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ldentifying differentially expressed genes

[ Aim: find genes that are differentially expressed between
different conditions/phenotypes, e.g. two different tumor types.

[1 Estimate effects/differences between groups by (generalized)
log—ratio, I.e., the difference between group means on the log scale.

[ To assess the statistical significance of differences, conduct a
statistical test for each gene.



Statistical tests — example

[1 The two—sample ¢—statistic
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[J The p—value p, Is the probability

under the null hypothesis (here: pu; =
12) that the test statistic is at least as
extreme as the observed value T7,.



Statistical tests: Examples

[1 standard t-test. assumes normally distributed data in each class
(almost always questionable), equal variances within classes

[1 Welch ¢-test: as above, but allows for unequal variances
[1 Wilcoxon test. non—parametric, rank—based

[1 permutation test: estimate the distribution of the test statistic
(e.g., the t-statistic) under the null hypothesis by permutations of
the sample labels:

The p—value p, Is given as the fraction of permutations yielding a
test statistic that is at least as extreme as the observed one.



Permutation tests

true class labels: test statistic
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Statistical tests: Different settings

[1 comparison of two classes (e.g. tumor vs. normal)

[1 paired observations from two classes: e.g. the t—test for paired
samples is based on the within—pair differences.

[1 more than two classes and/or more than one factor (categorical
or continuous): tests may be based on linear models



Example

Golub data, 27 ALL vs. 11 AML samples, 3,051 genes.
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Multiple testing: the problem

Multiplicity problem: thousands of hypotheses are tested
simultaneously.

e Increased chance of false positives.

e E.g. suppose you have 10,000 genes on a chip and not a single
one is differentially expressed. You would expect 10000 0.01 = 100
of them to have a p-value < 0.01.

Multiple testing methods allow to assess the statistical
significance of findings.



Multiple hypothesis testing

# non—rejected  # rejected
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From Benjamini & Hochberg (1995).



Type | error rates

1. Family—wise error rate (FWER) . The FWER is defined as the
probability of at least one Type | error (false positive) among the
genes selected as significant:

FWER = Pr(V > 0).



Type | error rates

2. False discovery rate (FDR) . The FDR (Benjamini & Hochberg
1995) is the expected proportion of Type | errors (false positives)
among the rejected hypotheses:

FDR = E(Q),

with

o {V/R, if R >0,

0, if R = 0.



FWER: The Bonferroni correction

Suppose we conduct a hypothesis test for each gene g =1,...,m,
producing

an observed test statistic: 7,

an unadjusted p—value: p,.
Bonferroni adjusted p—values:

~

Dg = min(mpg, 1).

Selecting all genes with p, < « controls the FWER at level «, that
s, Pr(V > 0) < a.



Example

Golub data, 27 ALL vs. 11 AML samples, 3,051 genes.
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98 genes with Bonferroni-adjusted p, < 0.05 < p, < 0.000016



FWER: Alternatives to Bonferroni

[ There are alternative methods for FWER p-value adjustment,
which can be more powerful.

[1 The permutation—based Westfall-Young method takes the
correlation between genes into account and is typically more
powerful for microarray data.

[1 See the Bioconductor package multtest.



More is not always better

[1 Suppose you use a focused array with 500 genes you are
particularly interested in.

[ If a gene on this array has an unadjusted p-value of 0.0001, the
Bonferroni-adjusted p-value is still 0.05.

[1 If instead you use a genome-wide array with, say, 50,000 genes,
this gene would be much harder to detect, because roughly 5 genes
can be expected to have such a low p-value by chance.

[1 Therefore, it may be worthwile focusing on genes of particular
biological interest from the beginning.



Controlling the FDR (Benjamini/Hochberg)

[ Ordered unadjusted p—values: p,, <p,, < ... <p, .

[0 To control FDR = E(V/R) at level o, let
j* = max{j : p,, < (j/m)a}.
Reject the hypotheses H,. forj =1,...,j".

[ Is valid for independent test statistics and for some types
of dependence. Tends to be conservative if many genes are
differentially expressed. Implemented in multtest.



Controlling the FDR (Benjamini/Hochberg)
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Golub data: 681 genes with BH—adjusted p < 0.05.



FWER or FDR?

[1 Choose control of the FWER if high confidence in all selected
genes is desired. Loss of power due to large number of tests: many
differentially expressed genes may not appear significant.

[1 If a certain proportion of false positives is tolerable: Procedures
based on FDR are more flexible; the researcher can decide how
many genes to select, based on practical considerations.

[ For some applications, even the unadjusted p—values may
be most appropriate (e.g. comparison of functional categories of
affected vs. unaffected genes).



Few replicates — moderated t—statistics

[ With the t-test, we estimate the variance of each gene
iIndividually. This is fine if we have enough replicates, but with few
replicates (say 2-5 per group), the variance estimates are unstable.

[1 In a moderated t—statistic, the estimated gene—specific variance
53 is augmented with sZ, a global variance estimator obtained from
pooling all genes. This gives an interpolation between the t—test
and a fold—change criterion.

T o X=X

I \/,usg—l—)\s%.

[1 Bioconductor packages limma, siggenes.



Moderated t—statistic

Repeatedly draw 4 ALL and 4
AML samples out of the total 38
samples and apply the usual and
moderated t¢—test (Bioconductor
package limma) to them. Using a
cut—off of p < 0.05, “true positives”
are defined on the basis of the
analysis of the whole data set
(681 genes with FDR < 0.05).
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Prefiltering

[1 What about prefiltering genes (according to intensity, variance
etc.) to reduce the proportion of false positives?

