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Topics

Predictive Ability using Resampling
e Data-Splitting/Cross-Validation
e The Bootstrap
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Model: A current approximation to complex relationships

oFirst ®Prev ®Next ®Last ®Go Back ®Full Screen ®Close ®Quit



Model Assessment and Selection 4

Predictive Accuracy

e Some models are used only for hypothesis testing

o If used for prediction, need to consider accuracy of predictions

e T'wo major aspects of predictive accuracy that need to be assessed:

— Reliability or calibration of a model:
“ability of the model to make unbiased estimates of the out-
come”
(“observed responses agree with predicted responses”)

— Discrimination ability:
“model is able, through the use of predicted responses, to sepa-
rate subjects”
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Major problem is overfitting

Behaviour of training sample error
as the model complexity is varied

High Bias Low Bias
Low variance High variance
+------  memm—m——— >

Prediction Error

Training Sample

Low High
Model Complexity
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Need: Model assessment /validation to ascertain whether predicted
values from the model are likely to accurately predict responses on
future subjects or subjects not used to develop the model

e T'wo modes of validation

— External:
Use different sets of subjects for building the model (including
tuning) and testing

— Internal:
(i) Apparent (evaluate fit on same data used to create fit)
(ii) Data splitting and its extensions
(iii) Resampling methods
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e Naive approach: Use the entire training data to select our predic-
tor /classifier and estimate the error rate

— The naive approach has two fundamental problems

* The final model will overfit the training data. This problem
is more pronounced with models that have a large number of
parameters.

* The error rate estimate will be overly optimistic (lower than
the true error rate). “In fact, it is not uncommon to have
100% correct classification on training data”

e A much better idea is to split the training data into disjoint subsets
or use resampling methods
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Prediction Error

Behaviour of test and training sample error
as the model complexity is varied

High Bias Low Bias
Low variance High variance
¢----==-- mm=————— >

Test Sample

Training Sample

Low High
Model Complexity
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One-Time Data-Splitting

Split samples into two parts at random with balancing distributions of
the response (and predictor variables)

e Training Set: Model development

e Test or Assessment Set: Measure predictive accuracy

Total number of samples

Training Set Test Set

Sometimes, a chronological split is used so that the validation is
prospective.
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One-Time Data-Splitting

The one-time data-splitting method has two basic drawbacks

e In problems where we have a sparse data set we may not be able
to afford the “luxury” of setting aside a portion of the data set for
testing (“significant loss of power”)

e The assessment can vary greatly when taking different splits.
Since it is a single train-and-test experiment, the estimate of the
error rate will be misleading if we happen to get an “unfortunate”
split.
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Cross-Validation

o K-fold cross-validation

Total number of samples

Experiment 1

Experiment 2

:/ Test samples

Experiment 3 | | |

Experiment 4

o [Leave-One-Out cross-validation

Total number of samples

< »!

Experiment 1 |

Experiment 2 | | | |

Experiment 3 | || |
/ Single test sample

Experiment N | |

Results are pooled from all test sets to estimate performance of the
model (each case is used exactly once).
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(Aggregate) Prediction Error

General notation:
e Let y denote the response variable and x the covariate vector.
e Let y, and x, denote response and covariate values for a new case.

e Measure the prediction error by loss function: ¢y, 9, )

e Prediction rule: g, = pu(x,, F)
where F' is the empirical distribution function sampled from dis-
tribution F’

o (Aggregate) prediction error

A

D = D(F,F) = Ele(Y,, u(X ., F))|F]
— Use an estimate of D, say A = A(F)
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Misclassification error (two groups)

e Suppose a response y which is equal 1 or 0.

A

e The prediction rule p(z,, F) is an estimate of P(Y, = 1|z, ) for
a new case (T, ¥y, ).

