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Abstract. In this practical session you will learn how to apply Nearest Shrunken Centroids
and Support Vector Machines to microarray datasets. Important topics will be feature
selection, cross validation and the selection bias.

We will explore data from Duke University and Duke Medical Center, as described in
Predicting the clinical status of human breast cancer by using gene expression profiles
(Mike West et al., PNAS 2001 Sep 25; 98(20):11462-11467). It consists of 46 breast
tumor samples separated into two classes: 23 samples were positive for estrogen receptor
(class ER+) and 23 were negative (class ER-). For each of these samples the expression
levels of 7129 genes were measured. In addition, you are given the expression profiles of
three patients with unknown type of breast cancer. Your task is to learn the difference
between ER+ and ER- from the 46 training samples and then propose a diagnosis for the
three new patients.

1 Nearest Shrunken Centroids

> load("breastcancer.Rdata")
> summary(breastcancer)
> dim(breastcancer$x)
> breastcancer$y

breastcancer$x is a matrix containing the expression profiles. It consists of 46 columns
corresponding to samples and 7129 rows corresponding to genes. breastcancer$y contains
the class labels of the 46 samples: either ER+ or ER-.
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1.1 Training PAM

> library(pamr)
> pam.trained <- pamr.train(breastcancer)

With this command you train PAM on the dataset. By typing pam.trained you get an
output like this:

Call:
pamr.train(data = breastcancer)

threshold nonzero errors
1 0.000 7129 0
2 0.236 5343 0
. . . .
. . . .
29 6.600 1 4
30 6.836 0 23

For 30 different values of the threshold the number of nonzero genes and the number of
misclassifications on the training set are listed. Have a look at the last row of this table.
Why do we only have 23 errors if we classify with 0 genes? Why not 46?

1.2 10-fold cross validation

A more reliable error estimate than the number of misclassifications on the training set is
the 10-fold cross validation error:

> pam.trained.cv <- pamr.cv(pam.trained, breastcancer)

The output of this function looks very similar to the table above. The numbers in the last
column are now the summed errors of all 10 cross validation steps. The CV error usually is
bigger than the training error. Explain this gap.

The results of cross validation can be visualized by

> pamr.plotcv(pam.trained.cv)

You will get two figures. In both, the x-axis represents different values of threshold (cor-
responding to different numbers of nonzero genes as shown on top of each figure) and
the y-axis shows the number of misclassifications. The upper figure describes the whole
dataset, the lower one describes each class individually. Explain the behaviour at the right
tail of the lower figure.
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1.3 Plots for different threshold values

Using the results of cross validation, choose a threshold value t as a tradeoff between a
small number of genes and a good generalization accuracy. (You cannot choose a value
bigger than 5.7. This seems to be a bug in the software.)

> t <- ??? # your choice of a THRESHOLD value

In the next steps, vary t through a range of values and observe how the plots and figures
change.

The function pamr.plotcen() plots the shrunken class centroids for each class, for genes
surviving the threshold for at least one class.

> pamr.plotcen(pam.trained, breastcancer, t)

Unfortunately, one cannot read the gene names in this figure. If you are interested in them,
print the active graphic window by

> dev.print(file="myfigure.ps") or
> dev.print(device=pdf, file="myfigure.pdf")

and then use Ghostview or AcrobatReader to view it in more detail. In addition, the function
pamr.listgenes() yields a list of gene names and IDs (see below).

***

> pamr.confusion(pam.trained.cv, t)

This function prints a 2× 2 confusion table like this:

ER- ER+ Class Error rate
ER- 21 2 0.08695652
ER+ 3 20 0.13043478
Overall error rate= 0.108

23 samples belong to class ER-, 21 are classified correctly, and two are misclassified as ER+,
23 samples belong to class ER+. 20 are classified correctly and 3 are misclassified. This
makes an overall error rate of 10.8%.

