
— Molecular Diagnosis —

Tumor classification by SVM and PAM

Florian Markowetz and Rainer Spang

Practical DNA Microarray Analysis
Berlin, June 2004

Max Planck Institute for Molecular Genetics
Dept. Computational Molecular Biology

Computational Diagnostics Group
Berlin, Germany

http://compdiag.molgen.mpg.de

Abstract. This tutorial refers to the practical session on day three of the course in Practical DNA
Microarray Analysis, Berlin, June 2004. The topic is Molecular Diagnosis. You will learn how to
apply Nearest Shrunken Centroids and Support Vector Machines to microarray datasets. Important
topics will be feature selection, cross validation and the selection bias.

We will explore data from Duke University and Duke Medical Center, as described in Predicting the
clinical status of human breast cancer by using gene expression profiles (Mike West et al., PNAS 2001
Sep 25; 98(20):11462-11467). It consists of 46 breast tumor samples separated into two classes: 23
samples were positive for estrogen receptor (class ER+) and 23 were negative (class ER-). For each
of these samples the expression levels of 7129 genes were measured. In addition, you are given the
expression profiles of three patients with unknown type of breast cancer. Your task is to learn the
difference between ER+ and ER- from the 46 training samples and then propose a diagnosis for the
three new patients.

1 Nearest Shrunken Centroids

> loadURL("http://compdiag.molgen.mpg.de/ngfn/
data/2004/jun/breastcancer.Rdata")

> summary(breastcancer)
> dim(breastcancer$x)
> breastcancer$y

You see: the object breastcancer is a list containing all the information about the training set.
breastcancer$x is a matrix containing the expression profiles. It consists of 46 columns corre-

1

2 Spang and Markowetz, Berlin, June 2004

sponding to samples and 7129 rows corresponding to genes. breastcancer$y contains the class
labels of the 46 samples: either ER+ or ER-.

Your own data. To use pamr with your own data, combine the expression matrix, the labels (and
maybe, but not necessarily, the other entries you see in breastcancer) into a list:

> myData <- list(x = my.expr.matrix, y = my.sample.labels, genenames =
my.genenames, ...)

1.1 Training PAM

> library(pamr)
> pam.trained <- pamr.train(breastcancer)

With this command you train PAM on the dataset. By typing pam.trained you get an output like
this:

Call:
pamr.train(data = breastcancer)

threshold nonzero errors
1 0.000 7129 0
2 0.236 5343 0
. . . .
. . . .
29 6.600 1 4
30 6.836 0 23

For 30 different values of the threshold the number of nonzero genes and the number of misclassi-
fications on the training set are listed. Explain why the number of surviving genes decreases when
the size of the threshold increases. Have a look at the last row of this table: why do we only have
23 errors if we classify with 0 genes? Why not 46?

1.2 10-fold cross validation

A more reliable error estimate than the number of misclassifications on the training set is the 10-fold
cross validation error:

> pam.trained.cv <- pamr.cv(pam.trained, breastcancer)

The output of this function looks very similar to the table above. The numbers in the last column
are now the summed errors of all 10 cross validation steps. The CV error usually is bigger than the
training error. Explain this gap.

The results of cross validation can be visualized by

Molecular Diagnosis with SVM and PAM 3

> pamr.plotcv(pam.trained.cv)

You will get two figures. In both, the x-axis represents different values of threshold (corresponding
to different numbers of nonzero genes as shown on top of each figure) and the y-axis shows the
number of misclassifications. The upper figure describes the whole dataset, the lower one describes
each class individually. Explain the behaviour at the right tail of the lower figure.

1.3 Plots for different threshold values

In the lecture on PAM this morning you learned about gene selection by shrinkage. Shrinkage is
controlled by a parameter which was called ∆ in the lecture and is called threshold in the software.
Using the results of cross validation, choose a threshold value t as a tradeoff between a small
number of genes and a good generalization accuracy. (You get an error message when you choose
the threshold so high that only a single gene survives. This is a bug in the software.)

> t <- ??? # your choice of a THRESHOLD value

In the next steps, vary t through a range of values and observe how the plots and figures change.

The function pamr.plotcen() plots the shrunken class centroids for each class, for genes surviving
the threshold for at least one class.

> pamr.plotcen(pam.trained, breastcancer, t)

Unfortunately, one cannot read the gene names in this figure. If you are interested in them, print the
active graphic window by

> dev.print(file="myfigure.ps") or
> dev.print(device=pdf, file="myfigure.pdf")

and then use Ghostview or AcrobatReader to view it in more detail. In addition, the function
pamr.listgenes() yields a list of gene names and IDs (see below).

