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Topics

Predictive Ability using Resampling

• Data-Splitting/Cross-Validation

• The Bootstrap

Controlling Model Complexity

• Restriction

• Selection

• Regularization
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Model: A current approximation to complex relationships
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Predictive Accuracy

• Some models are used only for hypothesis testing

• If used for prediction, need to consider accuracy of predictions

• Two major aspects of predictive accuracy that need to be assessed:

– Reliability or calibration of a model:
“ability of the model to make unbiased estimates of the out-
come”
(“observed responses agree with predicted responses”)

– Discrimination ability:
“model is able, through the use of predicted responses, to sepa-
rate subjects”
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Major problem is overfitting
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Need: Model assessment/validation to ascertain whether predicted
values from the model are likely to accurately predict responses on
future subjects or subjects not used to develop the model

• Two modes of validation

– External:
Use different sets of subjects for building the model (including
tuning) and testing

– Internal:
(i) Apparent (evaluate fit on same data used to create fit)
(ii) Data splitting and its extensions
(iii) Resampling methods
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• Naive approach: Use the entire training data to select our predic-
tor/classifier and estimate the error rate

– The naive approach has two fundamental problems

∗ The final model will overfit the training data. This problem
is more pronounced with models that have a large number of
parameters.

∗ The error rate estimate will be overly optimistic (lower than
the true error rate). “In fact, it is not uncommon to have
100% correct classification on training data”

• A much better idea is to split the training data into disjoint subsets
or use resampling methods
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One-Time Data-Splitting

Split samples into two parts at random with balancing distributions of
the response (and predictor variables)

• Training Set: Model development

• Test or Assessment Set: Measure predictive accuracy

Intelligent Sensor Systems
Ricardo Gutierrez-Osuna
Wright State University

4

The holdout method
g Split dataset into two groups

n Training set: used to train the classifier
n Test set: used to estimate the error rate of the trained classifier

g A typical application the holdout method is determining a stopping 
point for the back propagation error

Training Set Test Set

Total number of samples

Epochs

MSE

Training set error

Test set errorStopping point

Sometimes, a chronological split is used so that the validation is
prospective.
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One-Time Data-Splitting

The one-time data-splitting method has two basic drawbacks

• In problems where we have a sparse data set we may not be able
to afford the “luxury” of setting aside a portion of the data set for
testing (“significant loss of power”)

• The assessment can vary greatly when taking different splits.
Since it is a single train-and-test experiment, the estimate of the
error rate will be misleading if we happen to get an “unfortunate”
split.
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Cross-Validation

• K-fold cross-validation

Intelligent Sensor Systems
Ricardo Gutierrez-Osuna
Wright State University

7

K-Fold Cross-validation
g Create a K-fold partition of the the dataset

n For each of K experiments, use K-1 folds for training and the remaining 
one for testing 

g K-Fold Cross validation is similar to Random Subsampling 
n The advantage of K-Fold Cross validation is that all the examples in the 

dataset are eventually used for both training and testing

g As before, the true error is estimated as the average error rate

Total number of samples

Experiment 1

Experiment 2

Experiment 3
Test samples

Experiment 4

∑
=

=
K

1i
iE

K
1

E

• Leave-One-Out cross-validation

Intelligent Sensor Systems
Ricardo Gutierrez-Osuna
Wright State University

8

Leave-one-out Cross Validation
g Leave-one-out is the degenerate case of K-Fold Cross 

Validation, where K is chosen as the total number of examples
n For a dataset with N examples, perform N experiments

n For each experiment use N-1 examples for training and the remaining 
example for testing

g As usual, the true error is estimated as the average error rate on 
test examples

∑
=

=
N

1i
iE

N
1

E

Total number of samples

Experiment 1

Experiment 2

Experiment 3

Experiment N

Single test sample

Results are pooled from all test sets to estimate performance of the
model (each case is used exactly once).
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(Aggregate) Prediction Error

General notation:

• Let y denote the response variable and x the covariate vector.

• Let y+ and x+ denote response and covariate values for a new case.

