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Topics

• Estimation and Statistical Testing

– Simulation

– Bootstrap

– Jackknife

– Permutation

• Prediction

– Jackknife

– Cross-validation

– Bootstrap
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Model Assessment and Validation

• Data splitting and extensions

– one time splitting (training set + assessment set)

– (leave-one-out) cross-validation

– K-fold cross-validation

• Resampling plans

– Jackknife

– Bootstrap
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Model: a current approximation to complex relationships
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Predictive Accuracy

Some models are used only for hypothesis testing

If used for prediction, need to consider accuracy of predictions

Calibration: observed responses agree with predicted responses

Discrimination: model is able, through the use of predicted responses,
to separate subjects with low observed responses from those with high
responses
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→ Model assessment/validation to ascertain wether predicted values
from the model are likely to accurately predict responses on future
subjects or subjects not used to develop the model

• major failure: overfitting

• two modes of validation: internal vs external

– external:
(i) use a different set of subjects
(ii) use first m for model training and n−m for validation.
problem: holding back data from model fitting results in lower
precision and power !!

– internal:
(i) apparent (evaluate fit on same data used to create fit)
(ii) data splitting and its extensions
(iii) resampling methods



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Model Assessment and Selection 7

Overfitting

• Fitting a regression model with 20 patients and 20 variables
(counting the intercept) will result in R2 = 1 no matter what the
variables are.
A p-variable fit to p + 1 observations will perfectly predict Y (as
long as no two observations have the same Y ).

Such a model will yield predictions that appear almost random
with respect to responses on a different data set.

• Analyzing too many variables for the available sample size will not
cause a problem with apparent predictive accuracy.

But calibration or discrimination accuracy assessed on a new
sample will suffer caused by multiple comparison problems and
trying to estimate too many parameters from the sample.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Model Assessment and Selection 8

Stepwise Variable Selection

• Add variables to a model according to statistical significance
Commonly used, gives concise models

• Prone to problems of overstating importance of variables which are
retained in the model.

• Does not solve the “too many variables, too few subjects” prob-
lem, because “insignificant” variables are dropped on the basis of
apparent lack of association.

• Treating final model as if it were prespecified can cause statistical
problems (inflate type I error, confidence intervals too short)
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Validation Methods

Need to use some validation method to honestly assess the likely per-
formance of a model on a new series of subjects.
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Validation Methods

• Data-Splitting: split sample into two parts at random:
- Use first part to develop model
- Use second part to measure predictive accuracy
Is an honest method but assessment can vary greatly when take
different splits

• Cross-validation: e.g., leave out 1/10 of subjects, develop model in
9/10, evaluate in 1/10, repeat 10 times and average
Still not very precise way to measure accuracy

• Resampling plans

– Jackknifing

– Bootstrapping
Bootstrap methods are more precise and do not require holding
back data
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Comments on Validation

Drawing samples from quantities such as residuals from the model to
obtain a distribution that is conditional on input X .

This approach requires that the model be specified correctly, whereas
the unconditional bootstrap does not.

The unconditional estimates are similar to conditional estimators ex-
cept for very skewed or very small samples.
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(Aggregate) Prediction Error

Example: Multiple linear regression

• yi = xT
i β + εi

→ least-squares prediction rule for a new covariate vector x+:

ŷ+ = xT
+β̂

• How accurate is this prediction rule?

• Measure accuracy of prediction by squared error loss

(y+ − ŷ+)2

• (aggregate) prediction error

D =
1

n

n∑
i=1

E(Y+i − xT
i β̂)2

with Y+i = xT
i β + ε+i

• Since D is unknown, an estimate of ∆ = E(D) is needed
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• Since

D =
1

n

∑
var(Y+i) +

1

n

∑
(xT

i β − xT
i β̂)2

= σ2 +
1

n
(β̂ − β)TXTX(β̂ − β)

we get

∆ = E(D) = σ2(1 +
p + 1

n
)

Practically we have

∆̂ = s2(1 +
p + 1

n
)
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Comments

• This example is very special, since

we need a correct model and constant variance

• It is not extendable to other prediction rules, e.g. classification

−→ Cross-validation or resampling methods can help
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General notation

