, Albert, Jeong 1999)

"The rich get richer”

Modifications to obtain y#3:

Through different rules for adding or rewiring of
edges, can tune to obtain any kind of degree
distribution



Real networks

- tend to have power-law scaling
(truncated)

- are ,small worlds‘ (like random
networks)

- have a high clustering coefficient
independent of network size (like
lattices and unlike random networks)




Network motifs

:= pattern that occurs more often than in
randomized networks

Intended implications

duplication: useful building blocks are
reused by nature

there may be evolutionary pressure for
convergence of network architectures




Network motifs

Starting point: graph with directed edges

Scan for n-node subgraphs (n=3,4) and count
number of occurence

Compare to randomized networks

(randomization preserves in-, out- and
int+out- degree of each node, and the
frequencies of all (n-1)-subgraphs)




Schematic view of motif detection

randomized networks

real network




All 3-node connected subgraphs
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Transcription networks

transcription
network

X—Y represents @ @
o/ A/

genex geney

Nodes = transcription factors

Directed edge: X regulates transcription of Y




3- and 4-node motifs in transcription networks

Network Nodes

Gene regulation
(transcription)
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S cerevisiae™ 685

Edges
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System-size dependence

Extensive variable: proportional to system size.
E.g. mass, diameter, number of molecules

Intensive variable: independent of system size.
E.g. temperature, pressure, density,
concentration

,vanishing variable®: decreases with system
size. E.g. Heat loss through radiation; in a city,
probability to bump into one particular person

Alon et al.: In real networks, number of
occurences of a motif is extensive. In
randomized networks, it is non-extensive.



Examples

Protein interactions
(Yeast-2-Hybrid)

Genetic interactions
(Rosetta Compendium,
Yeast synthetic lethal screen)




Two-hybrid screen

Transcription factor

DNA
binding
domain

activation
domain

promoter

Idea:

,,Make potential pairs of interacting
proteins a transcription factor for a
reporter gene*



(a) Two-hybrid screen

Test tube

Mate, plate diploid cells
on selective media

Pick colonies,
— isclate DNA,
sequence

—His plate



Two-hybrid arrays

384-Pin replica tool

1 Bait + 384 AD-ORF Two-hybrid selective
diploids plate
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e

Current Opinion in Chemical Biology

Colony array:
each colony expresses a defined pair of proteins



Table 2.

Two-hybrid array screens discussed in this paper.

Organism Project Proteins* Assays* Interactions* Refs
Drosophila Cell cycle proteins 13 45 19 [7]

C. elegans Vulva development 29 841 8’ [9]
Mouse Whole-genome pilot ~3500 ~12>x10° 145 [157]
HCV Whole genome 10 ~100 0/3! [18]
Vaccinia Whole genome 266 ~B4 000 37 [17]
Yeast One by one array 192 ~1 150 000 281 [187]
Yeast Pool by pool ~B000 ~36 000 D00 4549/841* [19,207]
Yeast Cell polarity 68 ~408 000 191 [10]
Yeast Proteasome 31 ~186 000 55 [12]




Sensitivity, specificity and reproducibility

Specificity — false positives: the experiment
reports an interaction even though is really
none

Sensitivity — false negatives: the experiment
reports no interaction even though is really
one

Problem: what is the objective definition of an
interaction?

(Un)reproducibility: the experiment reports
different results when it is repeated

»» |he molecular reasons for that are not really
understood...” (Uetz 2001)



Reproducibility
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300 mutations or chemical treatments

Rosetta compendium
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Transcriptional regulatory networks
from "genome-wide location analysis"”

__;:E::

Regulator Tag

_..

L - R
A

106 strains, each Chromatin IP to enrich Microarray to identify
with a tagged promoters bound promoters bound
regulator by regulator in vivo by regulator in vivo
regulator := a transcription factor (TF) or a ligand of a TF
tag: c-myc epitope

106 microarrays

samples: enriched (tagged-regulator + DNA-promoter)
probes: cDNA of all promoter regions

spot intensity ~ affinity of a promotor to a certain regulator



Transcriptional regulatory networks
bipartite graph

106 regulators (TFs)

regulators

1

promoters

6270 promoter regions




Autoregulation

STE12

Single Input Motif

Network motifs

LEU1
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Multi-Component Loop
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SWIs

Network motifs

Regulator Chain
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Global Mapping of the Yeast
Genetic Interaction Network

Amy Hin Yan Tong,...49 other people,
...Charles Boone

Science 303 (6 Feb 2004)



Buffering and Genetic Variation

In yeast, ~73% of gene deletions are "non-essential"

(Glaever et al. Nature 418 (2002)

In Drosophila, ~95%

(Boutros et al. Science 303 (2004))

In Human, ca. 1 SNP / 1.5kB
Evolutionary pressure for robustness
Bilateral asymmetry 1s positively correlated with inbreeding

Most genetic variation is neutral to fitness, but may well affect
quality of life

Probably mechanistic overlap between buffering of genetic,
environmental and stochastic perturbations



Models for Buffering

Comparison of single mutants to double mutants in otherwise
1sogenic genetic background

Synthetic Genetic Array (SGA) analysis (Tong, Science 2001):
cross mutation in a "query" gene into a (genome-wide) array of
viable mutants, and score for phenotype.

