
Networks
in
molecular
biology,

Graphs in R
and Bioconductor

Wolfgang Huber, EBI / EMBL

Motivating examples
Regulatory network:
components = gene products
interactions = regulation of transcription, translation,

phosphorylation...
Metabolic network:
components = metabolites, enzymes
interactions = chemical reactions

Physical interaction network:
components = molecules
interactions = binding to each other (e.g. complex)

Probabilistic network:
components = events
interactions = conditioning of each other's probabilities

Genetic interaction network:
components = genes
interactions = synthetic, epistatic, … phenotypes

Objectives

Representation of experimental data
a convenient way to represent and visualize
experimental data

Map
(visual) tool to navigate through the world of
gene products, proteins, domains, etc.

Predictive Model
complete description of causal connections that
allows to predict and engineer the behavior of a
biological system, like that of an electronic
circuit

Definitions
Graph := set of nodes + set of edges
Edge := pair of nodes

Edges can be
- directed
- undirected
- weighted, typed

special cases: cycles, acyclic graphs, trees

Network topologies

regular all-to-all

Random graph
(after "tidy"

rearrangement of
nodes)

Network topologies
Scale-free

Random Edge Graphs
n nodes, m edges

p(i,j) = 1/m

with high probability:
m < n/2: many disconnected components
m > n/2: one giant connected component: size ~ n.

(next biggest: size ~ log(n)).
degrees of separation: log(n).

Erdös and Rényi 1960

Small worlds
Clustering
Degree distribution
Motifs

Some popular concepts:

Small world networks

Typical path length („degrees of separation“) is short
many examples:
- communications
- epidemiology / infectious diseases
- metabolic networks
- scientific collaboration networks
- WWW
- company ownership in Germany
- „6 degrees of Kevin Bacon“

But not in
- regular networks, random edge graphs

Cliques and clustering coefficient

Clique: every node connected to everyone else

Clustering coefficient:

Random network: E[c]=p
Real networks: c » p

no. edges between first-degree neighbors
maximum possible number of such edges

c =

Degree distributions

p(k) = proportion of nodes that have k edges

Random graph: p(k) = Poisson distribution with
some parameter λ λ („(„scalescale“)“)

Many real networks: p(k) = power law,

p(k) ~ k−γ

„scale-free“

In principle, there could be many other
distributions: exponential, normal, …

Growth models for scale free networks
Start out with one node and continously add

nodes, with preferential attachment to existing
nodes, with probability ~ degree of target node.

⇒ p(k)~k-3

(Simon 1955; Barabási, Albert, Jeong 1999)

"The rich get richer"

Modifications to obtain γ≠3:
Through different rules for adding or rewiring of

edges, can tune to obtain any kind of degree
distribution

Real networks

- tend to have power-law scaling
(truncated)

- are ‚small worlds‘ (like random
networks)

- have a high clustering coefficient
independent of network size (like
lattices and unlike random networks)

Network motifs

:= pattern that occurs more often than in
randomized networks

Intended implications
duplication: useful building blocks are

reused by nature
there may be evolutionary pressure for

convergence of network architectures

Network motifs
Starting point: graph with directed edges
Scan for n-node subgraphs (n=3,4) and count

number of occurence
Compare to randomized networks
(randomization preserves in-, out- and
in+out- degree of each node, and the
frequencies of all (n-1)-subgraphs)

Schematic view of motif detection

All 3-node connected subgraphs

Transcription networks

Nodes = transcription factors

Directed edge: X regulates transcription of Y

3- and 4-node motifs in transcription networks

System-size dependence

Extensive variable: proportional to system size.
E.g. mass, diameter, number of molecules

Intensive variable: independent of system size.
E.g. temperature, pressure, density,
concentration

„Vanishing variable“: decreases with system
size. E.g. Heat loss through radiation; in a city,
probability to bump into one particular person

Alon et al.: In real networks, number of
occurences of a motif is extensive. In
randomized networks, it is non-extensive.

Examples

Protein interactions
(Yeast-2-Hybrid)

Genetic interactions
(Rosetta Compendium,
Yeast synthetic lethal screen)

Two-hybrid screen

Idea:
„Make potential pairs of interacting
proteins a transcription factor for a
reporter gene“

Transcription factor

promoter

DNA
binding
domain

activation
domain

Two-hybrid screen

Two-hybrid arrays

Colony array:
each colony expresses a defined pair of proteins

Sensitivity, specificity and reproducibility
Specificity – false positives: the experiment
reports an interaction even though is really
none
Sensitivity – false negatives: the experiment
reports no interaction even though is really
one
Problem: what is the objective definition of an
interaction?

