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The following exercise will show you some possibilities to load data from spotted cDNA microarrays
into R, and to explore it using the statistical and visualization facilities of R and Bioconductor.

1.) Preliminaries. To go through this exercise, you need to have installed R >= 1.9.0, the re-
lease 1.4 versions of the Bioconductor libraries Biobase, marray, multtest, limma, vsn, array-
Magic, and the library lymphoma, which contains the excercises and the lymphoma data set (see
http://llmpp.nih.gov/lymphoma/).

> library(vsn)

> library(multtest)

> library(marray)

> library(limma)

> library(arrayMagic)

> library(lymphoma)

2.) Reading and exploring data files.

a. First, you need to find the directory with the data on your harddisk. The path ends in li-
brary/lymphoma/data, and this is in the subdirectory where your R resides. On the command
line, you can use the commands dir(), getwd and setwd to navigate around. In the GUI, you
can use File, Change dir in the menu.

b. Open the file lc7b048rex.DAT in a text editor. This is the typical file format for the results from
the image analysis on a cDNA slide. Different image analysis programs use slightly different
conventions and column headings, but you can always adapt the input function (see below) to
your needs.

c. Use the function read.delim to read the file into a data frame (that is a rectangular table of
data) in R.
> x <- read.delim("lc7b048rex.DAT")

d. The table is too large to print it out as a whole, but we can find out about its size (with the
function dim) and look at individual rows of the table.
> dim(x)

> colnames(x)

> x[1:6, ]

3.) Simple plots.

a. Let us first look at the histogram of the values in the column CH1I, that is the channel 1
foreground intensity (see Fig. 1).
> hist(x$CH1I)

> hist(log2(x$CH1I), breaks = 100)

> hist(log2(x$CH1I), breaks = seq(5, 15, by = 0.25), col = "blue")

b. Visualization of the spatial homogeneity of the hybridisations may help to assess their quality.
The logarithm of the background of channel 1 is shown in Fig. 2. Various transformations of
the background intensity values, like the logarithm or rank, emphasize inhomogeneities more
or less. Additionally, the foreground of channel 1 is visualized.
> bg1 <- spatialLayout(value = x$CH1B, row = x$ROW, col = x$COL,

+ block = x$GRID)

> plot(log(bg1), main = "Log Background of Channel 1")

> plot(bg1)

> rankedbg1 <- spatialLayout(value = rank(x$CH1B), row = x$ROW,
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Histogram of log2(x$CH1I)
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Figure 1:

+ col = x$COL, block = x$GRID)

> plot(rankedbg1)

> fg1 <- spatialLayout(value = x$CH1I, row = x$ROW, col = x$COL,

+ block = x$GRID)

> plot(log(fg1))
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Figure 2:

c. Save one of the plots as PDF, and as Windows metafile. Copy and paste it into an MS-Office
application.

4.) Calibration and variance stabilization.

a. Subtract the background intensities CH1B, CH2B from the foreground intensities CH1I, CH2I,
and store the result in a 9216 x 2 matrix.
> y = cbind(x$CH1I - x$CH1B, x$CH2I - x$CH2B)
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b. What does the function cbind do? Use the R online help to find out.
c. Now we can use the function vsn to calibrate and transform the data, and plot the result

(Fig. 3).
> ny <- vsn(y)

vsn: 9216 x 2 matrix (1 stratum). Please wait for 10 dots: ..........

> plot(exprs(ny), pch = ".")
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Figure 3:

d. Have a look at the vignette — try the command openVignette("vsn").

a. Reading a collection of files.
b. The file phenoData.txt contains information on the samples that were hybridized onto the

arrays. Look at it in a text editor. To load it into a phenoData object
> samples <- read.phenoData("phenoData.txt", header = TRUE, as.is = TRUE)

> pData(samples)

fileName sampleid tumortype sex slideNumber
1 lc7b047rex.DAT CLL-13 CLL m 1
2 lc7b048rex.DAT CLL-13 CLL m 2
3 lc7b069rex.DAT CLL-52 CLL f 3
4 lc7b070rex.DAT CLL-39 CLL f 4
5 lc7b019rex.DAT DLCL-0032 DLCL f 5
6 lc7b056rex.DAT DLCL-0024 DCLC m 6
7 lc7b057rex.DAT DLCL-0029 DLCL m 7
8 lc7b058rex.DAT DLCL-0023 DLCL <NA> 8

phenoData objects are where the Bioconductor stores information about samples, for example,
treatment conditions in a cell line experiment or clinical or histopathological characteristics of
tissue biopsies.

c. Now we can load the whole set of 8 slides into the data object a.
> files <- samples$fileName

> files

[1] "lc7b047rex.DAT" "lc7b048rex.DAT" "lc7b069rex.DAT" "lc7b070rex.DAT"
[5] "lc7b019rex.DAT" "lc7b056rex.DAT" "lc7b057rex.DAT" "lc7b058rex.DAT"

> theLayout <- new("marrayLayout", maNgr = 4, maNgc = 4, maNsr = 24,

+ maNsc = 24)

> datdir <- system.file("extdata", package = "lymphoma")