• Measure the prediction error by loss function: c(y+, ŷ+)

• Prediction rule: ŷ+ = µ(x+, F̂ )

where F̂ is the empirical distribution function sampled from dis-
tribution F

• (Aggregate) prediction error

D = D(F, F̂ ) = E[c(Y+, µ(X+, F̂ ))|F̂ ]

−→ Use an estimate of D, say ∆ = ∆(F )
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Misclassification error (two groups)

• Suppose a response y which is equal 1 or 0.

• The prediction rule µ(x+, F̂ ) is an estimate of P (Y+ = 1|x+) for
a new case (x+, y+).

• Set ŷ+ = 1 if µ(x+, F̂ ) ≥ 0.5 and ŷ+ = 0 otherwise.

• If misclassifications costs are equal, the misclassification loss func-
tion is

c(y+, ŷ+) =

{
1, y+ 6= ŷ+
0, otherwise

• The aggregate prediction error D is then the overall misclassifi-
cation rate, equal to the proportion of cases where y+ is wrongly
predicted.
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• Apparent error (resubstitution error):

Use the same data for prediction which was used for fitting the
model

∆app = D(F̂ , F̂ ) =
1

n

n∑
i=1

c(yi, µ(xi, F̂ ))

∆app underestimates the true ∆ (“it is downwardly biased”)
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• Leave-one-out Cross-Validation

Training sets of size (n− 1) are taken and prediction rule is tested
for a single observation:

∆cv =
1

n

n∑
i=1

c(yi, µ(xi, F̂−i))

where F̂−i represents the data excluding the i-th case.

Note the small bias of leave-one-out cv:

“It differs from ∆ by terms of order n−2 (whereas the apparent
error differs by terms of order n−1)”.
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• K-fold Cross-Validation

Since the n training sets are so similar to one another this can

make ∆̂cv too variable

→ leave out groups of observations; especially K disjoined groups

∆cv,K =
1

n

n∑
i=1

c(yi, µ(xi, F̂−k(i)))

where F̂−k(i) represents the data excluding the group containing
the i-th case.
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• K-fold Cross-Validation: Training set size bias
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Hypothetical learning curve: The performance of the predictor im-
proves as the training set size increases to about 100 observations.

Increasing this number further brings only a small benefit.
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• Leave-one-out vs. K-fold Cross-ValidationCross Validation Extremes
K=2 K=n

Smaller training sets with 
less overlap

Larger test set

Larger training sets 
with more overlap

Smaller test set

Training set size bias Lower variance than
Leave-One-Out                   Overestimates prediction error

K-fold

Computationally expensive 
High variance

Effective use of data
Nearly unbiased estimate
of the prediction error         

Leave-One- 
Out (K=n)

DisadvantagesAdvantages
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• K-fold Cross-Validation (cont)

– Good strategy: Take K = min(
√

n, 10)
A size of at least

√
n should perturb the data sufficiently to give

small variance.

– Problem: increasing bias (especially if K is small)!
“overestimation of the prediction error depending on the train-
ing sample size”

→ Reduce bias by adjustment:

Denote by F̂−k the data with the k-th group omitted, k =
1, ..., K, and let pk denote the proportion of the k-th group in
the data set.

→

∆acv,K = ∆cv,K + D(F̂ , F̂ )−
K∑

k=1

pkD(F̂ , F̂−k)
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K-fold Adjusted Cross-Validation

1. Fit the regression model to all cases, calculate predictions ŷi from

that model, and average the values of c(yi, ŷi) to get D(F̂ , F̂ ).

2. Choose group sizes m1, ...,mK such that m1 + ... + mK = n.

3. For k = 1, ..., K

(a) choose Ck by sampling mk times without replacement from
{1,2,...,n} minus elements chosen for previous Cis

(b) fit the regression model to all data except cases i ∈ Ck

(c) calculate new predictions ŷi = µ(xi, F̂−k) for i ∈ Ck

(d) calculate predictions ŷki = µ(xi, F̂−k) for all i; then

(e) average the n values c(yi, ŷki) to give D(F̂ , F̂−k).

