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Topics

Estimation and Statistical Testing

• The Bootstrap

• Permutation Analysis

Predictive Ability using Resampling

• Data-Splitting/Cross-Validation

• The Bootstrap
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Resampling methods

• Methods in which the observed data are used repeatedly, in a
computer-intensive simulation analysis, to provide inferences.

• The original test statistic is considered unusual if it is unusual
compared to the resampling distribution.

• Resampling methods considered here include the bootstrap method
and permutation analysis.

• Other sample re-use methods such as jackknifing and data-splitting
are used for sensitivity analysis or measuring predictive ability.
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Simulation

• Approximations obtained by random sampling or simulation are
called Monte Carlo estimates.

Assume: Random variable Y has a certain distribution
→
Use simulation or analytic derivations to study how an estimator,
computed from samples from this distribution, behaves.

e.g. Y has lognormal distribution⇒ standard error of the median?

1. Analytical solution?

2. Computational solution:
Simulate B samples of size n from the lognormal distribution,
compute the sample median for each sample, and then compute
the sample variance of the 500 sample medians.
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Example of 100 random deviates

n <- 100

set.seed(12345)

# one sample:

rlnorm(n,meanlog=0,sdlog=1)

# 500 samples:

y <- matrix(rlnorm(500*n,meanlog=0,sdlog=1),nrow=n,ncol=500)

ym <- apply(y, 2, median)

summary(ym) # Distribution of 500 median values

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.7446 0.9246 1.0060 1.0130 1.0910 1.4140

ys <- sd(ym)

print(ys) # standard error(median)

[1] 0.1222032
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Example: Assume that we have a sample set y, given by

82 79 81 79 77 79 79 78 79 82 76 73 64

What is the standard error of the median of y?

Use the bootstrap:

library(boot)

y <- scan()

82 79 81 79 77 79 79 78 79 82 76 73 64

med <- function(d, i) median(d[i])

b <- boot(y, med, R=999, stype="i")

Bootstrap Statistics :

original bias std. error

t1* 79 -0.226 0.7010103
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The Bootstrap

Efron’s bootstrap is a general purpose technique for obtaining esti-
mates of properties of statistical estimators without making assump-
tions about the distribution of the data.

Often used to find

1. standard errors of estimates

2. confidence intervals for unknown parameters

3. p values for test statistics under a null hypothesis
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Bootstrap Simulation

Suppose Y has a cumulative distribution function (cdf)
F (y) = P (Y ≤ y)

We have a sample of size n from F (y), y1, y2, . . . , yn

Steps:

1. Repeatedly simulate sample of size n from F

2. Compute statistic of interest

3. Study behavior of statistic over B repetitions
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Bootstrap Simulation (again)

• y1, ..., yn random sample from F .

• Estimation function T is given by T = t(y1, ..., yn) ≡ t(F̂ ).

• Think of t(·) as an algorithm

– applied to F gives parameter θ = t(F ).

– applied to F̂ gives estimate t = t(F̂ ).

• Resample:

y∗1, ..., y
∗
n

i.i.d.∼ F̂ giving T ∗ = t(y∗1, ..., y
∗
n) ≡ t(F̂ ∗).

• Repeat B times to get t∗1, ..., t
∗
B
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Comments

• Without knowledge of F we use the empirical cdf
Fn(y) = 1

n

∑n
i=1 I(yi ≤ y) as an estimate of F .

• Pretend that Fn(y) is the original distribution F (y).

• Sampling from Fn(y) is equivalent to sampling with replacement
from originally observed y1, ..., yn
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• For large n the expected fraction of original data points that are
selected for each bootstrap sample is 0.632

P (obs. i ∈ bootstrap sample b) = 1− (1− 1

n
)n

≈ 1− e−1

= 0.632

Note: 1 − 1
n is probability for not being selected at a specific drawing; with n

drawings we get that (1− 1
n)n is probability of not being selected at least once.

