Design of microarray experiments

Ulrich Mansmann

mansmann@imbi.uni-heidelberg.de

Practical microarray analysis
March 2003
Heidelberg

Experiments

Scientists deal mostly with experiments of the following form:

- A number of alternative conditions / treatments
- one of which is applied to each experimental unit
- an observation (or several observations) then being made on each unit.

The objective is:

- Separate out differences between the conditions / treatments from the uncontrolled variation that is assumed to be present.
- Take steps towards understanding the phenomena under investigation.

Statistical thinking

Uncertain

knowledge

+

Knowledge of the extent of uncertainty in it

Useable

knowledge

Measurement model

$$m = \mu + e$$

m – measurement with error, μ - true but unknown value

What is the mean of e?

What is the variance of e?

Is there dependence between e and μ ?

What is the distribution of e (and μ)?

Typically but not always: $e \sim N(0, \sigma^2)$

Gaussian / Normal measurement model

el 🕶

Decisions on the experimental design influence the measurement model.

Main requirements for experiments

Once the *conditions / treatments*, *experimental units*, and the *nature of the observations* have been fixed, the main requirements are:

- Experimental units receiving different treatments should differ in no systematic way from one another Assumptions that certain sources of variation are absent or negligible should, as far as practical, be avoided;
- Random errors of estimation should be suitably small, and this should be achieved with as few experimental units as possible;
- The conclusions of the experiment should have a wide range of validity;
- The experiment should be simple in design and analysis;
- A proper statistical analysis of the results should be possible without making artificial assumptions.

Taken from Cox DR (1958) Planning of experiments, Wiley & Sons, New York (page 13)

The most simple measurement model in microarray experiments

Situation: m arrays (Affimetrix) from *control* population

n arrays (Affimetrix) from population with

special condition /treatment

Observation of interest: Mean difference of log-transformed gene expression ($\Delta logFC$)

$$\Delta logFC_{obs} = \Delta logFC_{true} + e$$

e ~ N(0, $\sigma^2 \cdot [1/n + 1/m]$)

In an experiment with 5 arrays per population and the same variance for the expression of a gene of interest, the above formula implies that the variance of the $\Delta logFC$ is only 40% (1/5+1/5 = 2/5 = 0.4) of the variability of a single measurement – *taming of uncertainty*.

Heidelberg, March 2003 5

Separate out differences between the conditions / treatments from the uncontrolled variation that is assumed to be present.

Is $\Delta logFC_{true} \neq 0$? – How to decide?

Special Decision rules: Statistical Tests

- When the probability model for the mechanism generating the observed data is known, hypotheses about the model can be tested.
- This involves the question: Could the presented data reasonable have come from the model if the hypothesis is correct?
- Usually a decision must be made on the basis of the available data, and some degree of uncertainty is tolerated about the correctness of that decision.
- These four components: data, model, hypothesis, and decision are basic to the statistical problem of hypothesis testing.

Quality of decision

	True state of gene			
Decision	Gene is diff. expr.	Gene is not diff. expr.		
Gene is diff. expr.	OK	false positive decision happens with probability α		
Gene is not diff. expr.	false negative decision happens with probability β	OK		

Two sources of error: False positive rate α

False negative rate β

Power of a test: Ability to detect a difference if there is a true difference

Power – true positive rate or Power = 1 - β

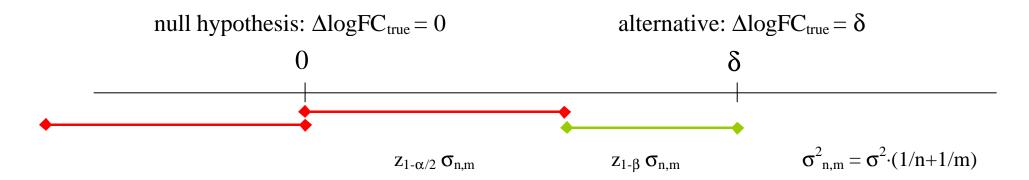
The Statistical test

- Question of interest (*Alterative*): Is the gene G differentially expressed between two cell populations?
- Answer the question via a *proof by contradiction*: Show that there is no evidence to support the logical contrary of the *alternative*. The logical contrary of the *alternative* is called *null hypothesis*.
- *Null hypothesis*: The gene G is not differentially expressed between two cell populations of interest.
- A test statistic **T** is introduced which measures the fit of the observed data to the *null hypothesis*.

