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Overview

• Introduction: Basics of experimental design
Sample size calculation
Pepe et al. (2003), Biometrics, 

• The need of clinical epidemiology 
Chang JC et al. (2003), The Lancet, 362:362-369

• Good statistical practice in genomic profiling studies
Fredriksen, C.M. et al. (2003) J Cancer Res Clin Oncol 129: 263–271

• Discussion
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Experiments

Scientists deal mostly with experiments of the following form:

A number of alternative conditions / treatments
One of which is applied to each experimental unit
An observation (or several observations) then being made on
each unit.

The objective is: 

Separate out differences between the conditions / treatments from
the uncontrolled variation that is assumed to be present.
Take steps towards understanding the phenomena under
investigation.
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Statistical Thinking

Uncertain 
knowledge

Knowledge of the 
extent of 

uncertainty in it

Usable
knowledge+ =

Measurement model
m = µ + e

m – measurement with error, µ - true but unknown value
What is the mean of e?

What is the variance of e?
Is there dependence between e and µ?

What is the distribution of e (and µ)?
Typically but not always: e ~ N(0,σ²) 

Gaussian / Normal measurement model

Decisions on the
experimental design

influence the 
measurement model.
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Main requirements for experiments

Once the conditions / treatments, experimental units, and the nature of the 
observations have been fixed, the main requirements are:

• Experimental units receiving different treatments should differ in no
systematic way from one another – Assumptions that certain sources of
variation are absent or negligible should, as far as practical, be
avoided;

• Random errors of estimation should be suitably small, and this should be
achieved with as few experimental units as possible;

• The conclusions of the experiment should have a wide range of validity;
The experiment should be simple in design and analysis;

• A proper statistical analysis of the results should be possible without
making artificial assumptions.

Taken from Cox DR (1958) Planning of experiments, Wiley & Sons, New York (page 13)
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The most simple measurement model
in microarray experiments 

Situation: m arrays (Affimetrix) from control population
n arrays (Affimetrix) from population with 

special condition /treatment
Observation of interest: Mean difference of log-transformed gene expression

(∆logFC)

∆logFCobs = ∆logFCtrue + e
e ~ N(0, σ²⋅[1/n+1/m])

In an experiment with 5 arrays per population and the same variance for the expression of a gene of 
interest, the above formula implies that the variance of the ∆logFC is only 40% (1/5+1/5 = 2/5 = 0.4) of the 
variability of a single measurement – taming of uncertainty.

For two independent random variables X, Y and two real numbers a, b it holds:

Var(aX+bY)=a²Var(X)+b²Var(y)
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Separate out differences between 
the conditions / treatments from the 

uncontrolled variation that is assumed to be present

Is ∆logFCtrue ≠ 0? – How to decide?

Special Decision rules: Statistical Tests

When the probability model for the mechanism generating the observed data is 
known, hypotheses about the model can be tested.
This involves the question: Could the presented data reasonable have come from 
the model if the hypothesis is correct?
Usually a decision must be made on the basis of the available data, and some 
degree of uncertainty is tolerated about the correctness of that decision.
These four components: data, model, hypothesis, and decision are basic to the 
statistical problem of hypothesis testing.
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Controlling the power – sample size calculations

The test should produce a significant result (level α) with a power 
of 1-β if ∆logFCtrue = δ

null hypothesis
∆logFCtrue = 0

Alternative
∆logFCtrue = δ

0 δ

The above requirement is fulfilled if: δ = (z1-α/2 + z1-β)⋅σn,m
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Controlling the power – sample size calculations
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Differential gene expression:
planning a simple experiment

σα
N0

β
N1

Detectable effets in 
terms of FCFDR
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FDR

FDR = E[FT/(FP+TP)] = E[FP/AP] AP= FP+TP: all positives, sum of 
true (TP) and false positives (FP)

marginal FDR (mFDR): α⋅n0 / (α⋅n0 + [1-β]⋅n1)
positive FDR (pFDR): E[FP/AP | AP>0]
conditional FDR (cFDR) E[FP/AP | AP=k]
empirical FDR (eFDR) only accessible in a simulation

Independence model: FP ~ Pois(α⋅n0), TP ~ Binom(n1, 1-β)
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Scenario - Sample Size

α = 0.0001, n0 = 22100, β = 0.1, n1 = 183

mFDR=0.013 FDR ~ 0.013
eFDR: Median =0.012, Q.95 = 0.030
cFDR.90 = 0.03

Sigma: 0.2 (Based on data from similar arrays and normalization)
FC = 2
arrays per group = 5 per group
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Gene lists and sample size calculation
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Why gene lists?