• From bootstrap sampling we can estimate any aspect of the distri-
bution of s(y) [which is any quantity computed from the data y],
for example its standard error

ŝeB =

{
1

B − 1

B∑
b=1

(θ̂∗(b)− θ̂∗(·))2

}1/2

where θ̂∗(b) = s(y∗b) is the bootstrap replication of s(y) and

θ̂∗(·) =
∑B

b=1 θ̂∗(b)/B.
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The Jackknife

• We have a sample y = (y1, ..., yn) and estimator θ̂ = s(y).

• Target: Estimate the bias and standard error of θ̂.

• The leave-one-out observation samples

y(i) = (y1, ..., yi−1, yi+1, ..., yn)

for i = 1, ..., n are called jackknife samples.

• Jackknife estimators are θ̂(i) = s(y(i)).
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• The jackknife estimate of bias is

b̂iasJ = (n− 1)(θ̂(·) − θ̂)

where θ̂(·) =
∑n

i=1 θ̂(i)/n

• The jackknife estimate of the standard error is

ŝeJ =

√
n− 1

n

∑
(θ̂(i) − θ̂(·))2

• Use jackknife to measure the uncertainty of a bootstrap estimate
of a statistic s(y): jackknife-after-bootstrap
→ cp. function jack.after.boot from R package boot.
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Sensitivity analysis (Jackknife after Bootstrap)

How different would the results have been if an observation yj has
been absent from the original data?

Measure effect of yj on calculations by comparing full simulation with
the subset of statistics t∗1, ..., t

∗
B obtained from bootstrap samples

without yj.

Using frequencies f ∗bj counting the number of times yj appears in the
bth simulation we restrict to replicates with f ∗bj = 0.

⇒ Measure effect of yj on the bias by scaled difference

n(bias−j − bias) =

 1

B−j

∑
b:f∗

bj=0

(t∗b − t−j)−
1

B

∑
(t∗b − t)


t−j is the value of t when yj is excluded from the original data.
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Hypothesis testing

• Null hypothesis (H0), absence of some effect, vs. alternative hy-
pothesis (H1)

• Perform a level α test

– within the context of a parametric model,

– without a model
(1) non-parametric test
(2) permutation test
(3) bootstrap test
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The significance level of a test and the p-value

• The significance level (or size) α of a test is the probability of
making a Type I error; that is, α is the probability of deciding
erroneously on the alternative when, in fact, the hypothesis is true.

• The p-value is the chance of obtaining a test statistic as or more
extreme (as far away from what we expected or even farther in the
direction of the alternative) than the one we got, assuming the null
hypothesis is true.

• This chance is called the observed significance level, or p-value.

• A test statistic with a p-value less than some prespecified false
positive level (or size) α is said to be ’statistically significant’ at
that level.

• The p-value represents the probability that we would observe a
difference as large as we saw (or larger) if there were really nothing
happening other than chance variability.
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Type I and type II error; power of a test

• Two types of error

Decision
H0 H1

The Facts H0 - Type I error α
H1 Type II error β -

• The power 1 − β of a test is 1 minus the probability of making a
type II error; that is, 1 − β is the probability of deciding on the
alternative when the alternative is the correct choice.

• The ideal statistical test would have a significance level α of zero
and a power of 1, but this ideal can not be realized.

• In practice, we will fix a significance level α > 0 (usually this will
be 0.05), and choose a statistic that maximizes or comes closest to
maximizing the power 1− β.
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Exact test

• Often variance or distribution of a variable are unknown. Therefore
we usually test a compound hypothesis such as H0 : mean(Y ) = 0,
(Y can be normal with mean 0 and variance 0.5 or with variance 1,
or has a gamma distribution with mean 0 and 4 degrees of freedom).

• A test is said to be exact with respect to a compound hypothesis
if the probability of making a type I error is exactly α for each of
the possibilities that make up the hypothesis.

• A test is said to be conservative, if the type I error never exceeds
α.
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Permutation tests

• Also called randomization tests, rerandomization tests, exact tests.

• Introduced by Fisher and Pitman in the 1930s.

• Usually require only a few weak assumptions.