A~

e Set gy, = 1if u(x,, F) > 0.5 and g, = 0 otherwise.

e If misclassifications costs are equal, the misclassification loss func-

tion 1S
R 1, 7
(ys, Uy) = { Y+ 7 Ui

0, otherwise

e The aggregate prediction error D is then the overall misclassifi-
cation rate, equal to the proportion of cases where y, is wrongly
predicted.
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e Apparent error (resubstitution error):

Use the same data for prediction which was used for fitting the
model

Aapp F F ZC Yi, W ))

Ay underestimates the true A (“it is downwardly biased”)
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e [.eave-one-out Cross-Validation

Training sets of size (n — 1) are taken and prediction rule is tested
for a single observation:

1 < A
Acv = ﬁ Z C(yia /L(QZ’Z, F—Z>>

i=1
where F _; represents the data excluding the 2-th case.
Note the small bias of leave-one-out cv:

“It differs from A by terms of order n~? (whereas the apparent
error differs by terms of order n~!)”,
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e K-fold Cross-Validation

Since the n training sets are so similar to one another this can
make A, too variable

— leave out groups of observations; especially K disjoined groups

n

1
Acv,K — ﬁ Z C(yi7 II’L(IZ7 F—k(l)))

1=1

where F_k@) represents the data excluding the group containing
the 2-th case.
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e K-fold Cross-Validation: Training set size bias

0.6

1-Err
0.4
|

0.2

0.0

\ i i T i T T T T
0 25 50 75 100 125 150 175 200

Size of training set

Hypothetical learning curve: The performance of the predictor im-
proves as the training set size increases to about 100 observations.

Increasing this number further brings only a small benefit.
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e [.cave-one-out vs. K-fold Cross-Validation

K=2 <4 P K=n
Smaller training sets with Larger training sets
less overlap with more overlap
Larger test set Smaller test set
Advantages Disadvantages
Leave-One- Effective use of data Computationally expensive
Out (K=n) Nearly unbiased estimate | High variance
of the prediction error
K-fold Lower variance than Training set size bias
Leave-One-Out Overestimates prediction error
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e K-fold Cross-Validation (cont)

— Good strategy: Take K = min(y/n, 10)
A size of at least \/n should perturb the data sufficiently to give
small variance.

— Problem: increasing bias (especially if K is small)!
“overestimation of the prediction error depending on the train-
ing sample size”

— Reduce bias by adjustment:

A

Denote by F', the data with the k-th group omitted, k& =
1,..., K, and let p; denote the proportion of the k-th group in
the data set.
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K-fold Adjusted Cross-Validation

1. Fit the regression model to all cases, calculate predictions g; from
that model, and average the values of c(y;, y;) to get D(F, F).

2. Choose group sizes my, ..., mg such that m; + ... + mg = n.
3.Fork=1,...K

(a) choose C), by sampling m; times without replacement from
{1,2,...,n} minus elements chosen for previous Cjs

(b) fit the regression model to all data except cases © € C},

¢) calculate new predictions y; = pu(x;, F_k) for 1 € C,

d) calculate predictions g, = p(z;, F_k) for all 7; then
(e) average the n values c(y;, J;) to give D(F, F_}).

4. Average the n values of c(y;, U;) using g; from step 3(c) to give
A -

5. Calculate Ay v = Ay + D(F, F) — Zéilka(F, F ;) with
pr = my/n.
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Drawbacks of Cross-Validation

e Leave-one-out cv: may have large variance

e K-fold cv: may have large bias, depending on the choice of the
number of observations to be hold out from each fit.

If the learning curve has a considerable slope at the given training
set size, 5 or 10-fold cv will strongly overestimate the true predic-
tion error.
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Estimate Prediction Error (Bootstrap)

The bootstrap estimate of the prediction error is

A = A(F) = E(D(F,F*))

where [ denotes a bootstrap sample (22, y%), ..., (z%, y) of the
original data.