 The test statistics T implies a *prob. distribution* **P** to quantify its variability when the *null hypothesis* is true.
- It will be checked if the *test statistic* evaluated at the observed data t_{obs} behaves typically (not extreme) with respect to the *test distribution*.
 - The *p-value* is the probability under the null hypothesis of an observation which is more extreme as the observation given by the data: $\mathbf{P}(T \ge t_{obs}) = \mathbf{p}$.
- A criteria is needed to asses *extreme behaviour* of the test statistic via the p value which is called the *level* of the test: a.
- The observed data does not fit to the null hypothesis if $p < \mathbf{a}$ or $|t_{obs}| > t^*$ where t^* is the 1- α or 1- α /2 quantile of the prob. distribution P. t^* is also called the *critical value*. The conditions $p < \mathbf{a}$ and $t_{obs} > t^*$ are equivalent. If $p < \mathbf{a}$ or $t_{obs} > t^*$ the null hypothesis will be rejected.
- If $p \ge a$ or $t_{obs} \ge t^*$ the null hypothesis can not be rejected this does not mean that it is true Absence of evidence for a difference is no evidence for an absence of difference.

Controlling the power – sample size calculations

The test should produce a significant result (level α) with a power of 1- β if $\Delta logFC_{true} = \delta$



The above requirement is fulfilled if: $\delta = (z_{1-\alpha/2} + z_{1-\beta}) \cdot \sigma_{n,m}$

$$\frac{n \cdot m}{n + m} = \frac{(z_{1-\alpha/2} + z_{1-\beta})^2 \cdot \sigma^2}{\delta^2}$$

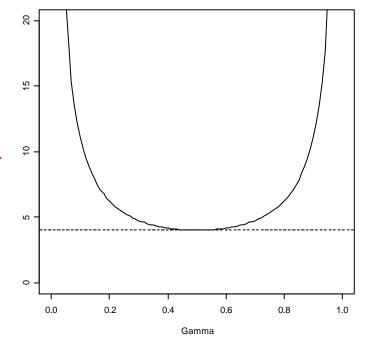
Controlling the power – sample size calculations

$$\frac{\mathbf{n} \cdot \mathbf{m}}{\mathbf{n} + \mathbf{m}} = \frac{\left(z_{1-\alpha/2} + z_{1-\beta}\right)^2 \cdot \sigma^2}{\delta^2}$$

 $n = N \cdot \gamma$ and $m = N \cdot (1 - \gamma)$ with $M - \text{total size of experiment and } \gamma \in]0,1[$

$$N = \frac{1}{\gamma \cdot (1 - \gamma)} \cdot \frac{\left(z_{1 - \alpha/2} + z_{1 - \beta}\right)^2 \cdot \sigma^2}{\delta^2}$$

The size of the experiment is minimal if $g = \frac{1}{2}$.



Sample size calculation for a microarray experiment I

Truth				
Test result	diff. expr. (H ₁)	not diff. expr. (H ₀)		
diff. expr.	D_1	D_0	D	
not diff. expr.	U_1	U_0	U	
Number of genes on array	G_1	G_0	G	

$$\alpha_0 = E[D_0]/G_0$$
 $\beta_1 = E[U_1]/G_1$ FDR= $E[D_0/D]$
E: expectation / mean number

family type I error probability: $\alpha_F = P[D_0>0]$ family type II error probability: $\beta_F = P[U_1>0]$

Sample size calculation for a microarray experiment II

Independent genes	Dependent Genes	
$P[D_0=0] = (1-\alpha_0)^{Go} = 1-\alpha_F$ $D_0 \sim Binomial(G_0, \alpha_0)$ $E[D_0] = G_0 \cdot \alpha_0$ $Poissonapprox.: E[D_0] \sim -ln(1-\alpha_F)$	Bonferroni: $\alpha_0 = \alpha_F / G_0$ No direct link between the probability for D_0 and α_F .	
$P[U_1=0] = (1-\beta_1)^{G_1} = 1-\beta_F$ $E[U_1] = G_1 \cdot (1-\beta_1)$	$1-\beta_F \ge \max\{0,1-G_1\cdot\beta_1\}$ No direct link between the probability for $U_1 \text{ and } \beta_F.$	