(Un)reproducibility: the experiment reports
different results when it is repeated

„The molecular reasons for that are not really
understood...“ (Uetz 2001)

Reproducibility

Rosetta compendium
30

0
m

ut
at

io
ns

 o
r c

he
m

ic
al

 tr
ea

tm
en

ts
568 transcript levels

Transcriptional regulatory networks
from "genome-wide location analysis"

regulator := a transcription factor (TF) or a ligand of a TF
tag: c-myc epitope

106 microarrays
samples: enriched (tagged-regulator + DNA-promoter)
probes: cDNA of all promoter regions
spot intensity ~ affinity of a promotor to a certain regulator

Transcriptional regulatory networks
bipartite graph

1

1

1

1

1

1

1

106 regulators (TFs)

62
70

 p
ro

m
ot

er
 re

gi
on

s

regulators

promoters

Network motifs

Network motifs

Global Mapping of the Yeast
Genetic Interaction Network

Amy Hin Yan Tong,…49 other people,
…Charles Boone

Science 303 (6 Feb 2004)

Buffering and Genetic Variation

In yeast, ~73% of gene deletions are "non-essential"
(Glaever et al. Nature 418 (2002)

In Drosophila, ~95%
(Boutros et al. Science 303 (2004))

In Human, ca. 1 SNP / 1.5kB

Evolutionary pressure for robustness

Bilateral asymmetry is positively correlated with inbreeding

Most genetic variation is neutral to fitness, but may well affect
quality of life

Probably mechanistic overlap between buffering of genetic,
environmental and stochastic perturbations

Models for Buffering

Comparison of single mutants to double mutants in otherwise
isogenic genetic background

Synthetic Genetic Array (SGA) analysis (Tong, Science 2001):
cross mutation in a "query" gene into a (genome-wide) array of
viable mutants, and score for phenotype.

Tong 2004: 132 queries x 4700 mutants

Buffering

A buffered by B

(i) molecular function of A can also be performed by B with
sufficient efficiency

(ii) A and B part of a complex, with loss of A or B alone,
complex can still function, but not with loss of both

(iii) A and B are in separate pathways, which can substitute
each other's functions.

structural similarity -
physically interaction -

maybe, but neither is necessary.

Selection of 132 queries

o actin-based cell polarity
o cell wall biosynthesis
o microtubule-based chromosome segregation
o DNA synthesis and repair

Reproducibility
Each screen 3 times: 3x132x4700 = 1.8 Mio measurements
25% of interactions observed only 1/3 times
4000 interactions amongst 1000 genes confirmed by tetrad or
random spore analysis ("FP neglible")
FN rate: 17-41%

Statistics

Hits per query gene:
range 1...146, average 34 (!) power-law (γ=-2)

Physical interactions: ~8

Dubious calculation: ~100,000 interactions

GO

Genes with same
or "similar" GO
category are more
likely to interact

Patterns

SGI more likely between genes
- with same mutant phenotype
- with same localization
- in same complex (but this explains only 1 % of IAs)

- that are homologous (but this explains only 2% of IAs)

Genes that have many common SGI partners tend to also
physically interact:

30 / 4039 SGI pairs are also physically interacting
27 / 333 gene pairs with >=16 common SGI partners
factor: 11

Assignment of
function to "new"
genes

Genetic interaction network

SGI more likely between genes
- with same mutant phenotype
- with same localization
- in same complex (but this explains only 1 % of IAs)

- that are homologous (but this explains only 2% of IAs)

A dense small world:
Average path-length 3.3 (like random graph)

High clustering coefficient (immediate SGI partners of a gene tend
to also interact)

Literature
Exploring complex networks, Steven H Strogatz, Nature 410,

268 (2001)
Network Motifs: Simple Building Blocks of Complex Networks,

R. Milo et al., Science 298, 824-827 (2002)
Two-hybrid arrays, P. Uetz, Current Opinion in Chemical

Biology 6, 57-62 (2001)
Transcriptional Regulatory Networks in Saccharomyces

Cerevisiae, TI Lee et al., Science 298, 799-804 (2002)
Functional organization of the yeast proteome by systematic

analysis of protein complexes, AC Gavin et al., Nature 415,
141 (2002)

Functional discovery via a compendium of expression profiles,
TR Hughes et al., Cell 102, 109-126 (2000)

Global Mapping of the Yeast Genetic Interaction Network, AHY
Tong et al., Science 303 (2004)

Graphs with R and
Bioconductor

graph, RBGL, Rgraphviz
graph basic class definitions and
functionality

RBGL interface to graph algorithms (e.g.
shortest path, connectivity)

Rgraphviz rendering functionality
Different layout algorithms.
Node plotting, line type, color etc. can be
controlled by the user.