• Measure prediction error by loss function: c(y+, ŷ+)

• Prediction rule: ŷ+ = µ(x+, F̂ )

where F̂ is the empirical distribution function sampled from dis-
tribution F

• (Aggregate) prediction error

D = D(F, F̂ ) = E[c(Y+, µ(X+, F̂ ))|F̂ ]

−→ Use ∆ = ∆(F ) = E(D(F, F̂ ))
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• Apparent error (resubstitution error):

Use the same data for prediction which was used for fitting the
model

∆app = D(F̂ , F̂ ) =
1

n

n∑
i=1

c(yi, µ(xi, F̂ ))

∆app underestimates the true ∆ (“it is downwardly biased”)

For linear regression

∆̂app =
1

n
RSS

and so we have

E(∆̂app) = σ2(1 − p + 1

n
)

If p = n− 1 then E(∆̂app) = 0
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• Data Splitting

Separate data used to form the rule and data used to assess the rule:

– training set {(xi, yi) : i ∈ St}
– assessment set (test set) {(xi, yi) : i ∈ Sa},

represented by F̂t and F̂a

∆ds = D(F̂a, F̂t) =
1

na

∑
i∈Sa

c(yi, µ(xi, F̂t))
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• Leave-one-out Cross-Validation

Training sets of size (n− 1) are taken and prediction rule is tested
for a single observation:

∆cv =
1

n

n∑
i=1

c(yi, µ(xi, F̂−i))

where F̂−i represents the data excluding the i-th case.

Note the small bias of leave-one-out cv:

“It differs from ∆ by terms of order n−2 (whereas the apparent
error differs by terms of order n−1)”.
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• K-fold Cross-Validation

Small perturbations in the fitted model leaving out single observa-

tions can make ∆̂cv too variable

→ leave out groups of observations; especially K disjoined groups

∆cv,K =
1

n

n∑
i=1

c(yi, µ(xi, F̂−k(i)))

where F̂−k(i) represents the data excluding the group containing
the i-th case.
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• K-fold Cross-Validation (cont)

– Good strategy: Take K = min(
√

n, 10)
A size of at least

√
n should perturb the data sufficiently to give

small variance.

– Problem: increasing bias (especially if K is small)!

→ Reduce bias by adjustment:

Denote by F̂−k the data with the k-th group omitted,
k = 1, ..., K, and let pk denote the proportion of the k-th
group in the data set.

→

∆acv,K = ∆cv,K + D(F̂ , F̂ ) −
K∑

k=1

pkD(F̂ , F̂−k)
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K-fold adjusted cross-validation

1. Fit the regression model to all cases, calculate predictions ŷi from
that model, and average the values of c(yi, ŷi) to get D.

2. Choose group sizes m1, ...,mK such that m1 + ... + mK = n.

3. For k = 1, ..., K

(a) choose Ck by sampling mk times without replacement from
{1,2,...,n} minus elements chosen for previous Cis

(b) fit the regression model to all data except cases i ∈ Ck

(c) calculate new predictions ŷi = µ(xi, F̂−k) for i ∈ Ck

(d) calculate predictions ŷki = µ(xi, F̂−k) for all i; then

(e) average the n values c(yi, ŷki) to give D(F̂ , F̂−k).

4. Average the n values of c(yi, ŷi) using ŷi from step 3(c) to give

∆̂cv,K.

5. Calculate ∆acv,K = ∆cv,K + D(F̂ , F̂ ) −
∑K

k=1 pkD(F̂ , F̂−k) with
pk = mk/n.
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Misclassification error (two groups)

• Suppose a response y which is equal 1 or 0.

• The prediction rule µ(x+, F̂ ) is an estimate of P (Y+ = 1|x+) for
a new case (x+, y+).

• Set ŷ+ = 1 if µ(x+, F̂ ) ≥ 0.5) and ŷ+ = 0 otherwise.