Sample size calculation for a microarray experiment III

for an array with 33000 independent genes

What are useful α_0 and β_1 ?

$$\alpha_{\rm F} = 0.8$$

$$E[D_0] = -\ln(1-0.8) = 1.61 = \lambda$$

P(exactly k false pos.) =
$$\exp(-\lambda) \cdot \lambda^k / (k!)$$

false pos.	0	1	2	3	4	5
Prob.	0.200	0.322	0.259	0.139	0.056	0.018

P(at least six false positives) = 0.0062

32500 unexpressed genes: $\alpha_0 = 1.61/32500 = 0.0000495$

500 expressed genes, set
$$E[D_1] = 450$$
 $1-\beta_1 = 450/500 = 0.9$ $\beta_1 = 0.1$ $1-\beta_F = (1-\beta_1)^{G_1} < 10^{-23}$

$$1-\beta_1 = 450/500 = 0.9$$

$$\beta_1 = 0.1$$

$$1-\beta_F = (1-\beta_1)^{G_1} < 10^{-23}$$

$$E[FDR] = 0.0035$$

Sample size calculation for a microarray experiment IV

In order to complete the sample size calculation for a microarray experiment, information on σ^2 is needed.

The size of the experiment, N, needed to detect a $\Delta logFC_{true}$ of δ on a significance level α and with power 1- β is:

$$N = 4 \cdot \frac{\left(z_{1-\alpha/2} + z_{1-\beta}\right)^2 \cdot \sigma^2}{\delta^2}$$

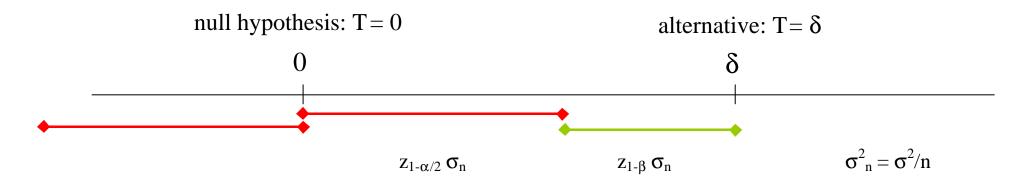
In a similar set of experiments σ^2 for a set of 20 VSN transformed arrays was between 1.55 and 1.85. One may choose the value $\sigma^2 = 2$.

δ	log(1.5)	log(2)	log(3)	log(5)	log(10)
$N(\sigma^2=2)$	1388	476	190	88	44
$N(\sigma^2=1)$	694	238	96	44	22

Sample size with $\alpha = 0.0000495$, $\beta = 0.1$

Sample size formula for a one group test

The test should produce a significant result (level α) with a power of 1- β if $T=\delta$



The above requirement is fulfilled if: $\delta = (z_{1-\alpha/2} + z_{1-\beta}) \cdot \sigma_n$

$$n = \frac{(z_{1-\alpha/2} + z_{1-\beta})^2 \cdot \sigma^2}{\delta^2}$$

Measurement model for cDNA arrays

Gene expression under condition A – intensity of red colour, Gene expression under condition B – intensity of green colour

$$Measurement: m_{\text{A/B}} = \text{Log}_2\!\!\left(\!\frac{\text{I}_{\text{red,A}}}{\text{I}_{\text{green,B}}}\right) = \gamma_{\text{A/B}} + \delta + e$$

 $\gamma_{A/B}$ – log-transformed true fold change of gene of condition A with respect to condition B δ - dye effect, e – measurement error with E[e] = 0 and Var(e) = σ^2

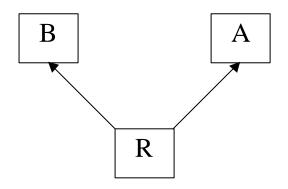
Measurement $m_{A/B}$ is used to estimate unknown $\gamma_{A/B}$

- Vertices mRNA samples
- *Edges* hybridization
- *Direction* Dye assignment Green —→ Red

Estimation of log fold change g_{A/B}

Reference Design

Dye swap design



Estimate of $\gamma_{A/B}$

$$g_{A/B}^R = m_{A/R} - m_{B/R}$$

$$g_{A/B}^{DS} = (m_{A/B} - m_{B/A})/2$$

Variability of estimate

$$Var(g_{A/B}^R) = 2 \cdot \sigma^2$$

$$Var(g_{A/B}^{DS}) = 0.5 \cdot \sigma^2$$

Sample Size increases proportional to the variance of the measurement!