Tong 2004: 132 queries x 4700 mutants



Buffering

A buffered by B

(1) molecular function of A can also be performed by B with
sufficient efficiency

(11) A and B part of a complex, with loss of A or B alone,
complex can still function, but not with loss of both

(111) A and B are 1n separate pathways, which can substitute
each other's functions.

structural similarity -
physically interaction -
maybe, but neither is necessary.



Selection of 132 queries

actin-based cell polarity

cell wall biosynthesis

microtubule-based chromosome segregation
DNA synthesis and repair

Reproducibility

Each screen 3 times: 3x132x4700 = 1.8 Mi1o measurements
25% of interactions observed only 1/3 times

4000 1nteractions amongst 1000 genes confirmed by tetrad or

random spore analysis ("FP neglible")
FN rate: 17-41%



Statistics

range 1...146, average 34 (!) power-law (y=-2)
Physical interactions: ~8

Dubious calculation: ~100,000 interactions
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Patterns

genes
- with same mutant phenotype
- with same localization
- in same complex (but this explains only 1 % of 1As)
- that are homologous (but this explains only 2% of IAs)

Genes that have many common SGI partners tend to also
physically interact:

30/ 4039 SGI pairs are also physically interacting
27 / 333 gene pairs with >=16 common SGI partners
factor: 11



Assignment of
function to "new"
genes
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Genetic interaction network

- with same mutant phenotype

- with same localization

- in same complex (but this explains only 1 % of 1As)

- that are homologous (but this explains only 2% of IAs)

Average path-length 3.3 (like random graph)

High clustering coefficient (immediate SGI partners of a gene tend
to also interact)
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Graphs with R and
Bioconductor



graph, RBGL, Rgraphviz

basic class definitions and
functionality

interface to graph algorithms (e.g.
shortest path, connectivity)

rendering functionality
Different layout algorithms.

Node plotting, line type, color etc. can be
controlled by the user.



Creating our first graph

|1 brary(graph); library(Rgraphvi z)

edges <- list(a=list(edges=2:3),
b=l 1 st (edges=2: 3),
c=list(edges=c(2,4)),
d=l i st (edges=1))

g <- new"graphNEL", nodes=letters[1:4], edgelL=edges,
edgenode="di rect ed")

oLy @@

pl ot (Q)



Querying nodes, edges, degree

> nodes(g)
[1] "a" "b" "c" "d"

> edges(9Q)
$a

[ 1] [} bll [} Cll
$b

> degree(Q)
$i nDegr ee
abcd
1321
$out Degr ee
abcd
2221

(1] b e / ?
$i "pb" "d" H_jiD
0 D2 @\g




Adjacent and accessible nodes

> adj (g, c("b", "c"))
$b

[1] "b" "c"

$c

[1] "b" "d"

;baCC(g, c("b", "c")) /? @
5 g ©
OO~

C

N O &
= O
— Q




Undirected graphs, subgraphs, boundary graph

> u? <; u;:;raph(g) , @
> pl ot (ug

s\ O

()] Cp

> sg <- subGaph(c("a", "b",

"¢, "f"). ug)
> pl ot (sQ) 0

> boundary(sg, ugQ)

o, oNo

> $b

> character(0) ‘

> $cC

>[ 1] n dll ‘
> $f

>[1] "e" g’




Weighted graphs

> edges <- |ist(a=list(edges=2:3, weights=1:2),

+ b=list(edges=2:3, weights=c(0.5, 1)),
+ c=list(edges=c(2,4), weights=c(2:1)),
+ d=li st (edges=1, wei ghts=3))

> g <- new"graphNEL", nodes=letters[1:4],
edgelL=edges, edgenode="directed")

> edgeWei ght s( Q)
$a




Graph manipulation

<- addNode("e", Q)

<- renoveNode("d", Q)

addEdge(from to, graph, weights)

<- addEdge("e", "a", gl, pi/2)
renovekdge(from to, graph)
<- renoveEkdge("e", "a", g3)

> i dentical (g4, gl)
[1] TRUE




Graph algebra

ugl

complementiuga)

complement{ugl}

intersection{ugl, ugd)

ug2




Random graphs

Random edge graph: randontEG aph(V, p, edges)

V. nodes
either p: probability per edge
or edges: number of edges

Random graph with latent factor: randonG aph(V, M p, weights=TRUE)
V. nodes

M latent factor

p: probability

For each node, generate a logical vector of length | engt h( M , with
P(TRUE)=p. Edges are between nodes that share >= 1 elements. Weights

can be generated according to number of shared elements.