Now the prediction rule is fitted to these data resulting in predictions
/’L(Iia F*b) of Yi-

Using a loss function ¢(-) A is then approximated by

B n
A 1 1 %D
Ay = E;H;C(%”(%F )

derived by fitting the model on a set of bootstrap samples, and com-
paring its predictions with the original data.
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Problem: Bootstrap sample act as training sample, and original
training set act as test set.

Both samples have observations in common
— overoptimistic estimate due to overfitting

— underestimates the error
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e Alternative 1: Leave-one-out bootstrap estimate of prediction error

Ao = —Z‘ > clys, plws, F*))

_Z beB_;

B_; is set of indices that does not contain observation ¢ and |B_;|
is the size of this set.

Note that |B_;|/B is approximately equal to e™* = 0.368
Abcv is a bootstrap smoothing of the leave-one-out cv.
— overfitting no problem, but (like c¢v) bias by training set size.

— possibly overestimates error rate.

oFirst ®Prev ®Next ®Last ®Go Back ®Full Screen ®Close ®Quit



Model Assessment and Selection 25

Example: 6 bootstrap samples

original data |1 2 3 4 5
bootstrap sample 1|1 1 3 4 4
bootstrap sample 2|1 2 2 3 5
bootstrap sample 3|1 3 3 3 4
bootstrap sample 4|3 4 4 5 5
bootstrap sample 5|2 2 3 4 4
bootstrap sample 6|1 1 2 4 5

Now bootstrap samples 1,3,and 4 do not include observation 2.

And so we get: B_o = {1,3,4} with |B_| = 3.

oFirst ®Prev ®Next ®Last ®Go Back ®Full Screen ®Close ®Quit



Model Assessment and Selection 26

e Alternative 2: “.632” bootstrap estimate of prediction error

Agp = .368A,, + .632A,,

where Aapp is the apparent error estimate
pulls leave-one-out down toward training error

— may underestimate the error in overfitting situations

. A g3

Aapp < - > A,
ess More

overfitting overfitting
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e Problem: A.632 can break down in overfitted situation
— take into account amount of overfitting.
— put relatively more weight on Abcv

— 7.6324+” bootstrap estimate of prediction error

This estimate was proposed by Efron & Tibshirani (JASA, 1997)
for highly overfit rules like nearest neighbors.
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e Alternative 3: 7.6324” bootstrap estimate of prediction error

A

A.632+ - (1 - UA)) ) Achp + w - Abcv

where the weight w is given by

. 632
w = ——— .
1 — .368R
and where
R _ Abcv _AAapp
’AY T Aapp

is the "relative overfitting rate”.

~ denotes the "no information error rate” that would apply if input
and output are independent

¥ = %Z > clys, lae, )

=1 =1
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e For classification problems vy is estimated by

Y
Y= sz‘(l —q)
i=1

where g is the number of different classes, p; is the proportion of
the original cases from the ith class (= prior probability of class i),
and ¢; is the proportion assigned to the i7th class by the prediction
rule (= posterior probability of class i).

¢ R may have to be truncated to not fall outside 0, 1].

e w varies from 0.632 (R =0) to 1.0 (R =1).

° A_632+ puts more weight on the bootstrap leave-one-out error Abw
when the amount of overfitting (Ay., — Ayyp) is large.

e Use A.632+ if the prediction rule is overfit due to feature selection.
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Bootstrap overview

Underestimates error dueto overlap

A in assessment and training sets A
Ab > Abcv
Can
overestimate
error dueto
training set
Underestimates error in Size bias

N overfitting situations v
A g3+ < A g3
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° Abcv is based on ~ .632 X n of the original cases and closely agrees
with the "half-sample” cross-validation and therefore it is upwardly

biased.

— Use 7.632” estimator (Efron, 1983) to correct for the upward
bias in A, with the downward bias in the apparent error estimate.

e In gene expression studies the prediction rule is an overfit formed
from a large number of genes relative to the number of cases.