> pamr.confusion(pam.trained.cv, t)

This function prints a 2× 2 confusion table like this:

ER- ER+ Class Error rate
ER- 21 2 0.08695652
ER+ 3 20 0.13043478
Overall error rate= 0.108

23 samples belong to class ER-, 21 are classified correctly, and two are misclassified as ER+, 23
samples belong to class ER+. 20 are classified correctly and 3 are misclassified. This makes an overall
error rate of 10.8%.

To get a visual impression of how clearly the two classes are separated by PAM, we plot the cross-
validated sample probabilities:

4 Spang and Markowetz, Berlin, June 2004

> pamr.plotcvprob(pam.trained, breastcancer, t)

The 46 samples (x-axis) are plotted against the probabilities to belong to either class ER+ (green)
or ER- (red). For each sample you see two small circles: the red one shows the probability that this
sample belongs to ER- and the green one that it belongs to ER+. A sample is put into that class for
which probability exceeds 0.5.

For each gene surviving the threshold we get a figure showing the expression level of this gene over
the whole set of samples by using the following command:

> pamr.geneplot(pam.trained, breastcancer, t)

Sometimes you get an error message "Error in plot.new(): Figure margins too large",
because there is not enough space to plot all the genes. To mend this problem increase the threshold
– which will decrease the number of genes.

More information about the genes used for the classification is given by

> pamr.listgenes(pam.trained, breastcancer, t, genenames=TRUE)

The output lists the Affymetrix ID and the name of the gene. In the last two columns you see a
score indicating whether the gene is up or down regulated in the two classes of samples:

id name ER- score ER+ score
[1,] X03635_at "ESR Estrogen receptor" -0.4181 0.4181
[2,] U79293_at "Clone 23948 mRNA sequence" -0.2634 0.2634

If you have a biological background: do you know any of the gene names? Which genes in the list
would you have expected?

1.4 Computational Diagnosis

Now we use the trained PAM classifier to diagnose the three new patients:

> pam.diagnosis <- pamr.predict(pam.trained, newpatients, t)

pam.diagnosis is a vector containing your prediction. But PAM does not only classify, it also tells
you how sure it is about its decision by computing posterior probabilities:

> pamr.predict(pam.trained, newpatients, t, type="posterior")

ER- ER+
V47 0.57961121 0.4203888
V48 0.04988766 0.9501123
V49 0.95703730 0.0429627

For patient 2 and 3, PAM is very confident of its decision (more than 95%), but for patient 1 it
achieves only a 57% posterior probability for class ER-. And if we compare the result to the true

Molecular Diagnosis with SVM and PAM 5

classes (> trueclasses), we see that PAM actually got it wrong for patient 1 =(Let’s see if SVMs
can do it better!

2 Support Vector Machines (SVM)

> library(e1071) # contains the SVM software

The SVM software needs the data in a slightly different format than PAM. The command t()
transposes a matrix (”mirrors it at the main diagonal”). The labels are already factors, so we keep
them.

> train.x <- t(breastcancer$x) # training data
> train.y <- breastcancer$y # training labels

Let’s have a look at the natural variation of the genes:

> v <- apply(train.x,2,var) # compute var for each column/gene
> hist(v) # histogramm of variances

You will see that the activity of most genes does not differ much between the samples. We will
discard the static genes:

> sel <- order(-v)[1:1000] # 1000 genes with highest variance
> train.x <- train.x[,sel] # select those genes in the data

2.1 Training error

We will begin with the simple linear kernel:

> svm.trained <- svm(train.x, train.y, kernel="linear")
> summary(svm.trained) # gives an overview of the learned model

Because class(train.y) is factor, the svm software does classification by default. Let’s compute
the training error:

> predicted <- predict(svm.trained, train.x) # predict labels of training data
> sum(predicted != train.y) # count differences
> table(true=train.y, pred=predicted) # confusion matrix

The linear kernel separates the training set without errors! But how is its ability to predict unseen
samples? We investigate by 10-fold cross validation.

6 Spang and Markowetz, Berlin, June 2004

2.2 10-fold cross validation

> svm.trained.cv <- svm(train.x, train.y, kernel="linear", cross=10)

Typing summary(svm.trained.cv) gives an overview over your settings and the cross validation
results:

10-fold cross-validation on training data:

Total Accuracy: 91.30435
Single Accuracies:
100 100 100 100 80 75 100 50 100 100

Do cross validation with the linear kernel several times. Why does the line ”Single Accuracies”
change each time? Does the total accuracy change?