Creating our first graph
library(graph); library(Rgraphviz)

edges <- list(a=list(edges=2:3),
b=list(edges=2:3),
c=list(edges=c(2,4)),
d=list(edges=1))

g <- new("graphNEL", nodes=letters[1:4], edgeL=edges,
edgemode="directed")

plot(g)

Querying nodes, edges, degree
> nodes(g)
[1] "a" "b" "c" "d"

> edges(g)
$a
[1] "b" "c"
$b
[1] "b" "c"
$c
[1] "b" "d"
$d
[1] "a"

> degree(g)
$inDegree
a b c d
1 3 2 1
$outDegree
a b c d
2 2 2 1

Adjacent and accessible nodes
> adj(g, c("b", "c"))
$b
[1] "b" "c"
$c
[1] "b" "d"

> acc(g, c("b", "c"))
$b
a c d
3 1 2

$c
a b d
2 1 1

Undirected graphs, subgraphs, boundary graph

> ug <- ugraph(g)

> plot(ug)

> sg <- subGraph(c("a", "b",

"c", "f"), ug)

> plot(sg)

> boundary(sg, ug)
> $a
>[1] "d"
> $b
> character(0)
> $c
>[1] "d"
> $f
>[1] "e" "g"

Weighted graphs
> edges <- list(a=list(edges=2:3, weights=1:2),
+ b=list(edges=2:3, weights=c(0.5, 1)),
+ c=list(edges=c(2,4), weights=c(2:1)),
+ d=list(edges=1, weights=3))

> g <- new("graphNEL", nodes=letters[1:4],
edgeL=edges, edgemode="directed")

> edgeWeights(g)
$a
2 3
1 2
$b

2 3
0.5 1.0
$c
2 4
2 1

$d
1
3

Graph manipulation
> g1 <- addNode("e", g)

> g2 <- removeNode("d", g)

> ## addEdge(from, to, graph, weights)

> g3 <- addEdge("e", "a", g1, pi/2)

> ## removeEdge(from, to, graph)

> g4 <- removeEdge("e", "a", g3)

> identical(g4, g1)

[1] TRUE

Graph algebra

Random graphs

Random edge graph: randomEGraph(V, p, edges)
V: nodes
either p: probability per edge
or edges: number of edges

Random graph with latent factor: randomGraph(V, M, p, weights=TRUE)
V: nodes
M: latent factor
p: probability
For each node, generate a logical vector of length length(M), with
P(TRUE)=p. Edges are between nodes that share >= 1 elements. Weights
can be generated according to number of shared elements.

Random graph with predefined degree distribution:
randomNodeGraph(nodeDegree)

nodeDegree: named integer vector
sum(nodeDegree)%%2==0

Random edge graph

100 nodes
50 edges

degree
distribution

Graph representations

node-edge list: graphNEL
list of nodes
list of out-edges for each node

from-to matrix

adjacency matrix
adjacency matrix (sparse) graphAM (to come)

node list + edge list: pNode, pEdge (Rgraphviz)
list of nodes
list of edges (node pairs, possibly ordered)

Ragraph: representation of a laid out graph

Graph representations: from-to-matrix

> ft
[,1] [,2]

[1,] 1 2
[2,] 2 3
[3,] 3 1
[4,] 4 4

> ftM2adjM(ft)
1 2 3 4

1 0 1 0 0
2 0 0 1 0
3 1 0 0 0
4 0 0 0 1

GXL: graph exchange language

<gxl>
<graph edgemode="directed" id="G">
<node id="A"/>
<node id="B"/>
<node id="C"/>
…
<edge id="e1" from="A" to="C">
<attr name="weights">
<int>1</int>
</attr>
</edge>
<edge id="e2" from="B" to="D">
<attr name="weights">
<int>1</int>
</attr>
</edge>
…