• Find genes that are differentially expressed between normal and
diseased samples.

• Gene is related to protein product (or antibody of it) which may be
detectable in blood, urine, ....

• Over-expressed genes are of higher interest: To detect the
presence of a new aberrant protein is easier than detecting a
decreased level of a normal protein.

• Many over-expressed genes may not be good markers for 
screening. Essays may be to difficult, genes may also be related to
processes which also occur in other settings: inflammation, growth, ...

• Need of finding a sizeable number of overexpressed genes to arrive
at a subset which might have the potential for screening. 
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Properties of a good gene list

• Contain the relevant subset of genes out of a large pool of 
candidate genes.

• Contain a low number of false positive findings.

• The ranking of the candidates in the list should be stable and
informative.

• Information with respect to a well defined purpose:
i.e. in case of screening markers have to be highly specific.

• P-values versus selection probabilities: Gene g ranked in the top k

• Purpose is not to test equal versus unequal distribution. 
The issue is to rank genes according the extent of differential
expression.
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P-value versus discrimination measures

• Perform gene wise simple test or statistical procedures which allow
for stratification and covariate adjustment

• Pepe et al. (2003) Biometrics propose for overexpression:
AUC
pAUC(t0) with t0 = P[Yc > u] - rate of false positives
ROC(t0)

• Example: Huang et al  (2003) The Lancet 361:1590-1596. 
The data contains microarrays of 52 women with breast cancer of 
whom 34 did not experience a recurrence of the tumour during a 3
years time period. 
Human U95Av2 gene chip with 12625 probe sets
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Scenario I Scenario II

Scenario II
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P-value and differential expression

rawp Bonferroni   Holm Hochberg SidakSS SidakSD     BH     BY
38895_i_at    0     0.0026 0.0026   0.0026  0.0026  0.0026 0.0026 0.0261
32625_at      0     0.0053 0.0053   0.0053  0.0053  0.0053 0.0027 0.0267
39280_at      0     0.0130 0.0130   0.0130  0.0129  0.0129 0.0031 0.0306
38795_s_at    0     0.0211 0.0211   0.0211  0.0209  0.0209 0.0031 0.0306
1032_at       0     0.0232 0.0232   0.0232  0.0230  0.0230 0.0031 0.0306
33706_at      0     0.0256 0.0256   0.0256  0.0252  0.0252 0.0031 0.0306
35222_at      0     0.0256 0.0256   0.0256  0.0252  0.0252 0.0031 0.0306
965_at        0     0.0256 0.0256   0.0256  0.0252  0.0252 0.0031 0.0306
35225_at      0     0.0340 0.0339   0.0339  0.0334  0.0334 0.0031 0.0306
39547_at      0     0.0373 0.0373   0.0373  0.0366  0.0366 0.0031 0.0306
31685_at      0     0.0410 0.0409   0.0409  0.0401  0.0401 0.0031 0.0306
33673_r_at    0     0.0410 0.0409   0.0409  0.0401  0.0401 0.0031 0.0306
34151_at      0     0.0450 0.0449   0.0449  0.0440  0.0439 0.0031 0.0306
518_at        0     0.0450 0.0449   0.0449  0.0440  0.0439 0.0031 0.0306
1608_at       0     0.0541 0.0541   0.0540  0.0527  0.0526 0.0031 0.0306
36195_at      0     0.0541 0.0541   0.0540  0.0527  0.0526 0.0031 0.0306
33650_at 0     0.0593 0.0593   0.0593  0.0576  0.0575 0.0031 0.0306
38189_s_at 0     0.0593 0.0593   0.0593  0.0576  0.0575 0.0031 0.0306
33290_at 0     0.0713 0.0712   0.0711  0.0688  0.0687 0.0031 0.0306
33558_at 0     0.0713 0.0712   0.0711  0.0688  0.0687 0.0031 0.0306
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Probability for gene selection Pg(k)

Pg(k) = Prob[Gene g ranked in the top k]

Calculate Pg(k) by bootstrap

• Sample nC control arrays with replacement
Sample nD disease arrays with replacement

• Break randomly ties by adding a minuscule random noise (jitter)
This makes bootstrap distribution of rank statistics more reflective
of the actual distribution across different realisations of the
experiment.