To get a visual impression of how clearly the two classes are separated by PAM, we plot
the cross-validated sample probabilities:

> pamr.plotcvprob(pam.trained, breastcancer, t)

The 46 samples (x-axis) are plotted against the probabilities to belong to either class ER+
(green) or ER- (red). For each sample you see two small circles: the red one shows the
probability that this sample belongs to ER- and the green one that it belongs to ER+. A
sample is put into that class for which probability exceeds 0.5.
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***

For each gene surviving the threshold we get a figure showing the expression level of this
gene over the whole set of samples by using the following command:

> pamr.geneplot(pam.trained, breastcancer, t)

Sometimes you get an error message "Error in plot.new(): Figure margins too
large", because there is not enough space to plot all the genes. To mend this problem
increase the threshold – which will decrease the number of genes.

More information about the genes used for the classification is given by

> pamr.listgenes(pam.trained, breastcancer, t, genenames=TRUE)

The output lists the Affymetrix ID and the name of the gene. In the last two columns
you see a score indicating whether the gene is up or down regulated in the two classes of
samples:

id name ER- score ER+ score
[1,] X03635_at "ESR Estrogen receptor" -0.4181 0.4181
[2,] U79293_at "Clone 23948 mRNA sequence" -0.2634 0.2634

If you have a biological background: do you know any of the gene names? Which genes in
the list would you have expected?

1.4 Computational Diagnosis

Now we use the trained PAM classifier to diagnose the three new patients:

> pam.diagnosis <- pamr.predict(pam.trained, newpatients, t)

pam.diagnosis is a vector containing your prediction. But PAM does not only classify, it
also tells you how sure it is about its decision by computing posterior probabilities:

> pamr.predict(pam.trained, newpatients, t, type="posterior")

ER- ER+
V47 0.57961121 0.4203888
V48 0.04988766 0.9501123
V49 0.95703730 0.0429627

For patient 2 and 3, PAM is very confident of its decision (more than 95%), but for patient 1
it achieves only a 57% posterior probability for class ER-. And if we compare the result to
the true classes (> trueclasses), we see that PAM actually got it wrong for patient 1 =(
Let’s see if SVMs can do it better!
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2 Support Vector Machines (SVM)

> library(e1071) # contains the SVM software

The SVM software needs the data in a slightly different format than PAM. The command
t() transposes a matrix (”turns it by 90 degrees”), and factor() translates the class
names ER+ and ER- into the class labels +1 and -1:

> train.x <- t(breastcancer$x)
> train.y <- factor(breastcancer$y, labels=c(-1,+1))

2.1 Training error

We will begin with the simple linear kernel:

> svm.trained <- svm(train.x, train.y, type="C-classification",
kernel="linear")

Let’s compute the training error:

> predicted <- predict(svm.trained, train.x) # predict labels of training data
> sum(predicted != train.y) # count differences
> table(true=train.y, pred=predicted) # confusion matrix

The linear kernel separates the training set without errors! But how is its ability to predict
unseen samples? We investigate by 10-fold cross validation.

2.2 10-fold cross validation

> svm.trained.cv <- svm(train.x, train.y, type="C-classification",
kernel="linear", cross=10)

Typing svm.trained.cv gives an overview over your settings and the cross validation
results:

10-fold cross-validation on training data:

Total Accuracy: 91.30435
Single Accuracies:
100 100 100 100 80 75 100 50 100 100
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Do cross validation with the linear kernel several times. Why does the line ”Single Accura-
cies” change each time? Does the total accuracy change?

Try other kernels: kernel="polynomial" with degree=2; and kernel="radial". The
dataset is easy to separate; the complex kernel functions do not give much better results
than the linear kernel.

2.3 Computational diagnosis

By analyzing the training error and the cross-validation error we have seen that a SVM is
quite good at learning the difference between ER+ and ER-. What does it tell us about the
three new patients?

> svm.diagnosis <- predict(svm.trained, t(newpatients))

You will find that SVM with linear or second degree polynomial kernels misclassify the first
patient, while SVM with radial-basis-kernel recognize him correctly as ER+. So, SVMs beat
PAM on this patient!

2.4 Zero training error does not guarantee good prediction!

Maybe we could convince you that SVM are a powerful classification method achieving a
very good generalization performance. But before we all get too confident let’s do a little
experiment. train.y describes a biologically meaningful class distinction of the cancer
samples. Now we will assign the samples randomly into two classes and investigate how
SVM will react.