Try other kernels: (1.) kernel="polynomial" with degree=2, and (2.) kernel="radial". The
dataset is easy to separate; the complex kernel functions do not give much better results than the
linear kernel.

2.3 Computational diagnosis

By analyzing the training error and the cross-validation error we have seen that a SVM is quite good
at learning the difference between ER+ and ER-. What does it tell us about the three new patients?

> newpatients <- t(newpatients)
> svm.diagnosis <- predict(svm.trained, newpatients[,sel])
> svm.diagnosis

2.4 Zero training error does not guarantee good prediction!

Maybe we could convince you that SVM are a powerful classification method achieving a very good
generalization performance. But before we all get too confident let’s do a little experiment. train.y
describes a biologically meaningful class distinction of the cancer samples. Now we will assign the
samples randomly into two classes and investigate how SVM will react.

> labels.rand <- sample(train.y, 46)
> svm.rand <- svm(train.x, labels.rand, kernel="linear")
> predicted <- predict(svm.rand, train.x)
> table(true=labels.rand, pred=predicted)

Zero training error! Wow! Now train the SVM again with cross validation. Compare the CV error
on the biological and on the randomized data. The CV error for random labels will be very very high.
This means: even with zero training error, we are bad at predicting new things.

Molecular Diagnosis with SVM and PAM 7

Why is this observation important for medical diagnosis? Whenever you have expression levels from
two kinds of patients, you will ALWAYS find differences in their gene expression - no matter how
the groups are defined, no matter if there is any biological meaning. And these differences will not
always be predictive.

2.5 How to select the most informative genes

We use a t-statistic to select the genes with the most impact on classification. The function
mt.teststat from the library multtest provides a convenient way to calculate test statistics for
each row of a data frame or matrix. As input it needs a matrix with rows corresponding to genes
and columns to experiments. The class labels are supposed to be integers 0 or 1.

> library(multtest)
> data <- t(train.x) # = breastcancer$x
> labels <- as.integer(train.y)-1
> tscores <- mt.teststat(data, labels, test="t")

The vector tscores contains for each gene the value of the t-statistic. These values measure how
well a gene separates the two classes. We select the 100 genes with highest t-statistic.

> selection <- order(-tscores)[1:100] # decreasing order!
> data.sel <- train.x[,selection]

The matrix data.sel contains 46 rows (samples) and 100 columns (the selected genes). Train a
SVM on this reduced dataset with different kernels and parameters and compare the results to those
obtained with all genes. How do you explain the differences?

Vary the number of selected genes. How many genes do you need to still get a reasonable CV error?

Exercise: write a function for feature selection with the t-statistic that takes as inputs a data matrix
x, a vector of labels y, and a number n of genes to be selected. The output is a vector of indices
of informative genes. Use the syntax fsel <- function(x,y,n){...}. (If you need help: the
solution is on the last page.)

2.6 The selection bias

There has been a conceptual flaw in the way we combined the cross validation with gene selection
in the last section.

The idea of cross validation is this: split your dataset in e.g. 10 subsets and take one subset out as
a test set. Train your classifier on the remaining samples and assess its predictive power by applying
it to the test set. Do this for all of the 10 subsets. This procedure is only sensible if no information
about the test set is used while training the classifier. The test set has to remain ’unseen’.

What went wrong in the last section? We did a feature selection on the whole dataset, i.e. we selected
the 100 genes that are most informative given all 46 samples. Then we did a cross validation using

8 Spang and Markowetz, Berlin, June 2004

these genes. Thus, the test set in each cross validation step had already been used for the feature
selection. We had already seen it before training the classifier.

What is the right way to use feature selection in cross validation? Do a selection of important genes
in every step of cross validation anew! Do the selection only on the training set and never on the
test set!

Exercise: explain why selecting genes with high variance over all the samples does not result in the
same distortion of cross validation as feature selection by t-scores.

Exercise: At the end of this session, we will engage in a BIG programming effort. We will write our
own function for 10-fold cross-validation with “in-loop” feature selection. Before starting, make sure
that you understand the problem of selection bias, i.e. “out of the loop” feature selection.

If you have not done so already to keep a log, open some texteditor and write your commands in an
empty file. The input to CrossVal is the data, the labels and the number of cross-validation steps
k. By default k is chosen as 10.

