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Abstract. This tutorial refers to the practical session on day three of the course in Practical DNA
Microarray Analysis. The topic is Molecular Diagnosis. You will learn how to apply Nearest Shrunken
Centroids and Support Vector Machines to microarray datasets. Important topics will be feature selection,
cross validation and the selection bias.

We consider expression data from patients with acute lymphoblastic leukemia (ALL) that were investigated
using HGU95AV2 Affymetrix GeneChip arrays [Chiaretti et al., 2004]. The data were normalized using
quantile normalization and expression estimates were computed using RMA. The preprocessed version of
the data is available in the Bioconductor data package ALL from http://www.bioconductor.org. Type
in the following code chunks to reproduce our analysis. At each ”>” a new command starts, the ”+”
indicates that one command spans over more than one line.

> library(ALL)

> data(ALL)

> show(ALL)

The most pronounced distinction in the data is between B- and T-cells. We concentrate on B-cells. Of
particular interest is the comparison of samples with the BCR/ABL fusion gene resulting from a chromo-
somal translocation (9;22) with samples that are cytogenetically normal. We select samples of interest by
first finding the B-cell samples, then finding all BCR/ABL and negative samples, and finally choosing the
intersection of both sets:

> Bcell <- grep("^B", as.character(ALL$BT))

> trans <- which(as.character(ALL$mol) %in% c("BCR/ABL", "NEG"))

> select <- intersect(Bcell, trans)

> eset <- ALL[, select]

The usual setting is diagnosis of patients we have not seen before. To simulate this situation we randomly
hide three patients to be diagnosed later by a classifier trained on the rest. Of course the results will depend
on this choice, so your results will naturally differ from those shown in this tutorial.

> hide <- sample(79, 3)

> known.patients <- eset[, -hide]

> new.patients <- eset[, hide]

> labels <- as.factor(as.numeric(known.patients$mol))

> levels(labels)[1] <- "BCR/ABL"

> levels(labels)[2] <- "NEG"

When writing this tutorial, we ended up with 76 patients in the training set, 36 labeled as BCR/ABL and
40 labeled as NEG.
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1 Nearest Shrunken Centroids

We first load the package pamr and then organize the data in a list train.data with tags for the expression
matrix (x), the labels (y), names of genes and patients, and gene IDs:

> library(pamr)

> library(hgu95av2)

> dat <- exprs(known.patients)

> gN <- sapply(geneNames(ALL), get, hgu95av2SYMBOL)

> gI <- geneNames(known.patients)

> sI <- known.patients$cod

> train.dat <- list(x = dat, y = labels, genenames = gN, geneid = gI,

+ sampleid = sI)

1.1 Training PAM

In the lecture on PAM this morning you learned about gene selection by shrinkage. Shrinkage is controlled
by a parameter which was called ∆ in the lecture and is called threshold in the software. By default PAM
fits the model for 30 different threshold values (that’s the line of numbers you see when pamr.train runs):

> model <- pamr.train(train.dat)

> model

You get a table with 3 columns and 30 rows. The rows correspond to threshold values (first column). For
each threshold you see the number of surviving genes (second column) and the number of misclassifications
on the training set (third column). Explain why the number of surviving genes decreases when the size of
the threshold increases.

1.2 10-fold cross validation

A more reliable error estimate than the number of misclassifications on the training set is the cross validation
error. We compute and plot it for 30 different values of the threshold parameter.

> model.cv <- pamr.cv(model, train.dat, nfold = 10)

> model.cv

> pamr.plotcv(model.cv)

Exercise: Explain why the cross-validation error (the third column when printing model.cv) is bigger than
the training error (third column of model). Explain the upper figure in terms of bias-variance trade-off.
Explain the behaviour at the right tail of the lower figure.

1.3 Plots for different threshold values

Using the results of cross validation, choose a threshold value Delta as a tradeoff between a small number
of genes and a good generalization accuracy.

> Delta = 4
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Figure 1: Result of pamr.plotcv(). In both figures, the x-axis represents different values of threshold
(corresponding to different numbers of nonzero genes as shown on top of each figure) and the y-axis shows
the number of misclassifications. The upper figure describes the whole dataset, the lower one describes
each class individually.

This is just an arbitray example. In the next steps, vary Delta through a range of values and observe how
the plots and figures change.