– underlying distributions are symmetric

– the alternatives are shifts in value

A preliminary rank transformation often can ensure that the tests
are distribution-free.
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Five steps to a Permutation Test

1. Choose a test statistic s(y) which will distinguish the hypothesis
from the alternative.

2. Compute the test statistic for the original set (labelling) of the
observations.

3. Obtain the permutation distribution of s by rearranging observa-
tions.

4. Compute the test statistic for all possible rearrangements (permu-
tations) of the observations.

5. Make a decision:
Reject the null hypothesis if the value of the test statistic for the
original labelling (original data) is an extreme value in the per-
mutation distribution of the statistic. Otherwise, accept the null
hypothesis.
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Example: t test vs. permutation test

• data

X Y
A B C D E F

121 118 110 34 12 22
xn = 116.33 yn = 22.67

t test statistic: t = 13.0875, two-sided p-value: p = 0.0002

• after one permutation:

X Y
A B D C E F

121 118 34 110 12 22
xn = 91 yn = 48

• how many permutations exist?

C6
3 =

(
6

3

)
=

6!

3! · 3!
=

6 · 5 · 4
1 · 2 · 3

= 20
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permutation X Y xn yn xn − yn t
1 ABC DEF 116.33 22.67 93.67 13.087
2 ABD CEF 91.00 48.00 43.00 1.019
3 ABE CDF 87.00 52.00 35.00 0.795
4 ABF CDE 83.67 55.33 28.33 0.627
5 ACD BEF 88.33 50.67 37.67 0.866
6 ACE BDF 84.33 54.67 29.67 0.659
7 ACF BDE 81.00 58.00 23.00 0.500
8 ADE BCF 59.00 80.00 -21.00 -0.455
9 ADF BCE 55.67 83.33 -27.67 -0.611
10 AEF BCD 51.67 87.33 -35.67 -0.813
11 BCD AEF 87.33 51.67 35.67 0.813
12 BCE ADF 83.33 55.67 27.67 0.611
13 BCF ADE 80.00 59.00 21.00 0.455
14 BDE ACF 58.00 81.00 -23.00 -0.500
15 BDF ACE 54.67 84.33 -29.67 -0.659
16 BEF ACD 50.67 88.33 -37.67 -0.866
17 CDE ABF 55.33 83.67 -28.33 -0.627
18 CDF ABE 52.00 87.00 -35.00 -0.795
19 CEF ABD 48.00 91.00 -43.00 -1.019
20 DEF ABC 22.67 116.33 -93.67 -13.087

• Test decision: In two of 20 cases overall the absolute value of the
test statistic t is greater than or equal to the absolute value of
t = 13.087 we obtained for the original labelling.

Therefore we obtain the exact p value p = 2/20 = 0.1.
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• Note: 0.1 is the smallest p value you can get for comparing two
groups of size 3.

• Note: If both groups have equal size only half of permutations is
really needed (symmetry)

• Note: The number of permutations for comparing two groups of
size m and n−m is

Cn
m =

(
n

m

)
=

n!

m! · (n−m)!

e.g. for n = 52 and m = 18

C52
18 =

(
52

18

)
=

52!

18! · 34!
= 4.27× 1013

• It may be necessary to use Monte Carlo sampling to approximate
the permutation test
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Microarray Data: Resampling in multiple testing

Estimate the joint distribution of the test statistics T1, . . . , TG under
the complete null hypothesis HC

0 by permuting the columns of the
(G× n) gene expression data matrix X.

Permutation algorithm for non-adjusted p-values

• For the b-th permutation, b = 1, . . . , B

1. Permute the n columns of the data matrix X.

2. Compute test statistics t1,b, . . . , tG,b for each hypothesis.

• The permutation distribution of the test statistic Tg for hypoth-
esis Hg, g = 1, . . . , G, is given by the empirical distribution of
tg,1, . . . , tg,B. For two-sided alternative hypotheses, the permuta-
tion p-value for hypothesis Hg is

p∗g =
1

B

B∑
b=1

I(|tg,b| ≥ |tg|)

where I(.) is the indicator function, equaling 1 if the condition in
parenthesis is true, and 0 otherwise.
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Permutation algorithm of Westfall & Young (maxT)

• Order observed test statistics: |tr1
| ≥ |tr2

| ≥ . . . ≥ |trG
|.