Random graph with predefined degree distribution:
randomNodeG aph( nodeDegr ee)
nodeDegr ee: named integer vector

sum(nodeDegree)%%2==0



Random edge graph
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Graph representations

node-edge list: gr aphNEL
list of nodes

list of out-edges for each node
from-to matrix
adjacency matrix
adjacency matrix (sparse) gr aphAM (to come)

node list + edge list: pNode, pEdge (Rgraphviz)
list of nodes
list of edges (node pairs, possibly ordered)

Ragr aph: representation of a laid out graph



Graph representations: from-to-matrix
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GXL: graph exchange language

<gxl| >
<gr aph edgenode="directed" 1d="G'>
<node id="A"/>
<node id="B"/>

<node i d="C"/> GXL
(www.gupro.de/GXL)
<edge id="el" fronr"A" to="C'> is "an XML
<attr nane="wei ghts">
<int>1</int> sublanguage
</attr> designed to be a
</ edge> standard exchange

<edge id="e2" fron="B" to="D'>

<attr nanme="wei ghts"> format for graphs".

<int>1</int> The graph package

<fattr> provides tools for

</ edge> im- and exporting

</ gr aph> graphs as GXL
</ gxl >

from graph/GXL/kmstEx.gxI



RBGL.: interface to the Boost Graph Library

Connected components rg
cc = connConp(rg) 05990 o
tabl e(listLen(cc)) go ™ S

1 2 3 4 15 18 & ° °
3 7 3 2 1 1 o L

i oo °2
Choose the largest component og o ° T e ac
wh = which. max(listLen(cc)) Yad ® ®e
sg = subGraph(cc[[wh]], rgQ) °gd oz§%%§§ °
®e

Depth first search

df sres = dfs(sg, node = "N14")
nodes(sg) [ df sres$di scover ed]

[1] " N14" "N94" "N40" "N69" "NO2" "N67" "N45" "N53"
[9] "N28" "N46" "N51" "N64" "NO7" "N19" "N37" "N35"
[17] "N48" " N09"




depth / breadth first search

a connected subgraph

df s(sg, "N14") bf s(sg, "NL4")

DFS BFS




connected components

sc = strongConp(g2)

nattrs = nakeNodeAttrs(g2,
fillcolor="")

for(i in 1:1ength(sc))
nattrs$fillcolor[sc[[i]]] =
myCol ors[i ]

plot(g2, "dot", nodeAttrs=nattrs)

{1
.Q

@

wc = connConp(g2)




minimal spanning tree

km <-
fromGXL(file(systemfile("GXL/ kst Ex
.gxl", package = "graph")))

ns <- nstree. kruskal (km
e <- buil dEdgeLi st (km

n <- buil dNodeLi st (km

e[ [ past e( ne$nodes[ ns$edgeList[,i]],
col | apse="~")]] @ttrs$col or
<- "red"

z <- agopen(nodes=n, edges=e, <:i>“\\\\$

edgeMbde="di rect ed", nanme="")

pl ot (z) e

for(i in 1:ncol (me$edgeli st)) e




shortest path algorithms

Different algorithms for different types of graphs
o all edge weights the same
0 positive edge weights
o real numbers

...and different settings of the problem
0 single pair
0 single source
0 single destination
o all pairs [

Functions

bf s

dij kstra. sp
Sp. bet ween

j ohnson. all . pairs. sp




shortest path

set.seed(123)

rg2 = randontEG aph( nodeNanes, edges = 100)

fromNode = "N43"

t oNode = "N81"

sp = sp. between(rg2, o—0 © 0 0 ©
f ronNode, toNode) o

sp[[1] ] $pat h

[ 1] "N43" "NO8" " N88"
[4] "N73" "N50" " N89"
[ 7] "N64" "NI93" "N32"
[ 10] "N12" "N31"

@)

o

o
sp[[1]] %l ength O£§;>m
[1] 10

@)

O
0]




shortest path
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minimal spanning tree

gr nmst = metree. kruskal (gr)




connectivity

Consider graph g with single connected
component.

Edge connectivity of g: minimum
number of edges in g that can be cut to
produce a graph with two components.

Minimum disconnecting set: the set of @

edges in this cut. (B)

@?

> edgeConnectivity(Q)

$connectivity T Q
N

[1] 2

$mi nDi sconSet O _—
$m nDi sconSet [[ 1] ]

[1] "D' "E" \
$m nDi sconSet [[ 2] ]

[1] "D' "H'




Rgraphviz: the different layout engines

dot: directed graphs. Works best on DAGs
and other graphs that can be drawn as
hierarchies.

neato: undirected graphs using ’spring’ models

twopi: radial layout. One node (‘root’) chosen as
the center. Remaining nodes on a sequence of
concentric circles about the origin, with radial
distance proportional to graph distance. Root
can be specified or chosen heuristically.




Rgraphviz: the different layout engines




Rgraphviz: the different layout engines

ot layout neato layout twopi layout

. =1

l

B

.m




domain combination graph




ImageMap

| g = agopen(g, ..

| mageMap(| g,
con=file("inca-franel. htm", open="w'")
tags= list(HREF = href,
TITLE =title,
TARGET = rep("frame2", | ength(AgNode(nag)))),

| ngnanme=f png, w dt h=i nw, hei ght =i nh)
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