Differential gene expression

Anja von Heydebreck

Dept. of Bio- and Chemoinformatics, Merck KGaA
anja.von.heydebreck@merck.de

Slides partly adapted from S. Dudoit and A. Benner

Outline

O Statistical test: introduction
O Multiple testing
Prefiltering of genes
O Linear models

O Gene screening using ROC curves

Identifying differentially expressed genes

O Aim: find genes that are differentially expressed between different conditions/phenotypes, e.g. two different tumor types.

O Estimate effects/differences between groups by (generalized) log-ratio, i.e., the difference between group means on the log scale.

O To assess the statistical significance of differences, conduct a statistical test for each gene.

Statistical tests - example

O The two-sample t-statistic

$$
T_{g}=\frac{\bar{X}_{g 1}-\bar{X}_{g 2}}{s_{g} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}
$$

is used to test equality of the group means μ_{1}, μ_{2}.

O The p-value p_{g} is the probability under the null hypothesis (here: $\mu_{1}=$
 μ_{2}) that the test statistic is at least as extreme as the observed value T_{g}.

Statistical tests: Examples

O standard t-test: assumes normally distributed data in each class (almost always questionable), equal variances within classes

O Welch t-test: as above, but allows for unequal variances
O Wilcoxon test: non-parametric, rank-based
O permutation test: estimate the distribution of the test statistic (e.g., the t-statistic) under the null hypothesis by permutations of the sample labels:
The p-value p_{g} is given as the fraction of permutations yielding a test statistic that is at least as extreme as the observed one.

Permutation tests

true class labels:
test statistic

null distribution of test statistic

0
1.5
-0.4
2.3
0.7
0.2
-1.2

2

Statistical tests: Different settings

O comparison of two classes (e.g. tumor vs. normal)
O paired observations from two classes: e.g. the t-test for paired samples is based on the within-pair differences.

O more than two classes and/or more than one factor (categorical or continuous): tests may be based on linear models

Example

Golub data, 27 ALL vs. 11 AML samples, 3,051 genes.

Histogram of t

histogram of p-values

t-test: 1045 genes with $p<0.05$.

Multiple testing: the problem

Multiplicity problem: thousands of hypotheses are tested simultaneously.

- Increased chance of false positives.
- E.g. suppose you have 10,000 genes on a chip and not a single one is differentially expressed. You would expect $10000 * 0.01=100$ of them to have a p-value <0.01.

Multiple testing methods allow to assess the statistical significance of findings.

Multiple hypothesis testing

	\# non-rejected hypotheses	\# rejected hypotheses
\# true null hypotheses (non-diff. genes)	U	V Type I error
\# false null hypotheses (diff. genes)	T Type II error	S
	$m-R$	R

Type I error rates

1. Family-wise error rate (FWER). The FWER is defined as the probability of at least one Type I error (false positive) among the genes selected as significant:

$$
F W E R=\operatorname{Pr}(V>0)
$$

Type I error rates

2. False discovery rate (FDR). The FDR (Benjamini \& Hochberg 1995) is the expected proportion of Type I errors (false positives) among the rejected hypotheses:

$$
F D R=E(Q)
$$

with

$$
Q= \begin{cases}V / R, & \text { if } R>0 \\ 0, & \text { if } R=0\end{cases}
$$

FWER: The Bonferroni correction

Suppose we conduct a hypothesis test for each gene $g=1, \ldots, m$, producing
an observed test statistic: T_{g}
an unadjusted p-value: p_{g}.
Bonferroni adjusted p-values:

$$
\tilde{p}_{g}=\min \left(m p_{g}, 1\right) .
$$

Selecting all genes with $\tilde{p}_{g} \leq \alpha$ controls the FWER at level α, that is, $\operatorname{Pr}(V>0) \leq \alpha$.

Example

Golub data, 27 ALL vs. 11 AML samples, 3,051 genes.

98 genes with Bonferroni-adjusted $\tilde{p}_{g}<0.05 \Leftrightarrow p_{g}<0.000016$

FWER: Alternatives to Bonferroni

O There are alternative methods for FWER p-value adjustment, which can be more powerful.

O The permutation-based Westfall-Young method takes the correlation between genes into account and is typically more powerful for microarray data.