• For the b-th permutation of the data (b = 1, . . . , B):

– divide the data into its artificial control and treatment group

– compute test statistics t1,b, . . . , tG,b

– compute successive maxima of the test statistics

uG,b = |trG,b|
ug,b = max{ug+1,b, |trg,b|} for g = G− 1, . . . , 1

• compute adjusted p-values:

p̃∗rg
=

1

B

B∑
b=1

I(ug,b ≥ |trg
|)
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Permutation algorithm of  Westfall & Young  – Example

:

7.13

3.42

2.85

0.24

0.11

|t|gene

03.01.83

03.02.12

13.03.05

11.30.84

11.31.31

I(ub>|t|)ub|tb|gene

sort observed 
values B=1000 permutations                       adjusted p-values

0.04848

0.145145

0.138138

0.876876

0.935935

= ∑ / B∑ p~
Gr

t

1r
t

1−Gr
t

2r
t

O. Hartmann - NGFN Symposium, 19.11.2002 Berlin
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Nonparametric Bootstrap Tests

• permutation tests are special nonparametric resampling tests, in
which resampling is done without replacement

• the special nature of significance tests requires that probability
calculations be done under a null hypothesis model, that means

we must resample from a distribution F̂0, say, which satisfies the
relevant null hypothesis H0

• the basic bootstrap test will be to compute the p-values as

pboot = P ∗(T ∗ ≥ t|F̂0)

approximated by

p =
1

B

B∑
b=1

I(t∗b ≥ t)

using the results t∗1, t
∗
2, . . . , t

∗
B from B bootstrap samples
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Example: Comparison of population means
H0 : µx = µy vs. HA : µx 6= µy

• If the shapes of the underlying distributions are identical, then the
two distributions are the same under H0.

• Choose for F̂0 the pooled empirical distribution function of the
two samples.

• the bootstrap test will be the same as the permutation test, except
that random permutations will be replaced by random samples of
size nx + ny drawn with replacement from the pooled data
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Bootstrap test for testing F = G (Efron &Tibshirani, 1993)

1. Draw B samples of size nx + ny with replacement from the pooled
data of the original sets x and y. Call the first nx observations of
the bootstrap sample x∗ and the remaining y∗.

2. Evaluate t(·) on each sample, e.g.

t(x∗b) = x̄∗ − ȳ∗, b = 1, ..., B

3. Compute bootstrap p value by

p̂ = #{t(x∗b) ≥ tobs}/B

where tobs = x̄− ȳ is the observed value of the test statistic on the
original data sets.
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(Monte Carlo) Permutation vs. Bootstrap Resampling

• In MC sampling one samples values of the test statistic from its
underlying permutation distribution

• In Bootstrapping there are two sources of error:

1. Error caused by resampling from an empirical cumulative dis-
tribution function formed from the initial data set.

2. Error caused from by carrying out only a finite number of re-
samples.

• For messier problems when the test statistic has a complicated
analytically intractible distribution the bootstrap can provide a
reasonable answer while the permutation test may not work.

• Permutation methods only apply in a narrow range of problems.
When they apply, as in testing F = G in two-sample problems,
they give “exact” answers without parametric assumptions.
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(Monte Carlo) Permutation vs. Bootstrap Resampling
(cont)

An example comparing the location of two distributions by one-sided
tests:

x <- scan()

16 23 38 94 99 141 197

y <- scan()

10 27 31 40 46 50 52 104 146

The observed test statistic x̄− ȳ is

mean(x)-mean(y)

[1] 30.63492
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(Monte Carlo) Permutation vs. Bootstrap Resampling
(cont)

We want to compute P (X̄ − Ȳ ≥ 30.63|F = G). The permutation
test is done using 16!/(7!9!) = 11440 partitions of the 16 cases into
two groups of 9 and 7, respectively.

library(exactRankTests)

perm.test(x, y, alter="greater")

2-sample Permutation Test

data: x and y

T = 608, p-value = 0.1406

alternative hypothesis: true mu is greater than 0

A bootstrap test was done with 1000 bootstrap samples.
In 126 of these the bootstrap estimate of x̄ − ȳ equalled or exceeded
the original mean difference of 30.63.
Thus the bootstrap estimate of the p-value is 126/1000 = 0.126
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When does the permutation test fail?