• Calculate the statistic of interest AUCg, ROCg(t0), pAUCg(t0) and
determine its rank for gene g. Notice if g is ranked in the top k
genes.
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Results for the Huang data on recurrence

Rank Gene AUC   Pg20  Gene ROC    Pg20 Gene       pAUC   Pg20

1  38895_i_at 0.9355 1.00  39280_at   0.8378 1.00  39280_at   0.0621 1.00
2  32625_at   0.9257 1.00  35653_at   0.8333 1.00  39737_at   0.0611 0.99
3  39280_at   0.9134 1.00  35763_at   0.8333 0.99 32004_s_at 0.0601 0.96
4  35222_at   0.9011 0.99  38895_i_at 0.8222 0.98 34658_at   0.0587 0.93
5  33706_at   0.9011 0.99  32625_at   0.8089 0.97 41267_at   0.0578 0.91
6  38795_s_at 0.9003 0.98  33290_at   0.7889 0.96 32166_at   0.0565 0.87
7  33650_at   0.8954 0.97  32166_at   0.7778 0.92  33325_at   0.0556 0.83
8  36195_at   0.8938 0.95  33706_at   0.7667 0.91  36670_at   0.0554 0.79
9  965_at     0.8938 0.93  36670_at   0.7667 0.87  36195_at   0.0552 0.77 

10  35225_at   0.8922 0.86  33237_at   0.7444 0.83  40823_s_at 0.0551 0.73
11  36471_f_at 0.8897 0.84  35116_at   0.7444 0.79  32625_at   0.0549 0.70
12  34151_at   0.8889 0.83  33925_at   0.737  0.76  33079_at   0.0546 0.66
13   40823_s_at 0.8864 0.79  33650_at   0.7333 0.76  35853_at   0.0546 0.63
14   33888_at   0.884  0.75  40823_s_at 0.7333 0.75  36731_g_at 0.0544 0.61 
15   33290_at   0.8791 0.68  635_s_at   0.7311 0.73  36268_at   0.0539 0.58
16   518_at     0.8775 0.64  39082_at   0.7296 0.69  37134_f_at 0.0539 0.52
17   38189_s_at 0.8758 0.57  35853_at   0.7278 0.63  37903_at   0.0539 0.51
18   465_at     0.8725 0.57  34361_at   0.7267 0.58  41587_g_at 0.0531 0.48
19   35763_at   0.8709 0.53  32887_at   0.7222 0.55  35225_at   0.0529 0.41
20   845_at     0.8709 0.46  33307_at   0.7222 0.51  41397_at   0.0529 0.36
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Aim – sample size calculation

• Gene expression experiments are expensive, therefore they tend to
be small, this not necessarily bad.

• Task is to select informative genes from the pool of genes studied, the
criterion for choosing sample sizes should be that they be large
enough to ensure that informative genes have a high chance of being
selected for further study.

• Resources exist such that the top-ranked k0 (k0 =100) genes will be
considered for further study.
Sample size is determined by the requirement that an informative
gene ranking in the top k1 (k1=30) genes has a probability of 1-β of
being ranked into the top k0 in the experiment.

• Quantities of interest:
Pg(k0|k1) = P[Gene g ranked in the top k0|true rank is in the top k1]
P(k0|k1) = P[All true top k1 genes ranked in the top k0]
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Computational Strategies

• Quantities of interest:
Pg(k0|k1) = P[Gene g ranked in the top k0|true rank is in the top k1]
P(k0|k1) = P[All true top k1 genes ranked in the top k0]

• Calculation of quantities of interest:
Simulation study? But how to simulate a microarray experiment?

• Bootstrap: 
Use pilot data to bootstrap possible realisations of experiments.

• Simple Bootstrap:
Bootstrap the pilot data and calculate Pg(k0|k1) or P(k0|k1).

• Bootstrap the bootstrap:
Information on the distribution of the estimates of Pg(k0|k1) or P(k0|k1).