> a <- read.marrayRaw(files, path = datdir, name.Gf = "CH1I", name.Gb = "CH1B",

+ name.Rf = "CH2I", name.Rb = "CH2B", layout = theLayout)
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d. . . . and try out different normalization methods:
1.vsn (affine normalization and variance stabilization)
2.maNorm with global median location normalization
3.maNorm with loess for intensity- or A-dependent location normalization using the ‘loess’

smoother
> na1 <- vsn(a)

> na2 <- maNorm(a, norm = "median", echo = T)

e. These commands take their time! You can save the results into a file with the save function,
and later restore them with the load function. You can use the GUI for the latter.

f. Now we want to extract the normalized log-ratios. The first line in the following code creates a
three-dimensional array M with space for 9216 genes, 8 samples and 3 different normalization
methods. na1 is the result of vsn; the normalized intensities are accessed via the function
exprs, and the log-ratios are obtained by subtracting the red intensities from the green ones.
na2 and na3 are the output of marrayNorm, and the log-ratios are obtained through the slot
maM using the accessor @.
> odd <- seq(1, 15, by = 2)

> even <- seq(2, 16, by = 2)

> M <- array(NA, dim = c(9216, 8, 2))

> M[, , 1] <- exprs(na1)[, even] - exprs(na1)[, odd]

> M[, , 2] <- na2@maM

5.) Compare the results. Look at scatterplots of the values of M from the same slide, calculated
with different normalization methods. Do the values generally agree? How do they differ?

> plot(M[, 4, 1], M[, 4, 2], pch = ".", xlab = "vsn", ylab = "median")
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Figure 4:

6.) Testing for differential transcription. Now we are ready to calculate test statistics and to
select genes. Note: The number of replicates (4 versus 4) that we are considering here is too small
to derive significant conclusions about individual genes. The full data set contains many more
chips. Here we restrict ourselves to a few of them in order to keep things simple for the purpose
of this course.
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a. Look at the built-in function t.test, and at mt.teststat from the package multtest. Here,
we use mt.teststat to calculate the t-test statistic for the comparison. The package multtest
provides extensive functionality to calculate multiple-testing adjustments.
> classlabel = c(0, 0, 0, 0, 1, 1, 1, 1)

> tStat = mt.teststat(M[, , 1], classlabel)

> summary(tStat)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-24.3400 -1.0330 0.1861 0.1832 1.3670 28.1000

> hist(tStat, breaks = 100, col = "#fb6090")

Histogram of tStat
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Figure 5: a) left: histogram of t-statistic, b) right: false disocvery count.

b. Similar to the FDR (false discovery rate) we estimate the significance of the most extreme
t-values. The false discovery count is calculated for several lists of various length of the highest
scored genes (Fig. 5 right).
> fc <- fdc(M[, , 1], factor(classlabel), teststatfun = "rowttests")

> plot(fc$nrgenesel, fc$fdc, main = "False Discovery Count", xlab = "number of selected genes",

+ ylab = "false discovery count", type = "b")

c. Now we load the spot (gene) description table
> spotDescr <- read.delim("annotationData.txt")

and print the 5 genes with the lowest values of the t-statistic
> selection = order(tStat)[1:5]

> selection

[1] 4532 8076 6635 4586 739

as well as the 5 genes with the highest values of the t-statistic
> selection = order(tStat, decreasing = TRUE)[1:5]

> selection

[1] 4323 4069 4331 2026 2143

In a following step we extract the annotation information for the 5 selected genes and generate
a html-report (Fig. 6).
> spotIDs = x$SPOT[selection]

> geneAnno = spotDescr[spotDescr[, "spotID"] %in% spotIDs, ]

> write.htmltable(geneAnno, filename = "candidateGenes", title = "Candidate Genes")

7.) A simplified route to preprocessing and quality control.
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Figure 6:

a. The package arrayMagic can be used to automatically process the image files, to create R-
objects and to generate quality diagnostics. See Figs. 7–9.
> res <- processArrayData(slideDescriptionFile = "phenoData.txt",

+ loadPath = datdir, savePath = ".", fileNameColumn = "fileName",

+ slideNumberColumn = "slideNumber", spotIdentifier = "SPOT",

+ imageFileType = "ScanAlyze", subtractBackground = TRUE, normalisationMethod = "vsn")

> qR <- qualityParameters(arrayDataObject = res$arrayDataObject,

+ exprSetRGObject = res$exprSetRGObject, spotIdentifier = "SPOT",

+ hybNameColumn = "slideNumber", resultFileName = "qualityResult.txt")

> qualityDiagnostics(exprSetRGObject = res$exprSetRGObject, arrayDataObject = res$arrayDataObject,

+ qualityParametersList = qR, plotOutput = "pdf", savePath = ".")

> visualiseHybridisations(arrayDataObject = res$arrayDataObject[,

+ c(1, 2, 6)], nameColumnName = "slideNumber", mappingColumns = list(Block = "GRID",

+ Column = "COL", Row = "ROW"), type = "raw", savePath = ".",

+ plotOutput = "pdf")

> glratios <- getExprSetGreenMinusRed(res$exprSetRGObject)

> phenoD <- phenoDataSlide(res$exprSetRGObject)
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Figure 7: Interquartile ranges of raw data.
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slideDistances
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Figure 8: Matrix of distances between all pairs of slides.
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Figure 9: Spatial distribution of log raw intensities of one slide.