• The function pamr.plotcen() plots the shrunken class centroids for each class, for genes surviving the
threshold for at least one class.

> pamr.plotcen(model, train.dat, Delta)

Unfortunately, one can hardly read the gene names in the R plotting result. If you are interested in
them, print the active graphic window using one of the following commands and then use Ghostview or
AcrobatReader to view it in more detail.

> dev.print(file = "MYcentroids.ps")

> dev.print(device = pdf, file = "MYcentroids.pdf")

• The next function prints a 2 × 2 confusion table, which tells us how many samples in each class were
predicted correctly.

> pamr.confusion(model.cv, Delta)

BCR/ABL NEG Class Error rate
BCR/ABL 30 6 0.1666667
NEG 3 37 0.0750000
Overall error rate= 0.118



• To get a visual impression of how clearly the two classes are separated by PAM, we plot the cross-validated
sample probabilities:

> pamr.plotcvprob(model, train.dat, Delta)
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Figure 2: Result of pamr.plotcvprob(). The 76 samples (x-axis) are plotted against the probabilities to
belong to either class BCR/ABL (green) or NEG (red). For each sample you see two small circles: the red
one shows the probability that this sample belongs to NEG and the green one that it belongs to BCR/ABL.
A sample is put into that class for which probability exceeds 0.5.

• The following command plots for each gene surviving the threshold a figure showing the expression levels
of this gene over the whole set of samples. You will see which genes are up- or downregulated and how
variable they are.

> pamr.geneplot(model, train.dat, Delta)

Sometimes you get an error message "Error in plot.new(): Figure margins too large", because
there is not enough space to plot all the genes. To mend this problem increase the threshold – which will
decrease the number of genes.

More information about the genes used for the classification is given by pamr.listgenes. The output lists
the Affymetrix ID and the name of the gene. In the last two columns you see a score indicating whether
the gene is up or down regulated in the two classes of samples:

> pamr.listgenes(model, train.dat, Delta, genenames = TRUE)

id name BCR/ABL score NEG score
[1,] 1636_g_at ABL1 0.2099 -0.1889
[2,] 39730_at ABL1 0.1915 -0.1724
[3,] 1674_at YES1 0.1391 -0.1252
[4,] 40202_at BTEB1 0.1381 -0.1243
[5,] 1635_at ABL1 0.107 -0.0963
[6,] 40504_at PON2 0.0921 -0.0829
[7,] 32434_at MARCKS 0.062 -0.0558
[8,] 37015_at ALDH1A1 0.0534 -0.0481
[9,] 37027_at AHNAK 0.0404 -0.0364
[10,] 37403_at ANXA1 0.0069 -0.0062
[11,] 36275_at SEMA6A 0.0043 -0.0039



1.4 Computational Diagnosis

Now we use the trained PAM classifier to diagnose the three new patients:

> pamr.predict(model, exprs(new.patients), Delta)

[1] NEG NEG NEG
Levels: BCR/ABL NEG

But PAM does not only classify, if you use type="posterior" it also tells you how sure it is about its
decision. The following table presents posterior class probabilities: Which patients are clearly recognized,
which predictions are doubtful? How does this change, when you vary the threshold value?

> pamr.predict(model, exprs(new.patients), Delta, type = "posterior")

BCR/ABL NEG
24008 0.15864706 0.8413529
28021 0.40228296 0.5977170
28001 0.08801582 0.9119842

attr(,"scaled:center")

BCR/ABL NEG
0.8209612 0.7015888

1.5 Size does matter

Classification in high dimensions is a adventurous task, even if we have many training examples. Here we
show what happens when sample size is really small. We use the function runif() to generate N(0, 1) data
(”white noise”) for 10 patients and 10000 genes. Due to sample variance, PAM sometimes ”successfully”
learns in a situation of pure noise with no signal at all.

> nrG <- 10000

> nrP <- 10

> chance <- matrix(runif(nrG * nrP), ncol = nrP)

> class <- c(rep(0, nrP/2), rep(1, nrP/2))

> noise <- list(x = chance, y = class)

> model <- pamr.train(noise)

> pamr.plotcv(pamr.cv(model, noise, nfold = 5))

Repeat this experiment a few times and watch out how often you oberserve a cross-validation error of zero.
Explain what happens! Why is this a disaster? (Thanks to Benedikt for this instructive example.)