O See the Bioconductor package multest.

More is not always better

O Suppose you use a focused array with 500 genes you are particularly interested in.

O If a gene on this array has an unadjusted p-value of 0.0001 , the Bonferroni-adjusted p-value is still 0.05 .

O If instead you use a genome-wide array with, say, 50,000 genes, this gene would be much harder to detect, because roughly 5 genes can be expected to have such a low p-value by chance.

O Therefore, it may be worthwile focusing on genes of particular biological interest from the beginning.

Controlling the FDR (Benjamini/Hochberg)

O Ordered unadjusted p-values: $p_{r_{1}} \leq p_{r_{2}} \leq \ldots \leq p_{r_{m}}$.
O To control $F D R=E(V / R)$ at level α, let

$$
j^{\star}=\max \left\{j: p_{r_{j}} \leq(j / m) \alpha\right\} .
$$

Reject the hypotheses $H_{r_{j}}$ for $j=1, \ldots, j^{\star}$.
O Is valid for independent test statistics and for some types of dependence. Tends to be conservative if many genes are differentially expressed. Implemented in multtest.

Controlling the FDR (Benjamini/Hochberg)

Golub data: 681 genes with BH-adjusted $p<0.05$.

FWER or FDR?

O Choose control of the FWER if high confidence in all selected genes is desired. Loss of power due to large number of tests: many differentially expressed genes may not appear significant.

O If a certain proportion of false positives is tolerable: Procedures based on FDR are more flexible; the researcher can decide how many genes to select, based on practical considerations.

O For some applications, even the unadjusted p-values may be most appropriate (e.g. comparison of functional categories of affected vs. unaffected genes).

Few replicates - moderated t-statistics

O With the t-test, we estimate the variance of each gene individually. This is fine if we have enough replicates, but with few replicates (say $2-5$ per group), the variance estimates are unstable.

O In a moderated t-statistic, the estimated gene-specific variance s_{g}^{2} is augmented with s_{0}^{2}, a global variance estimator obtained from pooling all genes. This gives an interpolation between the t-test and a fold-change criterion.

$$
T_{g} \sim \frac{\bar{X}_{g 1}-\bar{X}_{g 2}}{\sqrt{\mu s_{g}^{2}+\lambda s_{0}^{2}}} .
$$

O Bioconductor packages limma, siggenes.

Moderated t-statistic

number of true positives
Repeatedly draw 4 ALL and 4 AML samples out of the total 38 samples and apply the usual and moderated t-test (Bioconductor package limma) to them. Using a $\frac{\text { 豆 }}{}$ cut-off of $p<0.05$, "true positives" are defined on the basis of the analysis of the whole data set (681 genes with FDR <0.05).

Prefiltering

O What about prefiltering genes (according to intensity, variance etc.) to reduce the proportion of false positives?

O Can be useful: Genes with low intensities in most of the samples or low variance across the samples are less likely to be interesting.

O In order to maintain control of the type I error, the criteria have to be independent of the distribution of the test statistic under the null hypothesis.

Prefiltering by intensity and variability

Golub data. Ranks of interquartile range and 75%-quantile of intensities vs. absolute t-statistic.

Linear models

O Linear models are a flexible framework for assessing the effects of phenotypic variables on gene expression.

O The expression y_{i} of a given gene in sample i is modeled as linearly depending on one or several attributes (factors; could be cell type, treatment, etc., encoded in $x_{i j}$) of the sample:

$$
y_{i}=a_{1} x_{i 1}+\ldots+a_{m} x_{i m}+\epsilon_{i}
$$

O Estimated coefficients a_{j} and their standard errors are obtained using least squares, assuming normally distributed errors ϵ_{i} (R function Im); or with a robust method (R function rlm).

Linear models

O Contrasts, that is, differences/linear combinations of the coefficients, express the differences between phenotypes and can be tested for significance (t-test).
O Example: Consider a study of three different types of kidney cancer. For each gene set up a linear model:

$$
y_{i}=a_{1} x_{i 1}+a_{2} x_{i 2}+a_{3} x_{i 3}+\epsilon_{i}
$$

where $x_{i} j=1$ if tumor sample i is of type j, and 0 otherwise. The coefficients \hat{a}_{i} estimated by least squares are the mean expression levels in the classes.
O The contrast $a_{1}-a_{2}$ expresses the mean difference between class 1 and 2.

