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Probe conservation and gene expression

Question of interest:
 Does time between probe harvesting and probe hybridisation have a relevant
 influence on gene expression?
 Are there degradation effects or time pattern?

Data:
 Probes of three patients were hybridised at day 0, 1, and 2
 Nine Affimetrix – chips with 12625 genes each

Methodological approach:
 Quantify time effects: general or gene-specific
 Is there evidence for time effects?
 How to quantify variability between patients?
 How to quantify variability over time (within patients)?
 How to operationalise the idea of relevant influence on gene expression)
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The one gene scenario - Table

time
probe/patient

T1 T2 T3

P1 X11 X12 X13

P2 X21 X22 X23

P3 X31 X32 X33
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The one gene scenario - Graph

1.0 1.5 2.0 2.5 3.0

13
.8

14
.0

14
.2

14
.4

14
.6

14
.8

15
.0

Time

V
S

N
 tr

an
sf

. s
ig

na
l

Affi-ID 36518_at



Practical microarray analysis – resampling and the bootstrap

Heidelberg, March 2003 5

First ideas on variability

Quantifying variability: ∑ ∑
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Separate variability between patients from the variability of individual time
courses (within patients)
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ANOVA – Analysis of variance (1)

Analysis of variance(ANOVA) studies differences between then mean values
 of normal distributed data from groups.

We are interested in an analysis of yij = xij - ix , time course measurements
 adjusted for individual probe levels

The biological variability between individual probes is not of interest for the next
step and is therefore separated.

We only look at individually adjusted time courses.

Important boundary condition: ∑
=

3

1j
ijy  = 0 for all i (i = 1, 2, 3)



Practical microarray analysis – resampling and the bootstrap

Heidelberg, March 2003 7

1.0 1.5 2.0 2.5 3.0

-0
.4

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

Time

V
S

N
 tr

an
sf

. s
ig

na
l (

ad
ju

st
ed

)

Affi-ID 36518_at

Is there evidence for a systematic pattern?
What is a systematic pattern?
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ANOVA – Analysis of variance (2)

A formal view on the data of patient i (probe i)
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A sequence of three measurements with mean 0 can be decomposed
into a linear term, a quadratic term, and residuals.

How to calculate the coefficients a and b?
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ANOVA – Analysis of variance (3)

y11 = a 2-1/2 + b 6-1/2 + ε11

y12 = b (-2)⋅6-1/2 + ε12

y13 = a (-2-1/2) + b 6-1/2 + ε13

y21 = a 2-1/2 + b 6-1/2 + ε21

y22 = b (-2)⋅6-1/2 + ε22

y23 = a (-2-1/2) + b 6-1/2 + ε23

y31 = a 2-1/2 + b 6-1/2 + ε31

y32 = b (-2)⋅6-1/2 + ε32

y33 = a (-2-1/2) + b 6-1/2 + ε33

Least square estimates for coefficients:
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Residuals ε are calculated by taking the difference
between observed and model based values.
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ANOVA – Analysis of variance (4)

The final decomposition of the variance
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ANOVA – Analysis of variance (5)

> breit.vsn[6,]
   P.1.0    P.1.1    P.1.2    P.2.0    P.2.1    P.2.2    P.3.0    P.3.1    P.3.2
14.17067 14.36492 14.97927 14.01884 14.28024 14.37200 13.79599 14.09769 15.08175

> contrasts(ordered(1:3))
             .L         .Q
1 -7.071068e-01  0.4082483
2 -7.850462e-17 -0.8164966
3  7.071068e-01  0.4082483

> breit.simple.anova.rfc
function (gene.nr=6)

{
        cc<-contrasts(ordered(1:3))
        yy<-breit.vsn[gene.nr,]
        pp<-as.factor(rep(1:3,c(3,3,3)))
        ll<-rep(cc[,1],3)
        qq<-rep(cc[,2],3)
        return(aov(yy~ll+qq+Error(pp)))
}
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ANOVA – Analysis of variance (6)

Results for gene 36518_at

> summary(breit.simple.anova.rfc())

Error: pp
          Df   Sum Sq  Mean Sq F value Pr(>F)
Residuals  2 0.121730 0.060865

Error: Within
          Df  Sum Sq Mean Sq F value Pr(>F)
ll         1 0.99838 0.99838 14.2146 0.0196 *
gg         1 0.04834 0.04834  0.6883 0.4534
Residuals  4 0.28095 0.07024
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All genes together

global and gene specific trends

xk,i,j = Signal of gene k in patient (probe) i at time j

xk,i,j = mk,i + l(j) + q(j) + lk(j) + qk(j) + εk,i,j

global (gene independent) linear effect: l(1) = a / 2 , l(2) = 0, l(3) = - l(1)

gene specific linear effect: lk(1) = ak / 2 , l(2) = 0, l(3) = - lk(1)

global (gene independent) quadratic effect: q(1) = b / 6 , q(2) = -2 q(1), q(3) = q(1)

gene specific quadratic effect: qk(1) = bk / 6 , qk(2) = -2 qk(1) qk(3) = qk(1)

important restrictions: ∑
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ANOVA – Analysis of variance (7)

Estimation of coefficients
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ANOVA – Analysis of variance (8)

Results and ANOVA table

> breit.complex.anova.rfc()
                   DF           SS          MS           FF
Between         25250 4.723376e+03  0.18706440           NA
linear.global       1 2.225109e+01 22.25109107 144.52207894
quadr.global        1 1.093243e-02  0.01093243   0.07100672
linear.gene     12624 7.081756e+03  0.56097558   3.64356770
quadr.gene      12624 4.493544e+03  0.35595247   2.31193119
Within          50500 7.775145e+03  0.15396326           NA

There are 9 x 12625 = 113625 measurement
12625 DF are lost because of block approach with respect to each gene per patient.
The within part therefore accounts for 113625 – 12625 = 101000 DF.

