Differential gene expression

Anja von Heydebreck

Dept. of Bio- and Chemoinformatics, Merck KGaA

anja.von.heydebreck@merck.de

Slides partly adapted from S. Dudoit and A. Benner

Outline

- O Statistical test: introduction
- Multiple testing
- Prefiltering of genes
- O Linear models
- O Gene screening using ROC curves

Identifying differentially expressed genes

- O Aim: find genes that are differentially expressed between different conditions/phenotypes, e.g. two different tumor types.
- O Estimate effects/differences between groups by (generalized) log-ratio, i.e., the difference between group means on the log scale.
- O To assess the statistical significance of differences, conduct a statistical test for each gene.

Statistical tests – example

O The two-sample *t*-statistic

$$T_g = \frac{\bar{X}_{g1} - \bar{X}_{g2}}{s_g \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

is used to test equality of the group means μ_1, μ_2 .

O The p-value p_g is the probability under the null hypothesis (here: $\mu_1 = \mu_2$) that the test statistic is at least as extreme as the observed value T_q .

Statistical tests: Examples

- O standard t-test: assumes normally distributed data in each class (almost always questionable), equal variances within classes
- O Welch t-test: as above, but allows for unequal variances
- Wilcoxon test: non-parametric, rank-based
- O permutation test: estimate the distribution of the test statistic (e.g., the t-statistic) under the null hypothesis by permutations of the sample labels:

The p-value p_g is given as the fraction of permutations yielding a test statistic that is at least as extreme as the observed one.

Permutation tests

Statistical tests: Different settings

- O comparison of two classes (e.g. tumor vs. normal)
- O paired observations from two classes: e.g. the t-test for paired samples is based on the within-pair differences.
- more than two classes and/or more than one factor (categorical or continuous): tests may be based on linear models

Example

Golub data, 27 ALL vs. 11 AML samples, 3,051 genes.

t-test: 1045 genes with p < 0.05.

Multiple testing: the problem

Multiplicity problem: thousands of hypotheses are tested simultaneously.

- Increased chance of false positives.
- E.g. suppose you have 10,000 genes on a chip and not a single one is differentially expressed. You would expect 10000*0.01 = 100 of them to have a p-value < 0.01.

Multiple testing methods allow to assess the statistical significance of findings.

Multiple hypothesis testing

true null hypotheses (non-diff. genes)

false null hypotheses (diff. genes)

From Benjamini & Hochberg (1995).

Type I error rates

1. Family-wise error rate (FWER). The FWER is defined as the probability of at least one Type I error (false positive) among the genes selected as significant:

$$FWER = Pr(V > 0).$$

Type I error rates

2. False discovery rate (FDR). The FDR (Benjamini & Hochberg 1995) is the expected proportion of Type I errors (false positives) among the rejected hypotheses:

$$FDR = E(Q),$$

with

$$Q = \begin{cases} V/R, & \text{if } R > 0, \\ 0, & \text{if } R = 0. \end{cases}$$

FWER: The Bonferroni correction

Suppose we conduct a hypothesis test for each gene $g = 1, \dots, m$, producing

an observed test statistic: T_g

an unadjusted p-value: p_g .

Bonferroni adjusted *p*–values:

$$\tilde{p}_g = \min(mp_g, 1).$$

Selecting all genes with $\tilde{p}_g \leq \alpha$ controls the FWER at level α , that is, $Pr(V>0) \leq \alpha$.

Example

Golub data, 27 ALL vs. 11 AML samples, 3,051 genes.

FWER: Alternatives to Bonferroni

- O There are alternative methods for FWER p-value adjustment, which can be more powerful.
- The permutation—based Westfall-Young method takes the correlation between genes into account and is typically more powerful for microarray data.
- O See the Bioconductor package multtest.

More is not always better

- O Suppose you use a focused array with 500 genes you are particularly interested in.
- O If a gene on this array has an unadjusted p-value of 0.0001, the Bonferroni-adjusted p-value is still 0.05.
- O If instead you use a genome-wide array with, say, 50,000 genes, this gene would be much harder to detect, because roughly 5 genes can be expected to have such a low p-value by chance.
- O Therefore, it may be worthwile focusing on genes of particular biological interest from the beginning.