2 Support Vector Machines (SVM)

The SVM software is included in package e1071 – which is named after the Austrian code-number for the
Vienna statistics department. It needs the data in a slightly different format than PAM.

> library(e1071)

> dat <- t(exprs(known.patients))



The command t() transposes a expression matrix (”mirrors it at the main diagonal”). The labels are already
factors, so we keep them. To speed up computations, we will reduce the number of genes in the data.
Let’s have a look at the natural variation of the genes by computing the variance for each gene over all
patients:

> v <- apply(dat, 2, var)

> hist(v, 100)

You will see that the activity of most genes does not differ much between the samples. We will discard the
static genes and select the 1000 genes with highest variance

> sel <- order(-v)[1:1000]

> dat <- dat[, sel]

2.1 Training and cross-validation

We will begin with the simple linear kernel:

> model <- svm(dat, labels, kernel = "linear")

If class(labels) is not factor, the svm software does regression instead of classification. Use sum-
mary(model) to get an overview of the trained SVM and check that we did the right thing. Let’s compute
the training error by applying the model to the data on which it was trained:

> predicted <- predict(model, dat)

> table(true = labels, pred = predicted)

pred
true BCR/ABL NEG
BCR/ABL 36 0
NEG 0 40

The linear kernel separates the training set without errors! But how is its ability to predict samples, which
it has not seen before? We investigate by 10-fold cross validation.

> model.cv <- svm(dat, labels, kernel = "linear", cross = 10)

Use summary(model.cv) to get an overview over the SVM model. Do cross validation with the linear
kernel several times. Why does the line ”Single Accuracies”change each time? How does the total accuracy
change?

2.2 Tuning the machine

When we use a linear kernel, there are no kernel parameters to specify. The only value you have to choose
is the misclassification cost. Default is cost=1, but maybe another value achieves better cross-validation
results? Let’s tune the SVM by trying different values of cost:

> tune.svm(dat, labels, cost = c(0.1, 1, 10), kernel = "linear")



Once we know the best parameter setting, we can use it to learn an SVM. These two steps (finding best
parameter and then training an SVM) are combined in the function best.svm, which returns the SVM
with the best parameters.

> model <- best.svm(dat, labels, cost = c(0.1, 1, 10), kernel = "linear",

+ tunecontrol = tune.control())

Exercise: Use tune.svm to compare the linear SVM against polynomial SVM of degree 2 and 3 and
against SVM with a radial basis kernel. Do the complex classifiers improve the classification result?

Exercise: Read the help text of tune.svm and use tune.control to evaluate models by bootstrapping
instead of cross-validation.

Advanced SVMing: The package svmpath allows to fit the entire regularization path (i.e. for all cost
values) with essentially the same computational cost as fitting one SVM model.

2.3 Computational diagnosis

By analyzing the training error and the cross-validation error we have seen that a SVM is quite good at
learning the difference between BCR/ABL and NEG. What does it tell us about the three new patients?

> predict(model, t(exprs(new.patients))[, sel])

[1] NEG BCR/ABL NEG
Levels: BCR/ABL NEG

The object t(exprs(new.patients))[,sel] in the command above is the expression matrix of the new
patients – transposed and containing only high-variance genes. You can check whether the results are
correct by comparing to the true classes of the patients. If they do not agree to the predictions, maybe we
should have done the tuning more carefully . . .

> new.patients$mol

[1] NEG BCR/ABL NEG
Levels: ALL1/AF4 BCR/ABL E2A/PBX1 NEG NUP-98 p15/p16

2.4 Zero training error does not guarantee good prediction!

In high dimensions our intuitions break down. The labels we used until now describe a biologically
meaningful class distinction of the cancer samples. We demonstrate now that SVM can separate two
classes of samples even if the labels are randomly permuted – destroying any biological information in the
data.

> labels.rand <- sample(labels, 76)

> model.rand <- svm(dat, labels.rand, kernel = "linear")

> predicted <- predict(model.rand, dat)

> table(true = labels.rand, pred = predicted)

pred
true BCR/ABL NEG
BCR/ABL 36 0
NEG 0 40



Zero training error! Wow! Now train the SVM again with cross validation. Compare the CV error on the
biological and on the randomized data. The CV error for random labels will be very very high. This means:
even with zero training error, we are bad at predicting new things.