4. Average the n values of c(yi, ŷi) using ŷi from step 3(c) to give

∆̂cv,K.

5. Calculate ∆acv,K = ∆cv,K + D(F̂ , F̂ )−
∑K

k=1 pkD(F̂ , F̂−k) with
pk = mk/n.
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Drawbacks of Cross-Validation

• Leave-one-out cv: may have large variance

• K-fold cv: may have large bias, depending on the choice of the
number of observations to be hold out from each fit.

If the learning curve has a considerable slope at the given training
set size, 5 or 10-fold cv will strongly overestimate the true predic-
tion error.
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Estimate Prediction Error (Bootstrap)

The bootstrap estimate of the prediction error is

∆̂ = ∆(F̂ ) = E(D(F̂ , F̂ ∗b))

where F̂ ∗b denotes a bootstrap sample (x∗b1 , y∗b1 ), . . . , (x∗bn , y∗bn ) of the
original data.

Now the prediction rule is fitted to these data resulting in predictions

µ(xi, F̂
∗b) of yi.

Using a loss function c(·) ∆̂ is then approximated by

∆̂b =
1

B

B∑
b=1

1

n

n∑
i=1

c(yi, µ(xi, F̂
∗b))

derived by fitting the model on a set of bootstrap samples, and com-
paring its predictions with the original data.
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Problem: Bootstrap sample act as training sample, and original
training set act as test set.

Both samples have observations in common

→ overoptimistic estimate due to overfitting

→ underestimates the error
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• Alternative 1: Leave-one-out bootstrap estimate of prediction error

∆̂bcv =
1

n

n∑
i=1

1

|B−i|
∑
b∈B−i

c(yi, µ(xi, F̂
∗b))

B−i is set of indices that does not contain observation i and |B−i|
is the size of this set.

Note that |B−i|/B is approximately equal to e−1 = 0.368

∆̂bcv is a bootstrap smoothing of the leave-one-out cv.

→ overfitting no problem, but (like cv) bias by training set size.

→ possibly overestimates error rate.
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Example: 6 bootstrap samples

original data 1 2 3 4 5
bootstrap sample 1 1 1 3 4 4
bootstrap sample 2 1 2 2 3 5
bootstrap sample 3 1 3 3 3 4
bootstrap sample 4 3 4 4 5 5
bootstrap sample 5 2 2 3 4 4
bootstrap sample 6 1 1 2 4 5

Now bootstrap samples 1,3,and 4 do not include observation 2.
And so we get: B−2 = {1, 3, 4} with |B−2| = 3.
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• Alternative 2: “.632” bootstrap estimate of prediction error

∆̂.632 = .368∆̂app + .632∆̂bcv

where ∆̂app is the apparent error estimate

pulls leave-one-out down toward training error

→ may underestimate the error in overfitting situations

∆app
^ ∆bcv

^

Less 
overfitting

More 
overfitting

∆.632
^
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• Problem: ∆̂.632 can break down in overfitted situation

→ take into account amount of overfitting.

→ put relatively more weight on ∆̂bcv

→ ”.632+” bootstrap estimate of prediction error

This estimate was proposed by Efron & Tibshirani (JASA, 1997)
for highly overfit rules like nearest neighbors.
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• Alternative 3: ”.632+” bootstrap estimate of prediction error

∆̂.632+ = (1− ŵ) · ∆̂app + ŵ · ∆̂bcv

where the weight w is given by

ŵ =
.632

1− .368R̂
.

and where

R̂ =
∆̂bcv − ∆̂app

γ̂ − ∆̂app

is the ”relative overfitting rate”.

γ denotes the ”no information error rate” that would apply if input
and output are independent

γ̂ =
1

n2

n∑
i=1

n∑
i′=1

c(yi, µ(xi′, F̂
∗b))
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• For classification problems γ is estimated by

γ̂ =

g∑
i=1

pi(1− qi)

where g is the number of different classes, pi is the proportion of
the original cases from the ith class (= prior probability of class i),
and qi is the proportion assigned to the ith class by the prediction
rule (= posterior probability of class i).