> labels.rand <- sample(c(-1,+1),46, replace=TRUE)
> svm.rand <- svm(train.x, labels.rand, type="C-classification",

kernel="linear")
> predicted <- predict(svm.rand, train.x)
> table(true=labels.rand, pred=predicted)

Zero training error! Wow! Now train the SVM again with cross validation. Compare the
CV error on the biological and on the randomized data. The CV error for random labels
will be very very high. This means: even with zero training error, we are bad at predicting
new things.

Why is this observation important for medical diagnosis? Whenever you have expression
levels from two kinds of patients, you will ALWAYS find differences in their gene expression
- no matter how the groups are defined, no matter if there is any biological meaning. And
these differences will not always be predictive.
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2.5 How to select the most informative genes

We use a t-statistic to select the genes with the most impact on classification. The t-statistic
can be written as

t =
µ+ − µ−√

(n+ − 1)σ2
+ + (n− − 1)σ2

−

×
√
n+n−(n− 2)

n
, (1)

and is built from the following components:

n : number of samples (= 46)
n+ : number of positive samples (= 23)
n− : number of negative samples (= 23)
µ+ : mean of expression levels in positive samples
µ− : mean of expression levels in negative samples
σ2

+ : variance in positive class
σ2
− : variance in negative class

The second term in formula (1) is constant. We can neglect it, because we are not interested
in the absolute value of the t-statistic but in its relative size for different genes.

Since R is good at matrix computations, you don’t have to compute the t-value for each
gene individually. It’s more efficient to do it like this:

> ER.pos <- train.x[train.y==+1,] # matrix of positive samples
> mu.pos <- apply(ER.pos,2,mean) # mean of each column (gene)
> var.pos <- apply(ER.pos,2,var) # variance of each column (gene)
> n.pos <- nrow(ER.pos) # = 23

mu.pos and var.pos are vectors with 7129 entries. The entry of mu.pos at position i is
the mean expression level of gene i over all samples with a positive label. Analogous for
var.pos. Repeat the commands above on the negative samples and get vectors mu.neg
and var.neg.

Use these building blocks to compute formula (1). This will give you a vector of length
7129: each entry is the t-score of the corresponding gene. Call this vector tscores. Now
we order the vector tscores and select the 100 genes with highest t-score:

> index <- order(tscores, decreasing=TRUE)
> data.sel <- train.x[,index[1:100]]

The matrix data.sel contains 46 rows (samples) and 100 columns (the selected genes).
Train a SVM on this reduced dataset with different kernels and parameters and compare
the results to those obtained with all genes. How do you explain the differences?

Vary the number of selected genes. How many genes do you need to still get a reasonable
CV error?
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2.6 The selection bias

There has been a conceptual flaw in the way we combined the cross validation with gene
selection in the last section.

The idea of cross validation is this: split your dataset in e.g. 10 subsets and take one subset
out as a test set. Train your classifier on the remaining samples and assess its predictive
power by applying it to the test set. Do this for all of the 10 subsets. This procedure is
only sensible if no information about the test set is used while training the classifier. The
test set has to remain ’unseen’.

So what went wrong in the last section? We did a feature selection on the whole dataset,
i.e. we selected the 100 genes that are most informative given all 46 samples. Then we
did a cross validation using these genes. Thus, the test set in each cross validation step
had already been used for the feature selection. We had already seen it before training the
classifier.

What is the right way to use feature selection in cross validation? Do a selection of
important genes in every step of cross validation anew! Do the selection only on the
training set and never on the test set!