Linear model analysis with the Bioconductor package limma

O The phenotype information for the samples is to be entered as a design matrix ($x_{i j}$ from the above formula). The rows of the matrix correspond to the arrays, and the columns to the coefficients of the linear model.

O Contrasts are extracted after fitting the linear model.
O The significance of contrasts is assessed with a moderated t statistic.

References

O Y. Benjamini and Y. Hochberg (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society B, Vol. 57, 289300.

O S. Dudoit, J.P. Shaffer, J.C. Boldrick (2003). Multiple hypothesis testing in microarray experiments. Statistical Science, Vol. 18, 71-103.
O J.D. Storey and R. Tibshirani (2003). SAM thresholding and false discovery rates for detecting differential gene expression in DNA microarrays. In: The analysis of gene expression data: methods and software. Edited by G. Parmigiani, E.S. Garrett, R.A. Irizarry, S.L. Zeger. Springer, New York.
O V.G. Tusher et al. (2001). Significance analysis of microarrays applied to the ionizing radiation response. PNAS, Vol. 98, 5116-5121.
O M. Pepe et al. (2003). Selecting differentially expressed genes from microarray experiments. Biometrics, Vol. 59, 133-142.

Gene screening using ROC curves

- Rank genes according to their ability to distinguish between two phenotypes (e.g. disease and control).
- ROC: receiver operating characteristic
- Pepe et al., Biometrics 2003.

TN: true negative (specificity) FP: false positive ($1-$ spec.) FN: false negative (1 -sens.) TP: true positive (sensitivity)

	Null hypothesis H_{0}	
	true	false
H_{0} rejected	FP	TP
	(α)	$(1-\beta)$
H_{0} accepted	TN	FN

Gene screening by ROC analysis

Let $Y_{g}{ }^{\prime}$ denote the relative expression level of gene g in sample $i=C, D$ after normalization.

Each point on the ROC- curve, $\{t, R O C(t)\}$, corresponds to a different gene expression level u with

$$
t=1-P\left[Y_{g}^{C}<u\right] \quad \text { (1-specificity/false positive) }
$$

and

$$
R O C(t)=P\left[Y_{g}^{D} \geq u\right] \quad \text { (sensitivity/true positive). }
$$

- AUC (~Mann-Whitney statistic) scores for discrimination ability (and equals 0.5 for a random classifier)
- Besides AUC, the area under the full ROC curve, more interest is on the ROC curve at low values of t, corresponding to a maximum tolerable false positive rate t_{0}.

- Summary measures are defined by $A U C=\int_{0}^{1} R O C(t) d t$,
$R O C\left(t_{0}\right)=P\left[Y_{g}^{D} \geq y_{\left(1-t_{0}\right)}^{C}\right]$ and $p A \cup C\left(t_{0}\right)=\int_{0}^{t_{0}} R O C(t) d t$
where t_{0} is a given false positive rate and $y_{\left(1-t_{0}\right)}^{C}$ is the corresponding $\left(1-t_{0}\right)$ quantile of the distribution of $Y_{g}{ }^{C}$.

The value $R O C\left(t_{0}\right)$ gives the proportion of target samples with expression levels above the ($1-t_{0}$) quantile of control samples.

The partial area under the curve, $\operatorname{pAUC}\left(t_{0}\right)$, averages this proportion across values of $t \leq t_{0}$.

ROC curve screening with the Bioconductor: Package ROC

Suppose we have an exprSet object eset and a binary phenotype variable labels for the samples. We can compute the partial area under the ROC curve as follows.
> library (ROC)
> mypauc1 <- function(x) \{

+ pAUC (rocdemo.sca (truth $=$ labels, data $=x$, rule $=$
+ dxrule.sca), t0=0.1)
+ \}
> pAUC1s <- esApply (eset, 1, mypauc1)

Example: B-cell ALL with/without the BCR/ABL translocation

1636_g_at
Bioconductor data package ALL.
'Disease' class: samples with BCR/ABL translocation.

The probe set 1636_g_at, which represents the ABL1 gene, has the highest value of pAUC(0.1).