• R̂ may have to be truncated to not fall outside [0, 1].

• w varies from 0.632 (R̂ = 0) to 1.0 (R̂ = 1).

• ∆̂.632+ puts more weight on the bootstrap leave-one-out error ∆̂bcv

when the amount of overfitting (∆̂bcv − ∆̂app) is large.

• Use ∆̂.632+ if the prediction rule is overfit due to feature selection.
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Bootstrap overview

∆∆∆∆b
^

Underestimates error due to overlap
in assessment and training sets

∆∆∆∆bcv
^

Can 
overestimate 
error due to 
training set 

size bias

∆∆∆∆.632
^

Underestimates error in
overfitting situations

∆∆∆∆.632+
^
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• ∆̂bcv is based on ≈ .632×n of the original cases and closely agrees
with the ”half-sample” cross-validation and therefore it is upwardly
biased.

→ Use ”.632” estimator (Efron, 1983) to correct for the upward

bias in ∆̂bcv with the downward bias in the apparent error estimate.

• In gene expression studies the prediction rule is an overfit formed
from a large number of genes relative to the number of cases.

→ Use ”.632+” estimator (Efron & Tibshirani, 1997) to put rel-

atively more weight on ∆̂bcv (preferably in overfit situations like
feature selection).
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Misclassification error (two groups)

• The prediction µ(x+, F̂ ) and the measure of error c(y+, ŷ+) are
not continuous functions of the data.

→
bootstrap methods for estimating D or its expected value ∆ are
superior to cross-validation methods, in terms of variability.
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Variable/Gene Selection

• Model/variable selection implies that there is some likelihood of a
“true” model,

some pre-specified variables have zero association with response Y

• Need to perform gene selection preceding the predictive modelling

→ e.g. eliminate variables whose distributions are too narrow.
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Variable/Gene Selection (cont)

• Gene filtering is helpful, but

estimating the error rate after variable selection leads to biased
estimates of the prediction error
→ overstating importance of variables which are retained in the
model.

• Make sure that you are cross-validating the experiment that you
have carried out,
in particular, if you are selecting genes, rather than working with
known genes, you must cross-validate the gene selection process as
well.

• There are many examples with low classification error rates which
do not cross-validate properly (model/gene selection was not vali-
dated).
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Ambroise & McLachlan (PNAS, 2002): Selection bias in gene
extraction on the basis of microarray gene-expression data

... it seems that the selection method and the number of se-
lected genes are more important than the classification method
for constructing a reliable prediction rule.

... it is important to correct for the selection bias in estimating
the prediction error for a rule formed by using a subset of genes
selected from a very large set of available genes.
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Prediction error in gene selection situations

Example: The expression set Huang.RE which is discussed in THE
LANCET (2003) 361:1590-1596. The data contains microarrays of 52
women with breast cancer of whom 34 did not experience a recurrence
of the tumour during a 3 years time period.

For simplicity select 1000 most variable probe sets (e.g. by largest
variability) for the exercises (data frame mydata)

library(affy)
sd.exp <- apply(exprs(Huang.RE),1,sd)
index <- order(sd.exp,decreasing=TRUE)[1:1000]

mydata <- data.frame(t(exprs(Huang.RE)[index,]),
Recurrence=as.factor(pData(Huang.RE)$Recurrence))
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Now we select probe sets by comparing their univariate p-values of a
two-sample t-test with a pre-specified level of 0.05 and train a LDA
using the selected probe sets only (function mymod).

mymod <- function(formula, data, level = 0.05) {
sel <- which(lapply(data, function(x) {

if (!is.numeric(x))
return(1)

else return(t.test(x ~ data$Recurrence)$p.value)
}) < level)
sel <- c(which(colnames(data) %in% "Recurrence"), sel)
mod <- lda(formula, data = data[, sel])
function(newdata) {
predict(mod, newdata = newdata[, sel])$class
}
}
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The .632+ bootstrap estimate of the prediction error using B=25
bootstrap samples gives a misclassification rate of 0.27.