Controlling the FDR (Benjamini/Hochberg)

- O Ordered unadjusted p-values: $p_{r_1} \leq p_{r_2} \leq \ldots \leq p_{r_m}$.
- O To control FDR = E(V/R) at level α , let

$$j^* = \max\{j : p_{r_j} \le (j/m)\alpha\}.$$

Reject the hypotheses H_{r_j} for $j=1,\ldots,j^*$.

O Is valid for independent test statistics and for some types of dependence. Tends to be conservative if many genes are differentially expressed. Implemented in multtest.

Controlling the FDR (Benjamini/Hochberg)

Golub data: 681 genes with BH–adjusted p < 0.05.

FWER or FDR?

- O Choose control of the FWER if high confidence in all selected genes is desired. Loss of power due to large number of tests: many differentially expressed genes may not appear significant.
- O If a certain proportion of false positives is tolerable: Procedures based on FDR are more flexible; the researcher can decide how many genes to select, based on practical considerations.
- O For some applications, even the unadjusted p-values may be most appropriate (e.g. comparison of functional categories of affected vs. unaffected genes).

Few replicates – moderated t–statistics

- O With the t-test, we estimate the variance of each gene individually. This is fine if we have enough replicates, but with few replicates (say 2–5 per group), the variance estimates are unstable.
- O In a moderated t-statistic, the estimated gene-specific variance s_g^2 is augmented with s_0^2 , a global variance estimator obtained from pooling all genes. This gives an interpolation between the t-test and a fold-change criterion.

$$T_g \sim \frac{\bar{X}_{g1} - \bar{X}_{g2}}{\sqrt{\mu s_g^2 + \lambda s_0^2}}.$$

O Bioconductor packages limma, siggenes.

Moderated *t*-statistic

Repeatedly draw 4 ALL and 4 AML samples out of the total 38 samples and apply the usual and moderated t—test (Bioconductor package limma) to them. Using a cut—off of p < 0.05, "true positives" are defined on the basis of the analysis of the whole data set (681 genes with FDR < 0.05).

number of true positives

Prefiltering

- O What about prefiltering genes (according to intensity, variance etc.) to reduce the proportion of false positives?
- O Can be useful: Genes with low intensities in most of the samples or low variance across the samples are less likely to be interesting.
- O In order to maintain control of the type I error, the criteria have to be independent of the distribution of the test statistic under the null hypothesis.

Prefiltering by intensity and variability

Golub data. Ranks of interquartile range and 75%—quantile of intensities vs. absolute t—statistic.

Linear models

- O Linear models are a flexible framework for assessing the effects of phenotypic variables on gene expression.
- O The expression y_i of a given gene in sample i is modeled as linearly depending on one or several attributes (factors; could be cell type, treatment, etc., encoded in x_{ij}) of the sample:

$$y_i = a_1 x_{i1} + \ldots + a_m x_{im} + \epsilon_i$$

O Estimated coefficients a_j and their standard errors are obtained using least squares, assuming normally distributed errors ϵ_i (R function lm); or with a robust method (R function rlm).

Linear models

- O Contrasts, that is, differences/linear combinations of the coefficients, express the differences between phenotypes and can be tested for significance (t-test).
- O Example: Consider a study of three different types of kidney cancer. For each gene set up a linear model:

$$y_i = a_1 x_{i1} + a_2 x_{i2} + a_3 x_{i3} + \epsilon_i$$

where $x_i j = 1$ if tumor sample i is of type j, and 0 otherwise.

The coefficients \hat{a}_i estimated by least squares are the mean expression levels in the classes.

O The contrast $a_1 - a_2$ expresses the mean difference between class 1 and 2.