CrossVal <- function(x, y, k=10) # x=data, y=labels, k=nr.of splits
{
... put the following commands all in here ...
}

At the beginning, we divide the data into several heaps such that the labels of both classes are
balanced in each chunk. This can be easily done by the function balanced.folds from the package
pamr. Look at the help text of this function. The authors state that balanced.folds is an internal
function which should not be called by the user. Maybe they want this useful little function to remain
a secret . . .

heaps <- balanced.folds(y, k)

heaps is a list with k entries, each containing the indices of one chunk. The data in the ith heap
are reserved for testing. Training and feature selection are only performed on the remaining data. A
cross validation is then just one for-loop:

for (i in 1:k){
... do the following steps ...
}

1. Do a feature selection for x (without the test data!) using the function fsel() from the last
section.

2. train a SVM on the pruned training set.

3. Then predict the labels of the test data (using only the selected genes).

Molecular Diagnosis with SVM and PAM 9

4. Compute the accuracy (the number of correctly predicted test cases).

Collect the single CV accuracies obtained in each step. The total accuracy is the mean of it.

Implement these steps and compare the outcome to the results achieved in the last section. The
output could look like this:

> CrossVal(train.x,train.y,k=10)
$tot.accuracy
[1] 88.5
$single.accuracies
[1] 75 100 60 100 100 75 75 100 100 100

You will observe a smaller accuracy than before. Try cross validation with out-of-the loop feature
selection and with in-loop feature selection many times and have a look on how the total accuracy
varies.

3 Summary

Scan through this paper once again and identify in each section the main message you have learned.
Some of the most important points are:

• You have learned how to apply the Nearest Shrunken Centroids method and Support Vector
Machines to microarray data.

• You have learned how to do feature selection using the t-statistic.

• You have experienced: It is quite easy to separate the training set without errors (even with
randomly labeled samples), but this does not guarantee a good generalization performance on
unseen test data.

• In cross validation: do all the data manipulation (like feature selection) inside the CV loop and
not before. Else: cheating!

If you have any comments, criticisms or suggestions on our lectures, please contact us:
rainer.spang@molgen.mpg.de and florian.markowetz@molgen.mpg.de

The datasets used and this tutorial will be made available at the course homepage:
http://compdiag.molgen.mpg.de/ngfn/pma2004jun.shtml

10 Spang and Markowetz, Berlin, June 2004

4 R code for feature selection and cross validation

#- fsel()
fsel <- function(x,y,n){ # x=matrix, y=factors, n=numeric

data <- t(x)
labels <- as.integer(y)-1
tscores <- mt.teststat(data, labels, test="t")
sel <- order(-tscores)[1:n]
return(sel)

}

#- cross validation with in-loop feature selection
CrossVal <- function(x,y,k=10){ # x=data, y=labels, k=nr. of splits
heaps = balanced.folds(y,k) # create k balanced folds
acc = numeric() # initialize list of accuracies
for (i in 1:k){ # run through all k folds
test= heaps[[i]] # indices of test data
sel = fsel(x[-test,],y[-test],100) # select genes on train data
SVM = svm(x[-test,sel], y[-test], kernel="linear") # train SVM on train set
p = predict(SVM,x[test,sel]) # predict labels of TEST set
a = 100*sum(p == y[test])/length(test) # compute accuracy
acc = c(acc,a) # collect accuracies
}

return(list(tot.accuracy=mean(acc), single.accuracies=round(acc)))
}

Molecular Diagnosis with SVM and PAM 11

5 Known pamr bugs and how to cure them

After typing library(), the first line on the screen is the path to your R packages. Append
/pamr/R/ and find the textfile pamr. Open it in a texteditor to do some little changes.

At the moment you can only do 10fold cross validation with pamr.cv. Changing parameter nfold
is fruitless. We patch it by substituting

junk <- nsccv(x, y, object = fit, ...) # OLD
junk <- nsccv(x, y, object = fit, folds=folds, nfold=nfold, ...) # NEW

Using pamr.geneplot to plot a single gene results in an error message. The problem is that for a
single gene the datamatrix becomes a vector and drops its dimension attributes. To prevent this,
substitute two lines:

d <- (cen - fit$centroid.overall)[aa,]/fit$sd[aa] # OLD
d <- (cen - fit$centroid.overall)[aa, ,drop=FALSE]/fit$sd[aa] # NEW

xx <- x[aa, o] # OLD
xx <- x[aa, o, drop=FALSE] # NEW

