Microarray annotation

Benedikt Brors
Computational Oncology Group
Dept. Theoretical Bioinformatics
German Cancer Research Center

b.brors@dkfz.de
Why do we need microarray clone annotation?

- Often, the result of microarray data analysis is a list of genes.
- The list has to be summarized with respect to its biological meaning. For this, information about the genes and the related proteins has to be gathered.
- If the list is small (let’s say, 1–30), this is easily done by reading database information and/or the available literature.
- Sometimes, lists are longer (100s or even 1000s of genes). Automatic parsing and extracting of information is needed.
- To get complete information, you will need the help of an experienced computational biologist (aka ‘bioinformatician’). However, there is a lot that you can do on your own.
Databases

- Sequences are contained in *primary sequence databases* like EMBL/Genbank or SwissProt. Primary nucleic acid databases have a high degree of redundancy.

- Some databases are *curated*, i.e. curators watch over the entries and ensure quality, remove redundancy, and annotate domain structure, function etc. This is a slow process, thus curated databases are limited in size and not really up-to-date.

- Meta databases collect further information and relate them to primary databases. Examples are **OMIM** (online mendelian inheritance in man) for disease-related genes, **LocusLink** for genomic location, **PFAM** for protein domain structure, and **GeneCards** for comprehensive information from other databases on human genes.
The relation of clone information to genes and proteins

• Microarrays are produced using information on expressed sequences as EST clones, cDNAs, partial cDNAs etc.
The relation of clone information to genes and proteins

- Microarrays are produced using information on *expressed sequences* as EST clones, cDNAs, partial cDNAs etc.

- At the other end, functional information is generated (and available) for *proteins*. Hence, there is a need to map a clone sequence ID to a protein ID. This is non-trivial.
The relation of clone information to genes and proteins

- Microarrays are produced using information on *expressed sequences* as EST clones, cDNAs, partial cDNAs etc.

- At the other end, functional information is generated (and available) for *proteins*. Hence, there is a need to map a clone sequence ID to a protein ID. This is non-trivial.

- First, there are usually hundreds of ESTs (and several cDNA sequences) that map to the same gene. The Database *Unigene* tries to resolve this clustering by sequence clustering.
The relation of clone information to genes and proteins

- Microarrays are produced using information on expressed sequences as EST clones, cDNAs, partial cDNAs etc.

- At the other end, functional information is generated (and available) for proteins. Hence, there is a need to map a clone sequence ID to a protein ID. This is non-trivial.

- First, there are usually hundreds of ESTs (and several cDNA sequences) that map to the same gene. The Database Unigene tries to resolve this clustering by sequence clustering.

- An alternative approach is taken by Locus Link. This is a quite stable repository of genomic loci, supposed to be a single gene. Since the emphasis is on well-characterised loci, Locus Link is not complete.
There are other projects like RefSeq (NCBI) or TIGR Gene Indices. According to the cross-references available for a certain microarray, one or the other may be advantageous.
With the completion of the human genome sequence, you’d think that such ambiguities can be resolved. In fact, that is not the case.
The Human Genome Sequence

- With the completion of the human genome sequence, you’d think that such ambiguities can be resolved. In fact, that is not the case.
- Part of the problem is due to the fact that it is hard to predict gene structure (intron/exon) without knowing the entire mRNA sequence, which happens for about two-thirds of all genes.
The Human Genome Sequence

- With the completion of the human genome sequence, you’d think that such ambiguities can be resolved. In fact, that is not the case.

- Part of the problem is due to the fact that it is hard to predict gene structure (intron/exon) without knowing the entire mRNA sequence, which happens for about two-thirds of all genes.

- Then, there are errors in the assembly (putting together the sequence snippets). A typical symptom is that a gene appears to map to multiple loci on the same chromosome, with very high sequence similarity.
With the completion of the human genome sequence, you’d think that such ambiguities can be resolved. In fact, that is not the case.

Part of the problem is due to the fact that it is hard to predict gene structure (intron/exon) without knowing the entire mRNA sequence, which happens for about two-thirds of all genes.

Then, there are errors in the assembly (putting together the sequence snippets). A typical symptom is that a gene appears to map to multiple loci on the same chromosome, with very high sequence similarity.

But there are also sequences that are nearly identical, but duplicated. This has happened not long ago in evolution by means of transposable elements.
Some figures

- Currently, it’s estimated that the human genome contains about 25,000 – 30,000 genes that code for 50,000 – 100,000 different transcripts (and thus, proteins).