• If misclassifications costs are equal the misclassification loss func-
tion is

c(y+, ŷ+) =

{
1, y+ 6= ŷ+
0, otherwise

• The aggregate prediction error D is then the overall misclassifi-
cation rate, equal to the proportion of cases where y+ is wrongly
predicted.
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K-fold adjusted cross-validation
Example: The expression set Huang.RE which is discussed in THE
LANCET (2003) 361:1590-1596. The data contains microarrays of 52
women with breast cancer of whom 34 did not experience a recurrence
of the tumour during a 3 years time period.

Using probe set 34361 at in a logistic regression model with misclassi-
fication error loss we get

> print(delta.app) # apparent error

[1] 0.1923077

> print(delta.cv) # leave-one-out cv

[1] 0.2115385

> print(delta.cv.k) # 7-fold cv

[1] 0.1923077

> print(delta.acv.k) # adjusted 7-fold cv

[1] 0.2067308
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Drawbacks of cross-validation

• Choice of the number of observations to be hold out from each fit

• Number of repetitions needed to achieve accurate estimates of ac-
curacy exceeds 200
e.g. omit 1/10 of the sample 200 times to accurately estimate index
of interest [sample need to be split into tens 20 times].

• Monte-Carlo cv is an improvement over ordinary cv (Picard &
Cook, JASA, 1984)

• cv not fully represent variability of variable selection. if 20 subjects
are omitted each time from set of 1000, list of variables selected
from each sample of size 980 are likely to be different from lists
obtained from independent samples of 1000 subjects. → cv does
not validate the full 1000 subject model.
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Estimate Prediction Error (Bootstrap)

The bootstrap estimate of the prediction error is

∆̂ = ∆(F̂ ) = E(D(F̂ , F̂ ∗b))

where F̂ ∗b denotes a bootstrap sample (x∗b
1 , y∗b1 ), . . . , (x∗b

n , y∗bn ) of the
original data.

Now the prediction rule is fitted to these data resulting in predictions

µ(xi, F̂
∗b) of yi.

Using a loss function c(·) ∆̂ is then approximated by

∆̂b =
1

B

B∑
b=1

1

n

n∑
i=1

c(yi, µ(xi, F̂
∗b))

derived by fitting the model on a set of bootstrap samples, and com-
paring its predictions with the original data.
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Problem: Bootstrap sample act as training sample, and original
training set act as test set.

Both samples have observations in common

→ overoptimistic estimate
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• Alternative 1: Leave-one-out bootstrap estimate of prediction error

∆̂bcv =
1

n

n∑
i=1

1

|B−i|
∑
b∈B−i

c(yi, µ(xi, F̂
∗b))

B−i is set of indices that does not contain observation i and |B−i|
is the size of this set.

Note that |B−i|/B is approximately equal to e−1 = 0.368

∆̂bcv is a bootstrap smoothing of the leave-one-out cv.

→ overfitting no problem, but bias by training set size.
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Example: 5 bootstrap samples

original data 1 2 3 4 5
bootstrap sample 1 1 1 3 4 4
bootstrap sample 2 1 2 2 3 5
bootstrap sample 3 1 3 3 3 4
bootstrap sample 4 3 4 4 5 5
bootstrap sample 5 2 2 3 4 4

Now bootstrap samples 1,3,and 4 do not include observation 2.
And so we get: B−2 = {1, 3, 4} with |B−2| = 3.
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• Alternative 2: “.632” bootstrap estimate of prediction error

∆̂.632 = .368∆̂app + .632∆̂bcv

where ∆̂app is the apparent error estimate
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• Problem: ∆̂.632 can break down in overfitted situation
→ take into account amount of overfitting.

Let γ denote the non-information error rate

γ̂ =
1

n2

n∑
i=1

n∑
i′=1

c(yi, µ(x′
i, F̂

∗b))

i.e. the error rate if input and output are independent

→ relative overfitting rate

R̂ =
∆̂bcv − ∆̂app

γ̂ − ∆̂app

with R̂ = 0 if no overfitting occurs.
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• And so:

Alternative 3: ”.632+” bootstrap estimate of prediction error

∆̂.632+ = (1 − ŵ) · ∆̂app + ŵ · ∆̂bcv

where

ŵ =
.632

1 − .368R̂
.