— Use 7.632+” estimator (Efron & Tibshirani, 1997) to put rel-

atively more weight on A, (preferably in overfit situations like
feature selection).
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Misclassification error (two groups)

e The prediction z(x,, F') and the measure of error ¢(y.,7,) are
not continuous functions of the data.

—

bootstrap methods for estimating D or its expected value A are
superior to cross-validation methods, in terms of variability:.
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Variable/Gene Selection

e Model/variable selection implies that there is some likelihood of a
“true” model,

some pre-specified variables have zero association with response Y

e Need to perform gene selection preceding the predictive modelling

— e.g. eliminate variables whose distributions are too narrow.
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Variable/Gene Selection (cont)

e Gene filtering is helpful, but

estimating the error rate after variable selection leads to biased
estimates of the prediction error

— overstating importance of variables which are retained in the
model.

e Make sure that you are cross-validating the experiment that you
have carried out,
in particular, if you are selecting genes, rather than working with
known genes, you must cross-validate the gene selection process as
well.

e There are many examples with low classification error rates which
do not cross-validate properly (model/gene selection was not vali-

dated).
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Ambroise & McLachlan (PNAS, 2002): Selection bias in gene
extraction on the basis of microarray gene-expression data

. it seems that the selection method and the number of se-
lected genes are more important than the classification method
for constructing a reliable prediction rule.

. it is important to correct for the selection bias in estimating
the prediction error for a rule formed by using a subset of genes
selected from a very large set of available genes.
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Prediction error in gene selection situations

Example: The expression set Huang.RE which is discussed in THE
LANCET (2003) 361:1590-1596. The data contains microarrays of 52
women with breast cancer of whom 34 did not experience a recurrence
of the tumour during a 3 years time period.

For simplicity select 1000 most variable probe sets (e.g. by largest
variability) for the exercises (data frame mydata)

library(affy)
sd.exp <- apply(exprs(Huang.RE),1,sd)
index <- order(sd.exp,decreasing=TRUE) [1:1000]

mydata <- data.frame (t(exprs(Huang.RE) [index,]),
Recurrence=as.factor (pData(Huang.RE)$Recurrence))
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Now we select probe sets by comparing their univariate p-values of a
two-sample t-test with a pre-specified level of 0.05 and train a LDA
using the selected probe sets only (function mymod).

mymod <- function(formula, data, level = 0.05) {

sel <- which(lapply(data, function(x) {

if (!is.numeric(x))

return(1)

else return(t.test(x ~ data$Recurrence)$p.value)
}) < level)
sel <- c(which(colnames(data) Jinj, "Recurrence"), sel)
mod <- lda(formula, data = datal[, sell)
function (newdata) {
predict (mod, newdata = newdatal[, sel])$class

}
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The .6324 bootstrap estimate of the prediction error using B=25
bootstrap samples gives a misclassification rate of 0.27.

library(ipred)

set.seed(71003)

errorest (Recurrence ~ ., data=mydata, model=mymod, estimator="632plus",
est.para=control.errorest (nboot=25))

errorest.data.frame(formula=Recurrence ~ ., data=mydata,

model=mymod, estimator="632plus", est.para=control.errorest(nboot=25))

.632+ Bootstrap estimator of misclassification error
with 25 bootstrap replications

Misclassification error: 0.2705
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Define a gene expression set of 1000 genes with no association to the
response

set.seed(63321)
mydata <- data.frame(matrix(rnorm(52*1000),52,1000),
Recurrence=as.factor (pData(Huang.RE)$Recurrence))
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1. Select genes by individual t tests (selection level 0.05), perform a
lda using the selected subset and compute estimate of the misclassifi-
cation error (ignoring the selection process)

sel <- which(lapply(mydata, function(x) {
if (!is.numeric(x)) return(1l)
else return(t.test(x ~ mydata$Recurrence)$p.value)
}) < 0.05)
sel <- c(which(colnames(mydata) 7inj, "Recurrence"), sel)
mypredict.lda <- function(object, newdata) {
predict(object, newdata = newdata)$class
}
errorest (Recurrence ~ ., data = mydatal, sell,
model = lda, estimator = "632plus", predict = mypredict.lda)