library(ipred)
set.seed(71003)
errorest(Recurrence ~ ., data=mydata, model=mymod, estimator="632plus",

est.para=control.errorest(nboot=25))

errorest.data.frame(formula=Recurrence ~ ., data=mydata,
model=mymod, estimator="632plus", est.para=control.errorest(nboot=25))

.632+ Bootstrap estimator of misclassification error
with 25 bootstrap replications

Misclassification error: 0.2705
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Define a gene expression set of 1000 genes with no association to the
response

set.seed(63321)
mydata <- data.frame(matrix(rnorm(52*1000),52,1000),

Recurrence=as.factor(pData(Huang.RE)$Recurrence))
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1. Select genes by individual t tests (selection level 0.05), perform a
lda using the selected subset and compute estimate of the misclassifi-
cation error (ignoring the selection process)

sel <- which(lapply(mydata, function(x) {
if (!is.numeric(x)) return(1)
else return(t.test(x ~ mydata$Recurrence)$p.value)

}) < 0.05)
sel <- c(which(colnames(mydata) %in% "Recurrence"), sel)
mypredict.lda <- function(object, newdata) {
predict(object, newdata = newdata)$class
}
errorest(Recurrence ~ ., data = mydata[, sel],
model = lda, estimator = "632plus", predict = mypredict.lda)

Call:
errorest.data.frame(formula = Recurrence ~ ., data = mydata[,

sel], model = lda, predict = mypredict.lda, estimator = "632plus")

.632+ Bootstrap estimator of misclassification error
with 25 bootstrap replications

Misclassification error: 0.1005
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2. Now repeat the error estimation taking into account the gene
selection by individual t tests (using 25 bootstrap samples)

errorest(Recurrence ~ ., data=mydata, model=mymod,
estimator="632plus", est.para=control.errorest(nboot=25))

Call:
errorest.data.frame(formula = Recurrence ~ ., data = mydata,

model = mymod, estimator = "632plus",
est.para = control.errorest(nboot = 25))

.632+ Bootstrap estimator of misclassification error
with 25 bootstrap replications

Misclassification error: 0.3447
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3. Finally repeat the error estimation taking into account the gene
selection by individual t tests (using 7-fold cross validation)

errorest(Recurrence ~ ., data=mydata, model=mymod,
estimator="cv", est.para=control.errorest(k=7))

Call:
errorest.data.frame(formula = Recurrence ~ ., data = mydata,

model = mymod, estimator = "cv", est.para = control.errorest(k = 7))

7-fold cross-validation estimator of misclassification error

Misclassification error: 0.4231

Note: The true misclassification rate is 1− 34/52 = 0.346.

Result of this example:
Ignoring the selection process results in an error estimate of 10%.
The .632+ bootstrap estimate of 0.345 is nearly correct, while the
7-fold cross-validation overestimates the error.
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From: Ambroise & McLachlan (PNAS, 2002)

available genes. To illustrate this selection bias further, we
generated a no-information training set by randomly permuting
the class labels of the colon tissue samples. For each of these 20
no-information sets, an SVM rule was formed by selecting genes
by the RFE method, and the AE and the leave-one-out CV error
CV1IE were calculated. The average values of these two error
rates and the no-information error � (Eq. 3) over the 20 sets are
plotted in Fig. 5, where we also plotted the average value of the

CV10E and B.632� error estimates that correct for the selection
bias. It can be seen that although the feature vectors have been
generated independently of the class labels, we can form an SVM
rule that has not only an average zero AE but also an average
CV1IE error close to zero for a subset of 128 genes and �10%
for only eight genes in the selected subset. It is reassuring to see
that the error estimates CV10E and B.632�, which correct for
the selection bias, are between 0.40 and 0.45, consistent with the
fact that we are forming a prediction rule on the basis of a
no-information training set.