25250 + 1 + 1 + 12624 + 12624 + 50500 = 101000
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Questions of interest (1)

1.  Is there a global linear effect (slightly decreasing a ~ 0.024)?

2. Are there relevant gene-specific effects:
 

# genes < (-1) # genes > 1

a.k 153 318

b.k 56 82

3. Which genes have relevant gene specific effects?

4. Are the between probe and the within probe variability similar?

5. Residuals are not normally distributed

More questions?
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Questions of interest (2)

Is there a global linear effect ?

Answer:

1.  Test the null hypothesis a=0

2.  If the null is rejected, calculate a 95% confidence interval for a and assess
based on the confidence interval if the effect is relevant.

The linear effect was estimated as a=0.024.
If this effect could be extrapolated to longer time intervals,

it would take 30 days to half the expression level measured at time 0.
30 x 0.024 ~ log(2)
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Questions of interest (3)

Are there relevant gene-specific effects?
Which genes have relevant gene specific effects?

Answer:

1. Test the null hypothesis ak = bk =0

2.  If the null is rejected, calculate an appropriate confidence interval
for ak and bk (k = 1, ..., K)

3. Look for genes where the confidence intervals do not contain 0.
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Questions of interest (4)

Are the between probe and the within probe variability similar?

Answer:

Based on the appropriate model calculate a 95% confidence interval for the
difference or quotient of the within and between variability.
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The big problem

The distribution of the residuals has heavier tails as the normal distribution.

Therefore, the classical ANOVA theory can not be used to answer questions of
inferential statistics concerning

1. The test of null hypotheses?

2. Calculation of confidence intervals?

How can we perform statistical tests and calculate confidence intervals without
knowing the parametric form of the relevant distributions?
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The Bootstrap – basic idea I

1. Imitate an unknown random process based on the observed
 data.

2. Transfer the results gained by imitating the unknown random
 process to the unknown random process.

It is truly important that the distribution of the imitation is close to the unknown
but true distribution.
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The Bootstrap – basic idea II

T random variable which describes the statistic (parameter) under the true,
 but unknown distribution.

T* random variable which describes the statistic under the bootstrap
 distribution.

Evaluation of T-θ by T*-tobs has two sources of error:

- data variability between true and bootstrap distribution.

- estimates based on finite simulations (simulation error).

(θ - parameter to be estimated, tobs – estimate of θ from the data)

tobs

T

T*

θθ
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 The Bootstrap – testing a null-hypothesis

Question of interest: Are the gene specific components important to explain the
 variability observed in our experiment?

Alternative: MA: l+q+lk+qk

Null-hypothesis: MHo: The true model is given by l+q

Test statistic : F-value for the lk and qk components if MA is fitted to the data.
 (Flk,obs = 3.64 and Fqk,obs = 2.31)

Distribution of T*: Fit MHo to the observed data and calculate residuals and fitted
 values.

Create a new data set by resampling with replacement from
 the residuals. Add the new residuals to the fitted values.

 Calculate t* by fitting Model MA to the new data set
 Repeat both steps many times (1000 times)

Bootstrap p – value: pboot = #{t* ≥ tobs} / # bootstrap samples (pboot = 0 for lk and qk)
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 The Bootstrap – confidence intervals (1)

Quantiles of T-θ will be approximated by using ordered values of T*-tobs

(t* is a realisation of T*, bootstrap sample *
1t , ...., *

Nt )

Estimate p quantile of T-θ by the (N+1)⋅pth ordered value of the bootstrap sample

{
*
1t -tobs, ...., 

*
Nt -tobs }, that is 

*
]p)1N[(t ⋅+  - tobs (the value of (N+1)⋅p has to be an integer)

Simple (1-α) confidence intervals for θ:

Quantile method: [tobs – (
*

)]2/1()1N[(t α−⋅+ -tobs); tobs – (
*

]2/)1N[(t α⋅+ -tobs)]

Studentized: [tobs – z1-α/2⋅ *ν ; tobs + z1-α/2⋅ *ν ]
 ν* is bootstrap estimate of variance of the mean of T*.
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The Bootstrap – confidence intervals (2)

Question of interest: Which genes in our experiment of show gene-specific effects?
 The argument will be based on the 99% confidence interval
 for the contrast ak and bk.

• There are simultaneously 12625 statistics of interest, one for each.

• What is an appropriate procedure to sample realisations *
kt  of *

kT ? [See Wu CFJ (1986)]

- Fit the model MA : µ+l+q+lk+qk to the data. Get the fitted values and the residuals.
- Create a new data set by resampling with replacement from the residuals. Rescale
 the sampled residuals by [6xK/(K-6)]1/2. Add the rescaled residuals to the fitted
 values.

- Calculate a new realisation of *
kT , k = 1, ..., K.

- Repeat the last two steps many times (20000 times)
- For each k = 1, ..., K calculate a (1-α) bootstrap confidence interval (α = 0.01).

• Multiple testing problems?
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The Bootstrap – Caveats

• Quantiles depend on the sample in an unsmooth or unstable way. For finite
samples it may not work well. The set of possible values for T* may be very
small and vulnerable to unusual data points.

• Incomplete data: The missing mechanism has to be non-informative to
guarantee the statistical consistency of the estimation of T.

• Dependent data: Bootstrap estimate of the variance would be wrong.

• Dirty data: Outliers in the data may imply that the conclusions depend crucially
on particular observations (especially in the non-parametric case).
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