The permutation test is exact, if:

• in the one-sample problem, the variables have a symmetric distri-
bution

• in the two- and k-sample problem, the variables are exchangeable
among the samples

A permutation test for comparing the means of two populations does
not fail, if either the variances are the same, or the sample sizes are
the same (cp. Romano, JASA 1990, p.686-692).

A permutation test for the difference of the medians of two distri-
butions will not be exact, even asymptotically, unless the underlying
distributions are the same. This is independent of the sample sizes
(cp. Romano, JASA 1990, p.686-692).

A permutation test fails, if one tests for interaction in an unbalanced
design! (cp. Good, Permutation Tests, 1993).
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When does the permutation test fail?

An example comparing the location of two distributions by two-sided
tests, where the true means and variances as well as the two group
sizes are different:

set.seed(34561)

x <- rnorm(25,0,1)

y <- rnorm(75,1,4)

library(exactRankTests)

perm.test(x, y, exact=T)

t.test(x, y, var.equal=T)

t.test(x, y)

wilcox.exact(x, y)

Two-sample permutation test: p = 0.147
Two-sample t-test: p = 0.156
Welch two-sample t-test: p = 0.020
Wilcoxon rank sum test: p = 0.088
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Bootstrap Tests

library(boot)

# transform x and y to get common mean

x1 <- x-mean(x)+mean(c(x,y))

y1 <- y-mean(y)+mean(c(x,y))

xy <- data.frame(value=c(x1,y2),

group=c(rep("x",length(x)), rep("y",length(y))))

diff.t <- function(d, i)

{

n <- table(as.numeric(d[,2]))

gp1 <- 1:n[1]

t.test(d[i,1][gp1],d[i,1][-gp1])$statistic

}

# resample separately: use strata arg.

set.seed(12345)

b <- boot(xy, diff.t, R=1000, stype="i", strata=xy[,2])

sum(abs(b$t) >= abs(b$t0))/b$R

Bootstrap t test: p = 0.042
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Bootstrap test for testing equality of means
(Efron &Tibshirani, 1993)

1. Transform x and y according x̃i = xi − x̄ + z̄, i = 1, ..., nx, and
ỹi = yi− ȳ + z̄, i = 1, ..., ny, where z̄ is the mean of the combined
sample of x and y.

2. Build B bootstrap data sets (x∗, y∗) using samples of size nx with
replacement from x̃1, ..., x̃nx

and samples of size ny with replace-
ment from ỹ1, ..., ỹny

.

3. Evaluate t(·) on each sample,

t(x∗b) = (¯̃x∗ − ¯̃y∗)/
√

s2
x̃/nx + s2

ỹ/ny, b = 1, ..., B

4. Compute bootstrap p value by

p̂ = #{t(x∗b) ≥ tobs}/B

where tobs = (x̄− ȳ)/
√

s2
x/nx + s2

y/ny is the observed value of the

test statistic on the original data sets, s2
x =

∑nx

1 (xi− x̄)2/(nx−1)
and s2

y =
∑ny

1 (yi − ȳ)2/(ny − 1).
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A small simulation study

X sim N (0, 1); Y ∼ N (1, 4)

Test of the null hypothesis H0 : µx = µy.

median p value
test n1=n2=50 n1=25; n2=75

t 0.087 0.193
Welch 0.089 0.036

Wilcoxon 0.052 0.132
Permutation 0.085 0.195

Bootstrap (eq var) 0.082 0.200
Bootstrap (uneq var) 0.091 0.033
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When might the bootstrap fail?

• Incomplete data

• Dependent data

• Dirty data (“outliers”)
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Recommendations

Which test should be used?

• Consider a permutation test before you turn to a bootstrap

– The bootstrap is not exact except for large samples and has
often low power
(but can sometimes be applied when permutation tests fail).

– The permutation test is exact if observations in the combined
samples are exchangeable (note: i.i.d. observations are ex-
changeable).

• An important advantage of the permutation test over the t test is
that it is exact even for small samples whether or not observations
come from normal distributions.
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R Packages

• Permutation tests: exactRankTests, multtest.

• Bootstrap: boot, Design.