Linear model analysis with the Bioconductor package limma

- O The phenotype information for the samples is to be entered as a design matrix (x_{ij} from the above formula). The rows of the matrix correspond to the arrays, and the columns to the coefficients of the linear model.
- O Contrasts are extracted after fitting the linear model.
- O The significance of contrasts is assessed with a moderated t-statistic.

References

- O Y. Benjamini and Y. Hochberg (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. *Journal of the Royal Statistical Society B*, Vol. 57, 289–300.
- O S. Dudoit, J.P. Shaffer, J.C. Boldrick (2003). Multiple hypothesis testing in microarray experiments. *Statistical Science*, Vol. 18, 71–103.
- O J.D. Storey and R. Tibshirani (2003). SAM thresholding and false discovery rates for detecting differential gene expression in DNA microarrays. In: *The analysis of gene expression data: methods and software.* Edited by G. Parmigiani, E.S. Garrett, R.A. Irizarry, S.L. Zeger. Springer, New York.
- O V.G. Tusher et al. (2001). Significance analysis of microarrays applied to the ionizing radiation response. *PNAS*, Vol. 98, 5116–5121.
- O M. Pepe et al. (2003). Selecting differentially expressed genes from microarray experiments. *Biometrics*, Vol. 59, 133–142.

Gene screening using ROC curves

- Rank genes according to their ability to distinguish between two phenotypes (e.g. disease and control).
- ROC: receiver operating characteristic
- Pepe et al., Biometrics 2003.

Panel I:

Almost complete separation between the distributions of controls (C) and disease (D).

Classify with almost 100% accuracy.

Panels II and III:

Overlapping distributions.

Cancer screening:

Panel II is of more practical interest than panel III.

Panel II: clearly distinguishes a subset of D from C

Panel III: values for D are entirely within the range of those for C.

III C C D

(Pepe et al., Biometrics 2003)

TN: true negative (specificity)

FP: false positive (1-spec.)

FN: false negative (1-sens.)

TP: true positive (sensitivity)

 $\begin{array}{ccc} & \text{Null hypothesis H}_0\\ & \text{true} & \text{false} \\ \hline \text{H}_0 \text{ rejected} & \text{FP} & \text{TP}\\ & (\alpha) & (1\text{-}\beta) \end{array}$

TN

FN

H₀ accepted

Gene screening by ROC analysis

Let Y_g^i denote the relative expression level of gene g in sample $i=C_pD$ after normalization.

Each point on the ROC- curve, $\{t, ROC(t)\}$, corresponds to a different gene expression level u with

$$t = 1 - P[Y_g^C < u]$$
 (1-specificity/false positive)

and

$$ROC(t) = P[Y_g^D \ge u]$$
 (sensitivity/true positive).

- AUC (~Mann-Whitney statistic) scores for discrimination ability (and equals 0.5 for a random classifier)
- Besides AUC, the area under the full ROC curve, more interest is on the ROC curve at low values of t, corresponding to a maximum tolerable false positive rate t₀.

- Summary measures are defined by $AUC = \int_0^1 ROC(t) dt$,

$$ROC(t_0) = P[Y_g^D \ge Y_{(1-t_0)}^C]$$
 and $pAUC(t_0) = \int_0^{t_0} ROC(t) dt$

where t_0 is a given false positive rate and $\mathcal{Y}_{(1-t_0)}^{\mathcal{C}}$ is the corresponding $(1-t_0)$ quantile of the distribution of $Y_g^{\mathcal{C}}$.

The value $ROC(t_0)$ gives the proportion of target samples with expression levels above the $(1-t_0)$ quantile of control samples.

The partial area under the curve, $pAUC(t_0)$, averages this proportion across values of $t \le t_0$.

ROC curve screening with the Bioconductor: Package ROC

Suppose we have an *exprSet* object <code>eset</code> and a binary phenotype variable <code>labels</code> for the samples. We can compute the partial area under the ROC curve as follows.

Example: B-cell ALL with/without the BCR/ABL translocation

Bioconductor data package ALL.

'Disease' class: samples with BCR/ABL translocation.

The probe set 1636_g_at, which represents the ABL1 gene, has the highest value of pAUC(0.1).