From the three examples presented, it can be seen that it is
important to recognize that a correction for the selection bias be
made in estimating the prediction error of a rule formed by using
genes selected from a very large set of available genes. It is
important also to note that if a test set is used to estimate the
prediction error, then there will be a selection bias if this test set
was used also in the gene-selection process. Thus the test set
must play no role in the feature-selection process for an unbiased
estimate to be obtained.

Given that there is usually only a limited number of tissue
samples available for the training of the prediction rule, it is
not practical for a subset of tissue samples to be put aside for
testing purposes. However, we can correct for the selection
bias either by cross-validation or the bootstrap as implemented
above in the examples. Concerning the former approach, an
internal cross-validation does not suffice. That is, an external
cross-validation must be performed whereby at each stage of
the validation process with the deletion of a subset of the
observations for testing, the rule must be trained on the
retained subset of observations by performing the same
feature-selection procedure used to train the rule in the first
instance on the full training set.
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The holdout method
g Split dataset into two groups

n Training set: used to train the classifier
n Test set: used to estimate the error rate of the trained classifier

g A typical application the holdout method is determining a stopping 
point for the back propagation error

Training Set Test Set

Total number of examples

         Model complexity

Error

Training set error

Test set errorStopping point
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Separate Test and Validation Sets

• The error rate estimate of the final model on test data will be
biased since the test set is used to select the final model

• If model selection and error estimates are to be computed simulta-
neously, we need an additional validation set:

– Training set:
Used to fit the model

– Test (or assessment set):
Used to tune the parameters of a predictor

– Validation set:
A set of cases used only to assess the performance of a fully-
trained predictor.

After assessing the final model with the validation set, YOU MUST
NOT further tune the model.
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Topics

Predictive Ability using Resampling

• Data-Splitting/Cross-Validation

• The Bootstrap

Controlling Model Complexity

• Restriction

• Selection

• Regularization
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Controlling the complexity of the model

Truth

Hastie, Tibshirani, Friedman, 2001
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Truth

Hastie, Tibshirani, Friedman, 2001

Realization
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Truth

Hastie, Tibshirani, Friedman, 2001

Realization

estimation
variance

model space

model
bias

closest fit
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Truth

Hastie, Tibshirani, Friedman, 2001

Realization

estimation
variance

model space

model
bias

closest fit

restricted
model space

regularization
bias

shrunken fit
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Controlling the complexity of the model

• Restriction methods

The class of functions of the input variables defining the model is
limited.

Example:
Allow only linear combinations of given basis functions hjm

f (X) =

G∑
j=1

fj(Xj) =

G∑
j=1

Mj∑
m=1

βjmhjm(Xj)

hjm is the mth basis function of the jth input variable.

The size of the model is limited by the number Mj of basis functions
used for the G components fj.
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Controlling the complexity of the model

• Selection methods

Include only those basis functions hjm that contribute ‘signifi-
cantly’ to the fit of the model.

Examples:

– Variable selection methods

– Stagewise greedy approaches like boosting

• Regularization methods

Restrict the coefficients of the model.

Example: Ridge regression
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Penalized Regression

• Maximizing the log likelihood can result in fitting noise in the data.

• A shrinkage approach will often result in estimates of the regression
coefficients that, while biased, are lower in mean squared error and
are more close to the true parameters.

• A good approach to shrinkage is penalized maximum likelihood
estimation (le Cessie & van Houwelingen, 1990).

From the log-likelihood logL a so-called ‘penalty’ is subtracted,
that discourages regression coefficients to become large.

→ penalized log likelihood:

logL− λ · p(β)

p(β) penalty function, λ non-negative penalty factor.
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Penalized Regression

• Often used penalty function:
Quadratic regularization (ridge regression)

p(β) =
1

2

G∑
j=1

β2
j

• Harrell (2001):
Use scaling constants s1, s2, ..., sG, chosen to make sjβj unitless

p(β) =
1

2

G∑
j=1

(sjβj)
2



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Model Assessment and Selection 55

Choice of λ

• AIC (Akaike’s Information Criterion):

−2logLik + 2d.f.