∆̂.632+ varies from ∆̂.632 to ∆̂bcv.
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Misclassification error (two groups)

• The prediction µ(x+, F̂ ) and the measure of error c(y+, ŷ+) are not
continuous functions of the data.

→ bootstrap methods for estimating D or its expected value ∆
are superior to cross-validation methods, in terms of variability.
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Variable/Gene Selection

• Model/variable selection implies that there is some likelihood of a
“true” model,

some pre-specified variables have zero association with response Y

• Need to perform gene selection preceding the predictive modelling

→ e.g. eliminate variables whose distributions are too narrow.
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Variable/Gene Selection (cont)

• Gene filtering is helpful, but

estimating the error rate after variable selection leads to biased
estimates of the prediction error
→ overstating importance of variables which are retained in the
model.

• Make sure that you are cross-validating the experiment that you
have carried out,
in particular, if you are selecting genes, rather than working with
known genes, you must cross-validate the gene selection process as
well.

• There are many examples with low classification error rates which
do not cross-validate properly (model/gene selection was not vali-
dated).
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Prediction error in gene selection situations

For simplicity select 1000 most variable probe sets (by coefficient of
variation) for the exercises (data frame mydata)

sd.exp <- apply(exprs(Huang.RE),1,sd)
mean.exp <- apply(exprs(Huang.RE),1,mean)

cv.exp <- sd.exp/mean.exp
index <- order(cv.exp,decreasing=TRUE)[1:1000]

mydata <- data.frame(t(exprs(Huang.RE)[index,]),
Recurrence=as.factor(pData(Huang.RE)$Recurrence))
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Now we select probe sets by comparing their univariate p-values of a
two-sample t-test with a pre-specified level of 0.05 and train a LDA
using the selected probe sets only.

The .632+ bootstrap estimate of the prediction error using B=25
bootstrap samples gives a misclassification error of 0.2862.

set.seed(71003)
errorest(Recurrence ~ ., data=mydata, model=mymod, estimator="632plus",

est.para=control.errorest(nboot = 25))

errorest.data.frame(formula = Recurrence ~ ., data = mydata,
model = mymod, estimator = "632plus", est.para = control.errorest(nboot = 25))

.632+ Bootstrap estimator of misclassification error
with 25 bootstrap replications

Misclassification error: 0.2862
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Problem of overfitting

Low High
Model Complexity

Training Sample

Test Sample

High Bias
Low variance

Low Bias
High variance
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Behaviour of test and training sample error 
as the model complexity is varied
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Controlling the complexity of the model

Truth

Hastie, Tibshirani, Friedman, 2001
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Truth

Hastie, Tibshirani, Friedman, 2001

Realization
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Truth

Hastie, Tibshirani, Friedman, 2001

Realization

estimation
variance

model space

model
bias

closest fit
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Truth

Hastie, Tibshirani, Friedman, 2001

Realization

estimation
variance

model space

model
bias

closest fit

restricted
model space

regularization
bias

shrunken fit
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Controlling the complexity of the model

• Restriction methods

The class of functions of the input variables defining the model is
limited.

Example:
Allow only linear combinations of given basis functions hjm

f (X) =

G∑
j=1

fj(Xj) =

G∑
j=1

Mj∑
m=1

βjmhjm(Xj)

hjm is the mth basis function of the jth input variable.

The size of the model is limited by the number Mj of basis functions
used for the G components fj.
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Controlling the complexity of the model

• Selection methods

Include only those basis functions hjm that contribute ‘signifi-
cantly’ to the fit of the model.

Examples:

– Variable selection methods

– Stagewise greedy approaches like boosting

• Regularization methods

Restrict the coefficients of the model.

Example: Ridge regression
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Penalized Regression

• Maximizing the log likelihood can result in fitting noise in the data.

• A shrinkage approach will often result in estimates of the regression
coefficients that, while biased, are lower in mean squared error and
are more close to the true parameters.

• A good approach to shrinkage is penalized maximum likelihood
estimation (le Cessie & van Houwelingen, 1990).

From the log-likelihood logL a so-called ‘penalty’ is subtracted,
that discourages regression coefficients to become large.

→ penalized log likelihood:

logL− λ · p(β)

p(β) penalty function, λ non-negative penalty factor.