Call:
errorest.data.frame(formula = Recurrence ~ ., data = mydatal,
sel], model = lda, predict = mypredict.lda, estimator = "632plus")

.632+ Bootstrap estimator of misclassification error
with 25 bootstrap replications

Misclassification error: 0.1005
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2. Now repeat the error estimation taking into account the gene
selection by individual t tests (using 25 bootstrap samples)

errorest (Recurrence ~ ., data=mydata, model=mymod,
estimator="632plus", est.para=control.errorest(nboot=25))

Call:

errorest.data.frame(formula = Recurrence ~ ., data = mydata,
model = mymod, estimator = "632plus",
est.para = control.errorest(nboot = 25))

.632+ Bootstrap estimator of misclassification error
with 25 bootstrap replications

Misclassification error: 0.3447
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3. Finally repeat the error estimation taking into account the gene
selection by individual t tests (using 7-fold cross validation)

errorest (Recurrence ~ ., data=mydata, model=mymod,
estimator="cv", est.para=control.errorest (k=7))

Call:
errorest.data.frame(formula = Recurrence ~ ., data = mydata,
model = mymod, estimator = "cv", est.para = control.errorest(k = 7))

7-fold cross-validation estimator of misclassification error

Misclassification error: 0.4231

Note: The true misclassification rate is 1 — 34/52 = 0.346.

Result of this example:

Ignoring the selection process results in an error estimate of 10%.
The .632+ bootstrap estimate of 0.345 is nearly correct, while the
7-fold cross-validation overestimates the error.
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From: Ambroise & McLachlan (PNAS, 2002)

0.57

........... o
0.
{'.
o
S
wo.2t
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—— CWV1IE
------- B632+
0.1t --- CV10E
: — Gamma
.D_ i l.l ----- N I O ..... DO :
0 2 4 6 8 10 12

log2(number of genes)

Fig.5. Errorrates of the SVM rule averaged over 20 noninformative samples
generated by random permutations of the class labels of the colon tumor

tissues.
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Error

Test set error

_Training set error
>

Model complexity
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Separate Test and Validation Sets

e The error rate estimate of the final model on test data will be
biased since the test set is used to select the final model

e If model selection and error estimates are to be computed simulta-
neously, we need an additional validation set:

— Training set:
Used to fit the model

— Test (or assessment set):
Used to tune the parameters of a predictor

— Validation set:
A set of cases used only to assess the performance of a fully-
trained predictor.

After assessing the final model with the validation set, YOU MUST
NOT further tune the model.
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"Topics

Controlling Model Complexity
e Restriction
e Selection

e Regularization

o First

® Prev

o Next

o/ ast

® Go Back

e Full Screen

o Close

o Quit
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Controlling the complexity of the model

Hastie, Tibshirani, Friedman, 2001

oFirst ®Prev ®Next ®Last ®Go Back ®Full Screen ®Close ®Quit



Model Assessment and Selection 48

Hastie, Tibshirani, Friedman, 2001
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closest fit
Readlization
model space
model
bias
estimation
variance
Hastie, Tibshirani, Friedman, 2001
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closest fit
Readlization
/ model space

Truth ./ shrunken fit

model restricted

bias , model space

estimation regul arization
variance ?g
bias

Hastie, Tibshirani, Friedman, 2001

oFirst ®Prev ®Next ®Last ®Go Back ®Full Screen ®Close ®Quit



Model Assessment and Selection 51

Controlling the complexity of the model
e Restriction methods

The class of functions of the input variables defining the model is
limited.

Example:
Allow only linear combinations of given basis functions A,

f(X) = ij(Xj) = szﬁjmhy‘m(){j)

j=1 m=1

hjm is the m!" basis function of the 7 input variable.