- Unigene (human section) contains 105,680 clusters, but 45,999 of them are of size 2 or less.

- RefSeq DNA contains 28,097 human sequences.

- ENSEMBL contains 21,787 predicted genes, 31,609 predicted transcripts. Fully computational methods like Genscan produce more than 65,000 predictions.

- Locus Link contains 15,248 genes with known function, and further 6038 genes without function annotation.
Function annotation

- Probably, the most important thing you want to know is what the genes or their products are concerned with, i.e. their **function**.

- Function annotation is difficult: Different people use different words for the same function, or may mean different things by the same word. The context in which a gene was found (e.g. “TGFβ-induced gene”) may not be particularly associated with its function.

- Inference of function from sequence alone is error-prone and sometimes unreliable. The best function annotation systems (GO, SwissProt) use human beings who read the literature before assigning a function to a gene.
The Gene Ontology system

- To overcome some of the problems, an annotation system has been created: Gene Ontology (http://www.geneontology.org). Ontology means here the art (or science) of giving everything its correct name.

- It represents a unified, consistent system, i.e. terms occur only once, and there is a dictionary of allowed words.

- Furthermore, terms are related to each other: the hierarchy goes from very general terms to very detailed ones.
The Gene Ontology site

GENE ONTOLOGY CONSORTIUM

What is the Gene Ontology? Download the Ontologies

The goal of the Gene Ontology (GO) Consortium is to produce a controlled vocabulary that can be applied to all organisms even as knowledge of gene and protein roles in cells is accumulating and changing. GO provides three structured networks of defined terms to describe gene product attributes. GO is one of the controlled vocabularies of the Open Biological Ontologies.

- Submit new GO term suggestions via the Curator Requests Tracker at SourceForge. Help with new term submission is available.
- Send comments and questions to go@geneontology.org

Search Terms and Annotations

This search uses the AmiGO browser. You can also use one of the many other GO Browsers.

What's New?

- We are pleased to announce the next Gene Ontology Users Meeting on Thursday, October 14, 2004 at Northwestern University's Chicago campus. The deadline for abstract submission is September 17, 2004, and the deadline for registration is October 1, 2004. Please visit the meeting website for more information. (posted June 10, 2004)
- A mapping of COG (Clusters of Orthologous Groups) functional categories to GO terms has been added to the externalGO directory. (posted June 10, 2004)
- The new OBO flat file format is now available. GO files will be released in both the new OBO format and the older GO flat file format. The new format has several advantages including easier parsing, improved extensibility and smaller file sizes. (posted February 16, 2004)
- The minutes from the September 2003 GO meeting at Bar Harbor are now available from the meetings web site and the GO FTP site. Text and pdf files are available. (posted November 27, 2003)
The Gene Ontology hierarchy

AmiGO

Top Docs Gene Ontology GO Links GO Summary

GO:0003673 : Gene_Ontology (33650)
 GO:0008150 : biological_process (24768)
 GO:0005575 : cellular_component (17255)
 GO:0003674 : molecular_function (23707)
 GO:0030234 : enzyme regulator (546)
 GO:0004857 : enzyme inhibitor (234)
 GO:0030414 : protease inhibitor (126)
 GO:0004866 : endopeptidase inhibitor (125)
 GO:0004867 : serine protease inhibitor (81)
 GO:0004868 : serpin (54)

DAG view
Get this GO tree as RDF XML.
Get this data as a GO flat file.

Get a bookmarkable url of this GO tree.

Copyright The Gene Ontology Consortium. All rights reserved.
Actual annotation

- Gene Ontology by itself is only a system for annotating genes and proteins. It does not relate database entries to a special annotation value.

- Luckily, research communities for several model organisms have agreed on entering Gene Ontology information into the databases. As this is done ‘by hand’, GO annotation for most organisms is far from complete.
Available Gene Ontology information