• van der Laan M, Bryan J (2001) Biostatistics 2:1-17
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Results for the Huang data on recurrence

1000 Bootstrap samples were performed
Pg(k0|k1) k0 = 100
True Ranking (k1) 10 20 30 40 50

15 15 1.00 0.993 0.971 0.944 0.891
25 25 1.00 0.997 0.986 0.971 0.955
50 50 1.00 1.000 1.000 0.993 0.975

P(k0|k1) k0 = 100
True Ranking (k1) 10 20 30 40 50

15 15 0.988 0.866 0.711 0.332 0.163
25 25 0.999 0.955 0.871 0.517 0.254
50 50 1.000 1.000 0.965 0.781 0.552
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The need of clinical epidemiology
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Gene expression profiling for the prediction of 
therapeutic response to docetaxel 

in patients with breast cancer
Chang JC et al. (2003), The Lancet, 362:362-369

• Neoadjuvant chemotherapy for locally advanced breast cancer
Good response → breast cons. Surgery, assoc. with survival

→ prognostic value

• Need for a good response predictor 
→ possibly of post-surgical relevance for

adjuvant treatment for micrometastates

• 24 patients with locally advanced cancers, phase II small sample size
sensitive/resistant → tumour residual volume relevant endpoint?
12625 probe sets → 1628 with highest variance prediction

→ 91 used for signature
PPV 93%, NPV 83% population
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How to consider such results?
How to draw conclusions?

Careful design

• Classifiers derived from small series will be overfitted to the original
dataset and may not have general applicability.

• No test sample, external sample (no clinical details) of six patients.
Cross-validation or leave one out approach does not correct enough
for the overfitting in small samples.

• No stringent criteria for assigning outcomes to samples.
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What is a sensitive / resistant tumour?
Careful design

• Decision made at the end of the study on the basis of the observed
median relative residual volume of disease.
Tumour size - product of the two largest perpendicular diameters
measured before and after → percentage of residual disease
median of relative residual volume used to divide cancers into roughly
equal groups - sensitive and resistant tumours.

• No pathological response considered, endpoint not correlated to survival.

• Measures based on tumour value may not have clinical relevance.
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Sensitive and resistant tumours differ 
in tumour size and histology

sensitive resistant
Median perpendicular ∅ [mm] 80 30
invasive ductal carcinoma 5/11 11/13
invasive mammary carcinoma 6/11 2/13
1.) Size inversely related to response, responsive tumours have largest median

diameter.
2.) Histology (exact Banard’s Test p = 0.0528): Why do response rates in ductal

carcinoma differ from invasive mammary carcinoma

Classifier might represent differences in size and histology rather than 
docetaxel sensitivity.

Classifier does not include genes that have previously been associated with 
taxane resistance.
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Appropriate statistical framework
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Computational reproducibility

• Van ‘t Veer LJ et al. (2002), Nature, 415: 530-536

• Huang E et al. (2003), The Lancet, 361:1590-1596

Tibshirani and Efron report: „We reanalysed the breast cancer data from 
van ‚t Veer et al. ... Even with some help of the authors, we were unable 
to exactly reproduce this analysis“ (Statistical applications in Genetics 
and Molecular Biology, Vol.1 , Article 1, 2002)

Huang et al. Present 52 patients, 18 with tumour recurrence. The
authors present a novel algorithm for classification which was at the time 
of the Lancet publication not described in the literature. From the 
description on the web page we could not replicated the calculation.
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Cross-validation, the wrong and the right way

Consider a simple classifier for microarrays:

1.) Starting with all genes, find the 200 genes having the largest
correlation with the class labels

2.) Carry out nearest-centroid classification using only these 200 genes

How do we estimate the test set performance of this classifier?

Wrong: Apply cross-validation to step 2
Right: Apply cross-validation to steps 1 and 2

It is easy to simulate realistic data with the class independent of the outcome.
The true test error: 50% (half/half distribution of class labels)
But wrong CV error estimate is zero.

I know at least 4 high profile papers where this error is made.

Horror example: Frederiksen CM et al. (2003) 
J Cancer Res Clin Oncol, 129:263-271
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Classification of Dukes’B and C colorectal cancers 
using expression arrays

Frederiksen CM, Knudsen SL, Orntoft TF (2003) J. Cancer Res Clin Oncol, 129:263-271

Chip: HuGeneFL (6800 probesets, ~5000 genes)

25 subjects, five sample from normal tissue, colon cancer tissue Duke‘s stage A, B, C, D

Results:
The data indicates that it is possible at least to classify Dukes‘B and C colorectal tumours 
with microarrays.