As an exercise we will now implement a 10-fold cross-validation with feature selection. (If
you have not done so already to keep a log, open some texteditor and write your commands
in an empty file. Save this text file as mycv.r. To execute it, type > source("mycv.r").)
First, we randomly reorder the dataset.

n <- nrow(train.x) # n = 46
permutation <- sample(1:n)
data.perm <- train.x[permutation,] # random permutation of samples
labels.perm <- train.y[permutation] # same permutation of labels

A cross validation is just one FOR-loop:

k <- 10 # how many CV steps?
for (i in 1:k){ ..your commands.. }

Within the brackets you have to do the following: First, split the data into a training and
test set. Since we randomly reordered the data set, you only have to move a window of
size n/k over the rows. The samples within are the test set, the samples outside are the
training set.

www <- c(0,round((1:k)*(n/k))) # size of window
win <- (www[i]+1):www[i+1] # moving window
CV.test <- data.perm[win,] # samples within window
CV.train <- data.perm[-win,] # samples outside window
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CV.labels.test <- labels.perm[win]
CV.labels.train <- labels.perm[-win]

The first two lines look more difficult than they are. Think about what happens for i=1
and i=10.

(2.) Now you do a feature selection for CV.train in same way as you did it for the whole
dataset in the last section.

(3.) train a SVM on the training set with the selected genes. Then predict the labels of
CV.test (using only the selected genes). Compute the test error svm.error.

(4.) Collect the SVM test error of each step in a vector CV.error.single by using
the concatenation function c() (you have to initialize CV.error.single <- c() at the
beginning):

CV.error.single <- c(CV.error.single, svm.error)

(5.) After the FOR-loop has finished the vector CV.error.single has k entries (one for
each step of the cross validation). The overall CV error is the mean of CV.error.single.

Implement these steps, then run mycv.r and compare the outcome to the results achieved
in the last section.

3 Summary

Scan through this paper once again and identify in each section the main message you have
learned. Some of the most important points are:

• You have learned how to apply the Nearest Shrunken Centroids method and Support
Vector Machines to microarray data.

• You have learned how to do feature selection using the t-statistic.

• It is quite easy to separate the training set without errors (SVM do this even on
randomly labeled samples), but this does not guarantee a good generalization perfor-
mance on unseen test data.

• In cross validation: do all the data manipulation (like feature selection) inside the CV
and not before.

If you have any comments, criticisms or suggestions on our lectures, please contact us:
rainer.spang@molgen.mpg.de and florian.markowetz@molgen.mpg.de

The datasets used and this paper are available from the course homepage:
http://cmb.molgen.mpg.de/compdiag/ngfn/pma2003.shtml
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4 mycv.r

k <- 10
CV.error.single <- c()

# random permutation of data and labels
n <- nrow(train.x)
permutation <- sample(1:n)
data.perm <- train.x[permutation,]
labels.perm <- train.y[permutation]

# CV is just a FOR-loop:
for (i in 1:k){

# 0. moving window
www <- c(0,round((1:k)*(n/k)))
win <- (www[i]+1):www[i+1]

# 1. data preparation:
CV.test <- data.perm[win,]
CV.train <- data.perm[-win,]
CV.labels.test <- labels.perm[win]
CV.labels.train <- labels.perm[-win]

# 2. Gene selection by t-statistic
CV.train.pos <- CV.train[CV.labels.train==+1,]
CV.train.neg <- CV.train[CV.labels.train==-1,]
n.pos <- nrow(CV.train.pos)
n.neg <- nrow(CV.train.neg)
mu.pos <- apply(CV.train.pos,2,mean)
mu.neg <- apply(CV.train.neg,2,mean)
var.pos <- apply(CV.train.pos,2,var)
var.neg <- apply(CV.train.neg,2,var)
tscores <- abs(mu.pos-mu.neg)/sqrt((n.pos-1)*var.pos + (n.neg-1)*var.neg)
index <- order(tscores, decreasing=TRUE)
sel <- index[1:100]
CV.train.sel <- CV.train[,sel]

# 3. train on CV.train
svm.model <- svm(CV.train.sel, CV.labels.train,

type="C-classification", kernel="linear")

# 4. test on CV.test
CV.test.sel <- CV.test[,sel]
predicted <- predict(svm.model, CV.test.sel)
svm.error <- sum(predicted != CV.labels.test)/nrow(CV.test.sel)
CV.error.single <- c(CV.error.single, svm.error)

}

CV.error.total <- mean(CV.error.single)