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Links</th>
<th>Total GO Terms</th>
<th>Total GO Terms (Homo sapiens)</th>
<th>Total GO Terms (Mus musculus)</th>
<th>Total GO Terms (Rattus norvegicus)</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIGR Bacillus anthracis Ames</td>
<td>Downloads</td>
<td>4414</td>
<td>4416</td>
<td>200</td>
<td>4417</td>
<td>Mar 12, 2004</td>
</tr>
<tr>
<td>TIGR Arabidopsis thaliana</td>
<td>Downloads</td>
<td>9638</td>
<td>24945</td>
<td>5835</td>
<td>26701</td>
<td>Feb 10, 2004</td>
</tr>
<tr>
<td>TIGR Coxiella burnetii RSA</td>
<td>Downloads</td>
<td>1359</td>
<td>1349</td>
<td>176</td>
<td>1365</td>
<td>Mar 12, 2004</td>
</tr>
<tr>
<td>TIGR Gene Index</td>
<td>Download</td>
<td>80031</td>
<td>100151</td>
<td>78400</td>
<td>126557</td>
<td>Apr 16, 2004</td>
</tr>
<tr>
<td>TIGR Shewanella oneidensis</td>
<td>Downloads</td>
<td>3696</td>
<td>3696</td>
<td>241</td>
<td>3696</td>
<td>Mar 12, 2004</td>
</tr>
<tr>
<td>TIGR Vibrio cholerae</td>
<td>Downloads</td>
<td>2523</td>
<td>2728</td>
<td>191</td>
<td>2924</td>
<td>Mar 12, 2004</td>
</tr>
<tr>
<td>GO Annotations @ EBI Human</td>
<td>Downloads</td>
<td>18094</td>
<td>20608</td>
<td>15787</td>
<td>22720</td>
<td>Jun 4, 2004</td>
</tr>
<tr>
<td>GO Annotations @ EBI Mouse</td>
<td>Downloads</td>
<td>17486</td>
<td>20683</td>
<td>14932</td>
<td>23080</td>
<td>Jun 4, 2004</td>
</tr>
<tr>
<td>GO Annotations @ EBI PDB</td>
<td>Downloads</td>
<td>20731</td>
<td>21969</td>
<td>11269</td>
<td>22989</td>
<td>Jun 4, 2004</td>
</tr>
<tr>
<td>GO Annotations @ EBI Rat</td>
<td>Downloads</td>
<td>14810</td>
<td>17731</td>
<td>11665</td>
<td>19453</td>
<td>Jun 4, 2004</td>
</tr>
<tr>
<td>GO Annotations @ EBI UniProt</td>
<td>Downloads</td>
<td>602033</td>
<td>719095</td>
<td>440522</td>
<td>818792</td>
<td>Jun 4, 2004</td>
</tr>
</tbody>
</table>
The NetAffx System

- For Affymetrix arrays, annotation is provided by the supplier via the NetAffx system (http://www.affymetrix.com/analysis/netaffx/)
Alternative pre-compiled annotation

- The Institute of Genomic Research (TIGR) has its own pre-compiled annotation for most commercial arrays (Affymetrix, Agilent, Incyte etc.): http://www.tigr.org/tigr-scripts/magic/rl.pl
Data packages in Bioconductor