Why is this observation important for medical diagnosis? Whenever you have expression levels from two
kinds of patients, you will ALWAYS find differences in their gene expression - no matter how the groups are
defined, no matter if there is any biological meaning. And these differences will not always be predictive.

2.5 How to select informative genes

We use a simple t-statistic to select the genes with the most impact on classification. The function
mt.teststat from the library multtest provides a convenient way to calculate test statistics for each row
of a data frame or matrix. As input it needs a matrix with rows corresponding to genes and columns to
experiments. The class labels are supposed to be integers 0 or 1.

> library(multtest)

> labels2 <- as.integer(labels) - 1

> tscores <- mt.teststat(t(dat), labels2, test = "t")

The vector tscores contains for each gene the value of the t-statistic. These values measure how well a
gene separates the two classes. We select the 100 genes with highest t-statistic.

> selection <- order(-abs(tscores))[1:100]

> dat.sel <- dat[, selection]

The matrix data.sel contains 76 rows (samples) and 100 columns (the selected genes). Train a SVM on
this reduced dataset with different kernels and parameters and compare the results to those obtained with
all genes. Do cross-validation on the reduced dataset.

Vary the number of selected genes. How many genes do you need to still get a reasonable CV error?

Exercise: Use the syntax fsel <- function(x,y,n){.. commands in here ..} to write a function
for feature selection with the t-statistic that takes as inputs a data matrix x, a vector of labels y, and a
number n of genes to be selected. The output should be a vector of indices of informative genes.

2.6 The selection bias

There has been a conceptual flaw in the way we combined the cross validation with gene selection in the
last section.

The idea of cross validation is this: Split your dataset in e.g. 10 subsets and take one subset out as a test
set. Train your classifier on the remaining samples and assess its predictive power by applying it to the test
set. Do this for all of the 10 subsets. This procedure is only sensible if no information about the test set
is used while training the classifier. The test set has to remain ’unseen’.

What went wrong in the last section? We did a feature selection on the whole dataset, i.e. we selected the
100 genes that are most informative given all 76 samples. Then we did a cross validation using these genes.
Thus, the test set in each cross validation step had already been used for the feature selection. We had
already seen it before training the classifier. Selecting genes outside the cross-validation loop introduces a
bias towards good results [Ambroise and McLachlan 2002, Simon et al. 2003]. The bias is more pronounced
the fewer genes you select and the fewer samples you have.

What is the right way to use feature selection in cross validation? Do a selection of important genes in
every step of cross validation anew! Do the selection only on the training set and never on the test set!



Exercise: explain why selecting genes with high variance over all the samples does not result in the same
distortion of cross validation as feature selection by t-scores.

Exercise: In the following we will guide you to write your own function for 10-fold cross-validation with
“in-loop” feature selection. Before starting, make sure that you understand the problem of selection bias,
i.e. “out of the loop” feature selection.

If you have not done so already to keep a log, open some texteditor and write your commands in an empty
file.

CrossVal <- function(x, y, k=10, n) # x=data, y=labels, k=steps, n=genes
{
... put the following commands all in here ...
}

The input to CrossVal is the data (x), the labels (y), the number of cross-validation steps (k) and the
number of genes to select in each step (n). By default we set k=10.

At the beginning, we divide the data into several heaps such that the labels of both classes are balanced in
each chunk. This can be easily done by the function balanced.folds from package pamr:

> help(balanced.folds)

> heaps <- balanced.folds(labels, k)

The list heaps has k entries, each containing the indices of one chunk. The data in the ith heap are
reserved for testing. Training and feature selection are only performed on the remaining data. A cross
validation is then just one for-loop:

for (i in 1:k){

1. Do a feature selection for x (without the test data!) using the function fsel() from the last section.

2. Train a SVM on the pruned training set.

3. Then predict the labels of the test data (using only the selected genes).

4. Compute the accuracy (the number of correctly predicted test cases).

}

Collect the single CV accuracies obtained in each step. The total accuracy is the mean of it. Your function
should return a list containing the total accuracy and the vector of single accurarcies.