[1 Can be useful: Genes with low intensities in most of the samples
or low variance across the samples are less likely to be interesting.

[1 In order to maintain control of the type | error, the criteria have to
be independent of the distribution of the test statistic under the null
hypothesis.



Prefiltering by intensity and variability

Golub data. Ranks of interquartile range and 75%—quantile of intensities vs. absolute t—statistic.

o 1 [ —
= =
co — co —
. KN
& 5
= =
=] <
< — < —
~ — ~  —
o
I I I I I I I I
O 1000 2000 3000 O 1000 2000 3000

rank(IQR) rank(intensityscore)



L inear models

[1 Linear models are a flexible framework for assessing the effects
of phenotypic variables on gene expression.

[1 The expression y; of a given gene in sample ¢ iIs modeled as
linearly depending on one or several attributes (factors; could be
cell type, treatment, etc., encoded in z;;) of the sample:

Yi = A1Ti1 + ... + QmTim + €;

[ Estimated coefficients a; and their standard errors are obtained
using least squares, assuming normally distributed errors ¢; (R
function Im); or with a robust method (R function rim).



L inear models

[1 Contrasts, that Is, differences/linear combinations of the
coefficients, express the differences between phenotypes and can
be tested for significance (t—test).

[1 Example: Consider a study of three different types of kidney
cancer. For each gene set up a linear model:

Y; = A1T;1 T a2X40 + a3x;3 + €;

where x,;5 = 1 If tumor sample : Is of type j, and 0 otherwise.

The coefficients a; estimated by least squares are the mean
expression levels in the classes.

[1 The contrast a; — ay expresses the mean difference between
class 1 and 2.



Linear model analysis with the Bioconductor
package limma

[1 The phenotype information for the samples is to be entered as a
design matrix (z;; from the above formula). The rows of the matrix
correspond to the arrays, and the columns to the coefficients of the

linear model.
[1 Contrasts are extracted after fitting the linear model.

[1 The significance of contrasts is assessed with a moderated ¢—
statistic.



References

[0 Y. Benjamini and Y. Hochberg (1995). Controlling the false discovery rate: a practical and
powerful approach to multiple testing. Journal of the Royal Statistical Society B, Vol. 57, 289—
300.

[0 S. Dudoit, J.P. Shaffer, J.C. Boldrick (2003). Multiple hypothesis testing in microarray
experiments. Statistical Science, Vol. 18, 71-103.

[ J.D. Storey and R. Tibshirani (2003). SAM thresholding and false discovery rates for detecting
differential gene expression in DNA microarrays. In: The analysis of gene expression data:
methods and software. Edited by G. Parmigiani, E.S. Garrett, R.A. lrizarry, S.L. Zeger. Springer,
New York.

[0 V.G. Tusher et al. (2001). Significance analysis of microarrays applied to the ionizing radiation
response. PNAS, Vol. 98, 5116-5121.

[0 M. Pepe et al. (2003). Selecting differentially expressed genes from microarray experiments.
Biometrics, Vol. 59, 133-142.



Gene screening using ROC
curves

e Rank genes according to their ability to
distinguish between two phenotypes
(e.g. disease and control).

e ROC: receiver operating characteristic
e Pepe et al., Biometrics 2003.
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e Panel I:
Almost complete separation between
c the distributions of controls (C) and
disease (D).

Classify with almost 100% accuracy.

e Panels II and III:

11 c, Overlapping distributions.

Cancer screening:

Panel II is of more practical interest
than panel III.

Panel II: clearly distinguishes a
subset of D from C

C Panel III: values for D are entirely
within the range of those for C.

111

(Pepe et al., Biometrics 2003)
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Gene screening by ROC analysis

Let ¥,/ denote the relative expression level of gene gin
sample /=C, D after normalization.

Each point on the ROC- curve, {{ RO(f)}, corresponds to a
different gene expression level ¢ with

f=1— P[}*“‘T <u] (1-specificity/false positive)

o
P

and

ROC(t)=P[Y, =u] (sensitivity/true positive).
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Pepe et al., Biometrics 2003
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- AUC (~Mann-Whitney statistic) scores for discrimination
ability (and equals 0.5 for a random classifier)

- Besides AUC, the area under the full ROC curve,
more interest is on the ROC curve at low values of ¢,
corresponding to a maximum tolerable false positive rate t,,.
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- Summary measures are defined by AUC = Jj ROC(t)dt,
ROC(t,)=PIY? > yZ, ] and pAUC(t,)= [ ROC(t)dt

where £,is a given false positive rate and yﬁ_;c;. is the
corresponding (7-t;) quantile of the distribution of ¥t .

The value ROC(t,) gives the proportion of target samples
with expression levels above the (I-£,) quantile of control

samples.

The partial area under the curve, pAUC(t,), averages this
proportion across values of £ < ¢,.



ROC curve screening with the
Bioconductor: Package ROC

Suppose we have an exprSet object eset and a binary
phenotype variable | abel s for the samples. We can compute

the partial area under the ROC curve as follows.

> |1 brary(ROC)

> nmypaucl <- function(x) {

+ PAUC(rocdeno. sca(truth = | abels, data = x,
+ dxrul e.sca), t0=0.1)

+}

> pAUCLls <- esApply(eset, 1, nypaucl)

rul e



Example: B-cell ALL with/without the
BCR/ABL translocation

Bioconductor data package
ALL.

‘Disease’ class: samples
with BCR/ABL translocation.

The probe set 1636_g_at,
which represents the ABL1

gene, has the highest value
of pAUC(0.1).
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