<table>
<thead>
<tr>
<th>Name</th>
<th>Species</th>
<th>Annotation Packages</th>
<th>CDF Packages</th>
<th>Probe Packages</th>
</tr>
</thead>
<tbody>
<tr>
<td>ag</td>
<td>Unknown</td>
<td></td>
<td>Source, Win32</td>
<td>Source, Win32</td>
</tr>
<tr>
<td>atgenomex</td>
<td>Arabidopsis</td>
<td></td>
<td>Source, Win32</td>
<td>Source, Win32</td>
</tr>
<tr>
<td>ath1 12.1501</td>
<td>Unknown</td>
<td></td>
<td>Source, Win32</td>
<td>Source, Win32</td>
</tr>
<tr>
<td>c. elegans</td>
<td>C. elegans</td>
<td></td>
<td>Source, Win32</td>
<td>Source, Win32</td>
</tr>
<tr>
<td>cyp450</td>
<td>CYP 450</td>
<td></td>
<td>Source, Win32</td>
<td>Source, Win32</td>
</tr>
<tr>
<td>drosome</td>
<td>Drosophila</td>
<td></td>
<td>Source, Win32</td>
<td>Source, Win32</td>
</tr>
<tr>
<td>ecollantisense</td>
<td>E. coli</td>
<td></td>
<td>Source, Win32</td>
<td>Source, Win32</td>
</tr>
<tr>
<td>ecoi</td>
<td>E. coli</td>
<td></td>
<td>Source, Win32</td>
<td>Source, Win32</td>
</tr>
<tr>
<td>ecoii</td>
<td>E. coli</td>
<td></td>
<td>Source, Win32</td>
<td>Source, Win32</td>
</tr>
<tr>
<td>ecollas</td>
<td>E. coli</td>
<td></td>
<td>Source, Win32</td>
<td>Source, Win32</td>
</tr>
<tr>
<td>genflex</td>
<td>GenFlex</td>
<td></td>
<td>Source, Win32</td>
<td>Source, Win32</td>
</tr>
<tr>
<td>gp53</td>
<td>Unknown</td>
<td></td>
<td>Source, Win32</td>
<td>Source, Win32</td>
</tr>
<tr>
<td>hcg110</td>
<td>Human</td>
<td></td>
<td>Source, Win32</td>
<td>Source, Win32</td>
</tr>
<tr>
<td>hgfocuse</td>
<td>Human</td>
<td></td>
<td>Source, Win32</td>
<td>Source, Win32</td>
</tr>
<tr>
<td>hgu133a</td>
<td>Human</td>
<td>Source, Win32</td>
<td>Source, Win32</td>
<td>Source, Win32</td>
</tr>
<tr>
<td>hgu133atag</td>
<td>Human</td>
<td>Source, Win32</td>
<td>Source, Win32</td>
<td>Source, Win32</td>
</tr>
<tr>
<td>hgu133b</td>
<td>Human</td>
<td>Source, Win32</td>
<td>Source, Win32</td>
<td>Source, Win32</td>
</tr>
<tr>
<td>hgu95a</td>
<td>Human</td>
<td>Source, Win32</td>
<td>Source, Win32</td>
<td>Source, Win32</td>
</tr>
<tr>
<td>hgu95av2</td>
<td>Human</td>
<td>Source, Win32</td>
<td>Source, Win32</td>
<td>Source, Win32</td>
</tr>
<tr>
<td>hgu95b</td>
<td>Human</td>
<td>Source, Win32</td>
<td>Source, Win32</td>
<td>Source, Win32</td>
</tr>
<tr>
<td>hgu95c</td>
<td>Human</td>
<td>Source, Win32</td>
<td>Source, Win32</td>
<td>Source, Win32</td>
</tr>
<tr>
<td>hgu95d</td>
<td>Human</td>
<td>Source, Win32</td>
<td>Source, Win32</td>
<td>Source, Win32</td>
</tr>
<tr>
<td>hgu95e</td>
<td>Human</td>
<td>Source, Win32</td>
<td>Source, Win32</td>
<td>Source, Win32</td>
</tr>
<tr>
<td>hivrtpplus2</td>
<td>HIV</td>
<td></td>
<td>Source, Win32</td>
<td>Source, Win32</td>
</tr>
<tr>
<td>hu35ksuba</td>
<td>Human</td>
<td>Source, Win32</td>
<td>Source, Win32</td>
<td>Source, Win32</td>
</tr>
<tr>
<td>hu35ksubb</td>
<td>Human</td>
<td>Source, Win32</td>
<td>Source, Win32</td>
<td>Source, Win32</td>
</tr>
<tr>
<td>hu35ksubc</td>
<td>Human</td>
<td>Source, Win32</td>
<td>Source, Win32</td>
<td>Source, Win32</td>
</tr>
<tr>
<td>hu35ksubd</td>
<td>Human</td>
<td>Source, Win32</td>
<td>Source, Win32</td>
<td>Source, Win32</td>
</tr>
<tr>
<td>hu6300</td>
<td>Human</td>
<td>Source, Win32</td>
<td>Source, Win32</td>
<td>Source, Win32</td>
</tr>
</tbody>
</table>
Bioconductor metadata packages

- These packages contain one-to-one and one-to-many mappings for frequently used chips, especially Affymetrix arrays.

- Information available includes gene names, gene symbol, database accession numbers, Gene Ontology function description, enzyme classification number (EC), relations to PubMed abstracts, and others.

- The data use the framework of the `annotate` package, so I will briefly explain how it works.
Environments in R

- To quickly find information on one subject in a long list, a data structure called *hash table* is frequently used in computer science.

- A hash table is a list of key/value pairs, where the key is used to find the corresponding value. To go the other way round, you have to use pattern matching, which is much slower.