2x2 factorial experiments I

treatment / condition	Wild type	Mutation
before treatment	β	β+μ
after treatment	β + $ au$	β+τ+μ+ψ

 β - baseline effect; τ - effect of treatment; μ - effect of mutation ψ - differential effect on treatment between WT and MUT

treatment effect on gene expr. in WT cells: $\Delta^{WT} = (\beta + \tau) - \beta = \tau$ treatment effect on gene expr. in MUT cells: $\Delta^{MUT} = (\beta + \tau) - (\beta + \mu) = \tau + \psi$

differential treatment effect: $\Delta^{MUT} \neq \Delta^{WT}$ or $\psi \neq 0$

How many cDNA arrays are needed to show $\psi \neq 0$ with significance α and power 1- β if $|\psi| > \ln(5)$?

2x2 factorial experiments II

Study the **joint** effect of two conditions / treatment, A and B, on the gene expression of a cell population of interest.

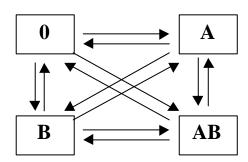
There are four possible condition / treatment combinations:

AB: treatment applied to MUT cells

A: treatment applied to WT cells

B: no treatment applied to MUT cells

0: no treatment applied to WT cells



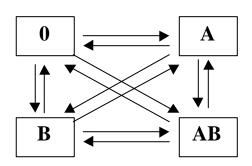
Design with 12 slides

2x2 factorial experiments III

Array	Measurement
$m_{A/0}$	$\gamma_{A/0} + \delta + e = \tau + \delta + e$
$m_{0/A}$	$-\gamma_{A/0} + \delta + e = -\tau + \delta + e$
$m_{B/0}$	$\gamma_{B/0}+\delta+e=\mu+\delta+e$
$m_{0/B}$	$-\gamma_{\rm B/0}+\delta+{ m e}=-\mu+\delta+{ m e}$
$m_{AB/0}$	$\gamma_{AB/0} + \delta + e = \mu + \tau + \psi + \delta + e$
$m_{0/AB}$	$-\gamma_{AB/0} + \delta + e = -(\mu + \tau + \psi) + \delta + e$
$m_{AB/A}$	$\gamma_{AB/A} + \delta + e = \mu + \psi + \delta + e$
$m_{A/AB}$	$-\gamma_{AB/A} + \delta + e = -(\mu + \psi) + \delta + e$
$m_{AB/B}$	$\gamma_{AB/B} + \delta + e = \mu + \psi + \delta + e$
$m_{B/AB}$	$-\gamma_{AB/B} + \delta + e = -(\mu + \psi) + \delta + e$
$m_{A/B}$	$\gamma_{A/B} + \delta + e = au - \mu + \delta + e$
$m_{ m B/A}$	$-\gamma_{A/B} + \delta + e = -(\tau - \mu) + \delta + e$

- Each measurement has variance σ^2
- Parameter β is confounded with the dye effect

Regression analysis

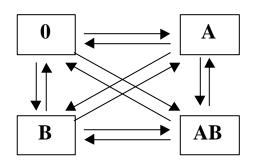


- For parameter $\theta = (\delta, \tau, \mu, \psi)$ define the design matrix X such that $E(M) = X\theta$.
- For each gene, compute least square estimate $\theta^* = (X'X)^{-1}X'M$ (BLUE)
- Obtain measures of precision of estimated effects.
- Use all possibilities of the theory of linear models.