For a given λ the effective number of parameters being estimated
is reduced because of shrinkage → effective degrees of freedom (cp.
Gray, 1992)

d.f. = trace(I(βp) · V (βp))

βp is penalized MLE; I is information matrix ignoring the penalty
and V is covariance matrix computed by inverting the information
matrix that included the second derivatives with respect to β in
the penalty.

• Alternative: Cross validation (and smoothing on the pairs
{λ, predictive accuracy}).
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Applications

• Data
Blood samples of a subset of 101 patients, randomly selected from a
study of 325 B-cell chronic lymphocytic leukemia (B-CLL) patients

– Affymetrix Human Genome U95 array (version 1 and 2):
Gene expression values for 12600 probe sets

– Array normalization:
Robust Multichip Average (RMA) procedure (Irizarry et al.,
2003).

Median follow up was 28 months since date of the genetic study.

A prognostic survival model was build using clinical data, molecu-
lar cytogenetic data and microarray measurements.

For demonstration purposes we use only genes (i.e. probe sets) as
input variables, thus ignoring cytogenetic and clinical features.
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Survival since date of genetic study of 101 B-CLL patients.

Time since genetic study (months)
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Number at risk: 101 95 78 58 45 33 20

Median survival 54 months (18 patients died).
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Classification

• Immunoglobulin variable heavy chain (IgVH) gene mutation status
is a strong prognostic marker for survival of patients with B-CLL
Patients without gene mutation of the IgVH region → worse
prognosis.

• Task: Discriminate observations into the two categories character-
ized by the IgVH mutation status by using gene expression data.
The outcome variable of interest is y = 1 if no IgVH mutation
was observed and zero otherwise.

• For two of the patients no information on the IgVH mutation status
was available.
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Survival since date of genetic study of 99 B-CLL patients according to
their IgVH mutation status.
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Penalized Regression (p >> n)

• The dimension of the resulting systems of equations is of the size
of numbers of genes

• Can be reduced using singular value decomposition to a size corre-
sponding to the (much smaller) number of observations (Eilers et
al., 2001).
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Binomial log-likelihood loss and L2-penalty

logLλ =
∑n

i=1 yilog(pi) +
∑n

i=1(1− yi)log(1− pi) + 1
2λ

∑G
j=1 β2

j
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(Unscaled and scaled) parameter estimates

0 2000 6000 10000

−
0.

15
−

0.
05

0.
05

0.
10

0.
15

Gene number

R
eg

re
ss

io
n 

co
ef

fic
ie

nt
s

0 2000 6000 10000

−
0.

15
−

0.
05

0.
05

0.
10

0.
15

Gene number

S
ca

le
d 

re
gr

es
si

on
 c

oe
ffi

ci
en

ts



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Model Assessment and Selection 63

●

●

●● ●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.88 0.90 0.92 0.94 0.96 0.98 1.00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

IgVH homology

E
st

im
at

ed
 p

ro
ba

bi
lit

y
all data

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

0.88 0.90 0.92 0.94 0.96 0.98 1.00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

IgVH homology

E
st

im
at

ed
 p

ro
ba

bi
lit

y

10fold cross−validation

IgVH mutation
no yes

All data no 45 3
yes 3 48

IgVH mutation
no yes

10-fold cv no 35 16
yes 13 35



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Model Assessment and Selection 64

References

• Ambroise C, McLachlan GJ (2002). Selection bias in gene extrac-
tion on the basis of microarray gene-expression data. Proc. Natl.
Acad. Sci. USA, 99, 6562-6566.

• Davison AC, Hinkley DV (1997). Bootstrap Methods and Their
Applications. Cambridge University Press.

• Harrell FE (2001). Regression Modeling Strategies. Springer-
Verlag.

• Hastie T, Tibshirani R, Friedman JH (2001). The Elements of
Statistical Learning. Springer-Verlag.

R Packages

• Prediction: ipred, pamr, Design.

• Bootstrap: boot, Design.