- In R, hash tables are implemented as *environments*. For the moment, we do not care about the philosophy behind it and simply treat it as another word for hash table.
Setting up environments

To set up a new environment:

symbol.hash = new.env(hash=TRUE)

To create a key/value pair:

assign("1234_at", "EphA3", env=symbol.hash)

To list all keys of an environment:

ls(env=symbol.hash)

To get the value for a certain key:

get("1234_at", env=symbol.hash)
The annotate package

- That’s all standard R. The annotate package gives one further function, `multiget`, which retrieves more than one entry at a time, and definitions for special data, e.g. PubMed abstracts, or chromosomal location objects.

- ChromLoc objects are quite useful if you want to associate gene expression with certain positions on a chromosome, e.g. if aberration occurs in your samples.

- You can construct a ChromLoc object on your own (→ Vignette), or use the function `buildChromLocation`. For chip HGU95a_v2:

```r
library(hgu95av2)
cl.95a = buildChromLocation("hgu95av2")
```
Plots for ChromLocation objects

- Plotting methods are available via library `geneplotter`
How to get annotation for a set of genes

- Suppose you have found some interesting genes. The index in the matrix is in `index.int`. To get the gene names:

  ```r
gnam.int = geneNames(exprset)[index.int]
  ```

- To find the description:

  ```r
multiget(gnam.int, env=hgu95av2GENENAME)
  ```

- To get EC Numbers (relating to KEGG pathways):

  ```r
multiget(gnam.int, env=hgu95av2ENZYME)
  ```
Some caveats

- Because of the non-unique matching of sequences to the genome, array features are sometimes annotated with more than one position:

```r
a = ls(env=hgu95av2CHRLOC)
table(sapply(multiget(a, env=hgu95av2CHRLOC), length))
```

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11793</td>
<td>647</td>
<td>127</td>
<td>29</td>
<td>13</td>
<td>10</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

- For the 800 or so sequences with more than one location, only the first one is used, although there is no warning. It should be desirable to resolve the ambiguities by hand, but nobody has done yet.
- There are even 14 probe sets on HGU95A_v2 that map to 2 chromosomes; however, these are located on some special extrachromosomal segment and annotated with “X” and “Y”.

- N.B. There is a special annotation package for Affymetrix arrays, **annaffy**. It does not provide much other functionality than **annotate**, but allows to do the same things differently (and maybe more conveniently).
Pattern matching

- To find something in character vectors or character lists, some pattern matching is required.

- If you have real full names, use `match`, e.g.

  ```r
  match("1234_at", rownames(exprs(exprset)) )
  ```

- This will give you the index of `"1234_at"`. It works also with more than one gene:

  ```r
  match(gnam.int, rownames(exprs(exprset)) )
  ```

 will give all indices for genes in `gnam.int`.

- If you want to use regular expression matching, use `grep`.
Export of annotation to HTML

- **annotate** is able to export tables of gene annotations to HTML, which is much nicer to browse than text tables.

- Suppose, from a t-test you have for some genes \(igenes \): mean of genes in class 1, \(igenes.gp1 \), mean in class 2, \(igenes.gp2 \), and P-value \(igenes.pval \). To construct pretty HTML output:

  ```r
  il.res = multiget(igenes, env=hgu95av2LOCUSID)
  il.sym = multiget(igenes, env=hgu95av2SYMBOL)
  ll.htmlpage(il.res, "HOWTO.igenes", "Some genes",
               list(igenes, sym, il.res, round(igenes.gp1,3),
                    round(igenes.gp2,3), round(igenes.pval,3)))
  ```
The result