Design problem:

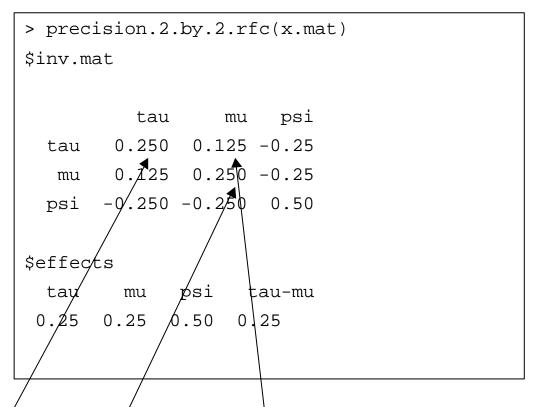
• Each measurement M is made with variability σ^2 . How precise can we estimate the components or contrasts of θ ? Answer: Look at $(X'X)^{-1}$

2 x 2 factorial designs IV



> total.2.by.2.design.mat

	delta	alpha	beta	psi
A/0	1	1	0	0
0/A	1	-1	0	0
B/0	1	0	1	0
0/B	1	0	-1	0
AB/0	1	1	1	1
0/AB	1	-1	-1	-1
AB/A	1	0	1	1
A/AB	1	0	-1	-1
AB/B	1	1	0	1
B/AB	1	-1	0	-1
B/A	1	-1	1	0
A/B	1	1	-1	0



 $Var(A-B) = Var(A) + Var(B) - 2 \cdot Cov(A,B)$

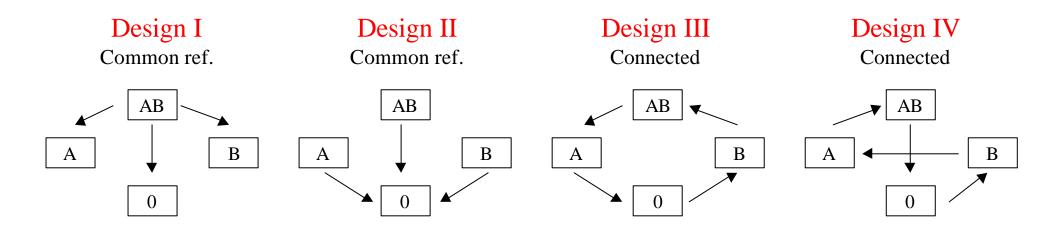
Sample size for differential treatment effect (DTE) in a 2 x 2 factorial designs I

- Array has 20.000 genes: 19500 without DTE, 500 with DTE
- $\alpha_F = 0.9$, using Bonferroni adjustment: $\alpha = 0.9/20.000 = 0.0000462$
- Mean number of correct positives is set to 450: $1-\beta = 0.9$
- $\sigma^2 = 0.7$, taken from similar experiments
- A total dye swap design (12 arrays) estimates ψ with precision $\sigma^2/2 = 0.35$

$$N = [4.074 + 1.282]^2 \cdot 0.35 / \ln(5)^2 = 3.876$$

- The experiment would need in total $4 \times 12 = 48$ arrays
- Is there a chance to get the same result cheaper?

2 x 2 factorial designs V



Scaled variances of estimated effects

Sample size for differential treatment effect (DTE) in a 2 x 2 factorial designs II

Is there a chance to get the same result cheaper?

- Using total dye swap design, the experiment would need in total $4 \times 12 = 48$ arrays
- Using Design III, the effect of interest is estimated with doubled variance $(4 \rightarrow 8)$ but by using a design which need only 4 arrays $(12 \rightarrow 4)$.
- This reduces the number of arrays needed from 48 to 32.

Experimental Design - Conclusions

- Designs for *time course* experiments
- In addition to experimental constraints, design decisions should be guided by knowledge of which effects are of greater interest to the investigator.
- The unrealistic planning based on independent genes may be put into a more realistic framework by using simulation studies speak to your bio statistician/informatician
- How to collect and present *experience* from performed microarray experiments on which to base assumptions for planing (σ^2) ?
- Further reading:

Kerr MK, Churchill GA (2001) Experimental design for gene expression microarrays, Biostatistics, 2:183-201

Lee MLT, Whitmore GA (2002), Power and sample size for DNA microarray studies, Stat. in Med., 21:3543-3570