The size of the model is limited by the number M; of basis functions
used for the G' components f;.

oFirst ®Prev ®Next ®Last ®Go Back ®Full Screen ®Close ®Quit



Model Assessment and Selection 52

Controlling the complexity of the model

e Selection methods

Include only those basis functions hj, that contribute ‘signifi-
cantly’ to the fit of the model.

Examples:

— Variable selection methods

— Stagewise greedy approaches like boosting

e Regularization methods
Restrict the coefficients of the model.

Example: Ridge regression
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Penalized Regression

e Maximizing the log likelihood can result in fitting noise in the data.

e A shrinkage approach will often result in estimates of the regression
coefficients that, while biased, are lower in mean squared error and
are more close to the true parameters.

e A good approach to shrinkage is penalized maximum likelihood
estimation (le Cessie & van Houwelingen, 1990).

From the log-likelihood logL a so-called ‘penalty’ is subtracted,
that discourages regression coefficients to become large.

— penalized log likelihood:
logL — X - p(B)

p(B) penalty function, A non-negative penalty factor.
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Penalized Regression

e Often used penalty function:
Quadratic regularization (ridge regression)

1 G
p(ﬁ) = 525?

e Harrell (2001):

Use scaling constants sy, So, ..., S¢, chosen to make s;(3; unitless
| &
2
p(B) = 5 (5,8
j=1
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Choice of A
o AIC (Akaike’s Information Criterion):
—2logLaik + 2d. f.

For a given A the effective number of parameters being estimated
is reduced because of shrinkage — effective degrees of freedom (cp.

Gray, 1992)
d.f.=trace(1(5") - V(B"))

(P is penalized MLE; I is information matrix ignoring the penalty
and V' is covariance matrix computed by inverting the information
matrix that included the second derivatives with respect to (3 in
the penalty.

e Alternative: Cross validation (and smoothing on the pairs
{\, predictive accuracy}).
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Applications

e Data
Blood samples of a subset of 101 patients, randomly selected from a
study of 325 B-cell chronic lymphocytic leukemia (B-CLL) patients

— Affymetrix Human Genome U95 array (version 1 and 2):
Gene expression values for 12600 probe sets

— Array normalization:
Robust Multichip Average (RMA) procedure (Irizarry et al.,
2003).

Median follow up was 28 months since date of the genetic study.

A prognostic survival model was build using clinical data, molecu-
lar cytogenetic data and microarray measurements.

For demonstration purposes we use only genes (i.e. probe sets) as
input variables, thus ignoring cytogenetic and clinical features.
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Survival since date of genetic study of 101 B-CLL patients.
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Number at risk: 101 95 78 58 45 33 20

Median survival 54 months (18 patients died).
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Classification

e Immunoglobulin variable heavy chain (IgVH) gene mutation status
is a strong prognostic marker for survival of patients with B-CLL
Patients without gene mutation of the IgVH region — worse
prognosis.

e Task: Discriminate observations into the two categories character-
ized by the IgVH mutation status by using gene expression data.
The outcome variable of interest is ¥y = 1 if no IgVH mutation
was observed and zero otherwise.

e For two of the patients no information on the IgVH mutation status
was available.
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Survival since date of genetic study of 99 B-CLL patients according to
their [gVH mutation status.
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Penalized Regression (p >> n)

e The dimension of the resulting systems of equations is of the size
of numbers of genes

e Can be reduced using singular value decomposition to a size corre-
sponding to the (much smaller) number of observations (KEilers et

al., 2001).
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Binomial log-likelihood loss and Lo-penalty

logLy = S0 yilog(p)) + S (1 — y)log(l — p)) + AT, 32

Akaike's Information Criterion Effective degrees of freedom
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Minimum AIC at log(A)=1.75 (effective d.f.=31.26)
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(Unscaled and scaled) parameter estimates
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all data 10fold cross-validation
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R Packages

e Prediction: ipred, pamr, Design.

e Bootstrap: boot, Design.
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