BioConductor Linkage List

Some genes

<table>
<thead>
<tr>
<th>Gene ID</th>
<th>Description</th>
<th>Value1</th>
<th>Value2</th>
<th>Value3</th>
<th>Value4</th>
</tr>
</thead>
<tbody>
<tr>
<td>23378</td>
<td>KIAA0409</td>
<td>145.869</td>
<td>153.948</td>
<td>0.635</td>
<td></td>
</tr>
<tr>
<td>221823</td>
<td>LOC221823</td>
<td>150.41</td>
<td>153.703</td>
<td>0.892</td>
<td></td>
</tr>
<tr>
<td>4330</td>
<td>MN1</td>
<td>13.057</td>
<td>16.238</td>
<td>0.447</td>
<td></td>
</tr>
<tr>
<td>9637</td>
<td>FEZ2</td>
<td>32.982</td>
<td>27.448</td>
<td>0.311</td>
<td></td>
</tr>
<tr>
<td>27335</td>
<td>eIF3k</td>
<td>268.605</td>
<td>259.847</td>
<td>0.864</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>0.886</td>
<td>0.479</td>
<td>0.873</td>
<td></td>
</tr>
<tr>
<td>6331</td>
<td>SCN5A</td>
<td>200.904</td>
<td>194.797</td>
<td>0.767</td>
<td></td>
</tr>
<tr>
<td>841</td>
<td>CASP8</td>
<td>22.029</td>
<td>23.582</td>
<td>0.606</td>
<td></td>
</tr>
<tr>
<td>27335</td>
<td>eIF3k</td>
<td>293.814</td>
<td>318.384</td>
<td>0.736</td>
<td></td>
</tr>
<tr>
<td>1442</td>
<td>CSH1</td>
<td>29.719</td>
<td>32.583</td>
<td>0.82</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>5.14</td>
<td>5.071</td>
<td>0.773</td>
<td></td>
</tr>
<tr>
<td>6846</td>
<td>XCL2</td>
<td>118.936</td>
<td>113.031</td>
<td>0.714</td>
<td></td>
</tr>
<tr>
<td>6846</td>
<td>XCL2</td>
<td>49.544</td>
<td>42.06</td>
<td>0.455</td>
<td></td>
</tr>
<tr>
<td>2543</td>
<td>GAGE1</td>
<td>309.21</td>
<td>363.333</td>
<td>0.554</td>
<td></td>
</tr>
<tr>
<td>2578</td>
<td>GAGE6</td>
<td>104.038</td>
<td>161.529</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>2215</td>
<td>FCGR3B</td>
<td>163.479</td>
<td>132.496</td>
<td>0.448</td>
<td></td>
</tr>
</tbody>
</table>
Pathways

- For biological interpretation of function, most people want to use *pathways*

- A pathway is something like a bunch of interacting proteins and/or nucleic acids that allow for mass flux (metabolism) or information flux (signal transduction)

- The problem is that interaction information for proteins is quite rare (except for yeast)

- Some textbook pathways exist, but only few in computer-readable format
Pathway databases

- For metabolic pathways, some databases exist: KEGG (http://www.genome.ad.jp/kegg/), and EcoCyc (http://ecocyc.org), HumanCyc (http://humancyc.org) from SRI
Signal transduction information

- KEGG has some very limited information on signal transduction.
- The database TRANSPATH wants to cover signal transduction. But information is incomplete, and you have to pay for part of the information (available via HNB).
- Other sources are www.biocarta.com and www.stke.org (requires registration).
Some software packages for function analysis

- There are some packages that allow to map gene expression profiles to biological information, like pathways.

- One example is GeneMAPP (www.genemapp.org) which also has a collection of user-contributed pathways.

- GoMiner (http://discover.nci.nih.gov/gominer) tries to find statistically significantly enriched terms in a gene list. This is, however, very crude and tends to favor annotations with very few total number of associated genes.

- Ingenuity (http://www.ingenuity.com) has its own database with interaction information, and software to infer pathways from microarray experiments. It seems to be quite capable, but is also expensive.
Dealing with GO annotations

- Since the annotation system is hierarchical, i.e. for each term there is a hierarchical list of more general terms, we can compare functions of genes on every level we wish.
Dealing with GO annotations

- Since the annotation system is hierarchical, i.e. for each term there is a hierarchical list of more general terms, we can compare functions of genes on every level we wish.

- Technically, this amounts to the problem of finding the least common parent node between to genes of interest.
Dealing with GO annotations

- Since the annotation system is hierarchical, i.e. for each term there is a hierarchical list of more general terms, we can compare functions of genes on every level we wish.

- Technically, this amounts to the problem of finding the least common parent node between to genes of interest.

- This can be used to find clusters of functionally related genes in a list that comes out of some other analysis.
Comparing GO-annotated genes

Intracellular signal transduction

MAPKKK pathway

gene 1
gene 2
gene 1
gene 3
GO functional clusters as a graph
Graphs as analysis tools

- Graphs are quite useful for bioinformatic analysis, and have a long-standing history in sequence analysis.

- Recently, some functionality has been built into R to deal with graphs (graph, Rgraphviz, RBGL). Certainly, the most useful capability is to visualize graphs via Rgraphviz. The R package is an interface to the external program graphviz (from AT&T). Big graphs should be visualized by means of ggobi, however.

- Some other immediate use is to construct PubMed co-citation graphs for genes of interest. Functions for this exist. However, for many other applications the meaning of graphs or graph-theoretic algorithms is not clear, so a lot of work remains to be done.