Exercise: Try cross validation with out-of-the loop feature selection and with in-loop feature selection at
least 100 times, gather the results in two vectors and compare the distribution of results in a boxplot and by
t.test(). Explain why the variance of results is bigger in cross-validation with in-loop feature selection.

More advanced: The function errorest in package ipred implements a unified interface to several
resampling bases estimators. You can combine model fitting with gene selection by writting a wrapper
function which can then be fed to errorest.



3 Summary

Scan through this paper once again and identify in each section the main message you have learned. Some
of the most important points are:

• You have learned how to apply the Nearest Shrunken Centroids method and Support Vector Machines
to microarray data.

• You have learned how to do feature selection using the t-statistic.

• You have experienced: It is quite easy to separate the training set without errors (even with randomly
labeled samples), but this does not guarantee a good generalization performance on unseen test data.

• In cross validation: do all the data manipulation (like feature selection) inside the CV loop and not
before. Else: cheating!

If you have any comments, criticisms or suggestions on our lectures, please contact us:
rainer.spang@molgen.mpg.de and florian.markowetz@molgen.mpg.de

4 Solutions to selected exercises

Feature selection

> fsel

function (x, y, n)
{

dat <- t(x)
labels <- as.integer(y) - 1
tscores <- mt.teststat(dat, labels, test = "t")
sel <- order(-abs(tscores))[1:n]
return(sel)

}

Feature selection inside the cross-validation loop

> CrossVal

function (x, y, k = 10, n = 20)
{

heaps <- balanced.folds(y, k)
acc <- numeric(k)
for (i in 1:k) {

test <- heaps[[i]]
sel <- fsel(x[-test, ], y[-test], n)
SVM <- svm(x[-test, sel], y[-test], kernel = "linear")
p <- predict(SVM, x[test, sel])
acc[i] <- 100 * sum(p == y[test])/length(test)

}
return(list(tot.accuracy = mean(acc), single.accuracies = round(acc)))

}



Comparison of in-loop and out-of-loop feature selection

> nr.runs <- 100

> k <- 10

> n <- 20

> inloop <- numeric(nr.runs)

> outloop <- numeric(nr.runs)

> dat.sel <- dat[, fsel(dat, labels, n)]

> for (i in 1:nr.runs) {

+ outloop[i] <- svm(dat.sel, labels, kernel = "linear", cross = k)$tot.accuracy

+ inloop[i] <- CrossVal(dat, labels, k, n)$tot.accuracy

+ }

> N <- c("out-of-loop feature selection", "in-loop feature selection")

> M <- "Out-of-loop feature selection is cheating!"

> yL <- "cross validation accuracy"

> boxplot(data.frame(cbind(outloop, inloop)), names = N, main = M, ylab = yL)

> t.test(outloop, inloop)$p.value

[1] 9.616726e-05
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Figure 3: Comparison of in-loop and out-of-loop feature selection. Selecting genes on the whole dataset
introduces a bias on cross-validation results.
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6 PAMR patches

There are some ways to fix bugs in your own installation of the pamr package. After typing library(),
the first line on the screen is the path to your R packages. Append /pamr/R/ and find the textfile pamr.
Open it in a texteditor to do some little changes.

• If you install the package you can only do 10-fold cross validation with pamr.cv. Changing parameter
nfold is fruitless. The problem lies in function nsccv. We patch it by substituting

folds <-balanced.folds(y)

with

if(is.null(nfold)) folds <-balanced.folds(y)
else folds <-balanced.folds(y, nfold=nfold)

• Using pamr.geneplot to plot a single gene results in an error message. The problem is that for a single
gene the datamatrix becomes a vector and drops its dimension attributes. To prevent this, substitute two
lines:

d <- (cen - fit$centroid.overall)[aa, ]/fit$sd[aa] # OLD
d <- (cen - fit$centroid.overall)[aa, ,drop=FALSE]/fit$sd[aa] # NEW
... AND ...
xx <- x[aa, o] # OLD
xx <- x[aa, o, drop=FALSE] # NEW

• Additionally, you could add a cat("\n") to the end of pamr.train.

• Save the textfile pamr, and change one directory level higher to ../pamr/ to find a textfile NAMESPACE.
Open it in a texteditor and add balanced.folds into the list of exported functions.