</graph>
</gxl>

from graph/GXL/kmstEx.gxl

GXL
(www.gupro.de/GXL)

is "an XML
sublanguage

designed to be a
standard exchange
format for graphs".
The graph package

provides tools for
im- and exporting

graphs as GXL

RBGL: interface to the Boost Graph Library

Connected components
cc = connComp(rg)
table(listLen(cc))
1 2 3 4 15 18
36 7 3 2 1 1

Choose the largest component
wh = which.max(listLen(cc))
sg = subGraph(cc[[wh]], rg)

Depth first search
dfsres = dfs(sg, node = "N14")
nodes(sg)[dfsres$discovered]
[1] "N14" "N94" "N40" "N69" "N02" "N67" "N45" "N53"
[9] "N28" "N46" "N51" "N64" "N07" "N19" "N37" "N35"
[17] "N48" "N09"

rg

depth / breadth first search

dfs(sg, "N14")
bfs(sg, "N14")

connected components
sc = strongComp(g2)

nattrs = makeNodeAttrs(g2,
fillcolor="")

for(i in 1:length(sc))
nattrs$fillcolor[sc[[i]]] =

myColors[i]

plot(g2, "dot", nodeAttrs=nattrs)
wc = connComp(g2)

minimal spanning tree

km <-
fromGXL(file(system.file("GXL/kmstEx
.gxl", package = "graph")))

ms <- mstree.kruskal(km)

e <- buildEdgeList(km)
n <- buildNodeList(km)

for(i in 1:ncol(ms$edgeList))

e[[paste(ms$nodes[ms$edgeList[,i]],
collapse="~")]]@attrs$color

<- "red"

z <- agopen(nodes=n, edges=e,
edgeMode="directed", name="")

plot(z)

shortest path algorithms

Different algorithms for different types of graphs
o all edge weights the same
o positive edge weights
o real numbers

…and different settings of the problem
o single pair
o single source
o single destination
o all pairs

Functions
bfs
dijkstra.sp
sp.between
johnson.all.pairs.sp

shortest path

1

set.seed(123)
rg2 = randomEGraph(nodeNames, edges = 100)
fromNode = "N43"
toNode = "N81"
sp = sp.between(rg2,

fromNode, toNode)

sp[[1]]$path
[1] "N43" "N08" "N88"
[4] "N73" "N50" "N89"
[7] "N64" "N93" "N32"
[10] "N12" "N81"

sp[[1]]$length
[1] 10

shortest path

ap = johnson.all.pairs.sp(rg2)
hist(ap)

minimal spanning tree

mst = mstree.kruskal(gr)gr

connectivity
Consider graph g with single connected
component.
Edge connectivity of g: minimum
number of edges in g that can be cut to
produce a graph with two components.
Minimum disconnecting set: the set of
edges in this cut.

> edgeConnectivity(g)
$connectivity
[1] 2

$minDisconSet
$minDisconSet[[1]]
[1] "D" "E"

$minDisconSet[[2]]
[1] "D" "H"

Rgraphviz: the different layout engines

dot: directed graphs. Works best on DAGs
and other graphs that can be drawn as
hierarchies.

neato: undirected graphs using ’spring’ models

twopi: radial layout. One node (‘root’) chosen as
the center. Remaining nodes on a sequence of
concentric circles about the origin, with radial
distance proportional to graph distance. Root
can be specified or chosen heuristically.

Rgraphviz: the different layout engines

Rgraphviz: the different layout engines

domain combination graph

ImageMap

lg = agopen(g, …)

imageMap(lg,
con=file("imca-frame1.html", open="w")
tags= list(HREF = href,

TITLE = title,
TARGET = rep("frame2", length(AgNode(nag)))),

imgname=fpng, width=imw, height=imh)

Acknowledgements

R project: R-core team
www.r-project.org

Bioconductor project: Robert Gentleman, Vince Carey,
Jeff Gentry, and many others
www.bioconductor.org

graphviz project: Emden Gansner, Stephen North,
Yehuda Koren (AT&T Research)
www.graphviz.org

Boost graph library: Jeremy Siek, Lie-Quan Lee,
Andrew Lumsdaine, Indiana University
www.boost.org/libs/graph/doc

References

Can a biologist fix a radio? Y. Lazebnik, Cancer Cell 2:179
(2002)

Social Network Analysis, Methods and Applications. S.
Wasserman and K. Faust, Cambridge University Press (1994)