Stage SAM (1) SAM (2) Covariance

0 100% 80% 80%
A 20% 40% 20%
B 60% 80% 80%
C 100% 100% 100%
D 0% 0% 20%

base: 5 subjects per group
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Generate Data with no correlation

between class labile and expression value

> aa.generate.data.rfc
function (anz.genes=5000,gr.names=aa.group.names) 
{

n<-anz.genes
m<-length(gr.names)
mat<-matrix(rnorm(n*m,0,1),ncol=m)
colnames(mat)<-gr.names
return(mat)

}
> aa.group.names
[1] "O.1" "O.2" "O.3" "O.4" "O.5" "A.1" "A.2" "A.3" "A.4" "A.5" "B.1" "B.2"

[13] "B.3" "B.4" "B.5" "C.1" "C.2" "C.3" "C.4" "C.5" "D.1" "D.2" "D.3" "D.4"
[25] "D.5"
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Preprocessing strategies

> aa.reduce.f.rfc
function (data=aa.data.5000,y.class=aa.gr.exp.25,anz.sel=400) 
{

require(multtest)
yy<-y.class-1
nn.1<-length(unique(yy))
nn.2<-length(yy)
f.res<-mt.teststat(data,yy,test="f",na=.mt.naNUM,nonpara="n")
f.pvl<-1-pf(f.res,nn.1-1,nn.2-nn.1)
f.adj<-mt.rawp2adjp(f.pvl)
f.sel<-f.adj[[2]][1:anz.sel]
return(data[f.sel,])

}

> aa.reduce.cor.rfc
function (data=aa.data.5000,y.class=aa.gr.exp.25,anz.sel=200) 
{

cor.res<-apply(data,1,cor,y=y.class)
cor.srt<-order(cor.res)
nn<-length(cor.res)
ss<-c(1:anz.sel,(nn-anz.sel+1):nn)
return(data[cor.srt[ss],])

}
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> aa.cor.simulation.rfc
function (i=1,how.many.genes=5000,how.many.select=200) 
{

dd.full<-aa.generate.data.rfc(anz.genes=how.many.genes)
dd.redu<-aa.reduce.cor.rfc(data=dd.full,anz.sel=how.many.select)
return(aa.generate.class.rfc(data.train=dd.redu))

}

> aa.f.simulation.rfc
function (i=1,how.many.genes=5000,how.many.select=200) 
{

dd.full<-aa.generate.data.rfc(anz.genes=how.many.genes)
dd.redu<-aa.reduce.f.rfc(data=dd.full,anz.sel=how.many.select)
return(aa.generate.class.rfc(data.train=dd.redu))

}

> aa.generate.class.rfc
function (data.train=aa.data.cor,y.class=as.factor(aa.gr.exp.25),k.nn=3) 
{

require(class)
y.knn<-knn.cv(t(data.train),y.class,k=k.nn)
return(diag(table(y.knn,y.class)))

}

Generate new data, make preprocessing
and perform classification
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Perform the simulation

> aa.cor.simulation.run.rfc
function (anz.simul=10,h.m.g=5000,h.m.s=200)
{

mm<-matrix(1:anz.simul,ncol=1)
rr<-

apply(mm,1,aa.cor.simulation.rfc,how.many.genes=h.m.g,how.many.select=h.m.s)
return(rr)

}

> aa.f.simulation.run.rfc
function (anz.simul=10,h.m.g=5000,h.m.s=200)
{

mm<-matrix(1:anz.simul,ncol=1)
rr<-

apply(mm,1,aa.f.simulation.rfc,how.many.genes=h.m.g,how.many.select=h.m.s)
return(rr)

}
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Evaluate simulation

aa.how.many.above.rfc
function (x,cut.point) 
{

return(sum(ifelse(x>=cut.point,1,0)))
}

table(apply(aa.cor.simulation.run.1.res,2, aa.how.many.above.rfc,cut.point=4))

0  1  2  3  4 
7 38 83 60 12

> table(apply(aa.f.simulation.run.1.res,2, aa.how.many.above.rfc,cut.point=4))

3   4   5 
2  31 167  
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Summary / Discussion

• Interpretability of results is determined by a series of methodological decisions
made by the scientists who perform the experiment / study. 

• Decisions on technology, experimental design, data analysis and validation of
results need to be integrated into a comprehensive statistical framework.
Because of the complexity and novelty of the problem there is only a little
progress to  achieve this integration.

• At the moment there is a huge transfer of classical biostatistical methods into
the field of microarray experiments. It is necessary to adapt these methods to
bioinformatic information. 

• If the collection, analysis and interpretation of the data are flawed then it 
may not only be a waste of a valuable resource - we could draw faulty
conclusions and potentially risk our health and environment.

DNA microarrays: Vital statistics (2003) Nature, 424:610-612
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