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Multiple hypothesis testing

❍ Suppose we want to find genes that are differentially expressed
between different conditions/phenotypes, e.g. two different tumor
types.

❍ We conduct a statistical test for each gene g = 1, . . . ,m (t-test,
Wilcoxon test, permutation test, . . .).

❍ This yields test statistics Tg, p-values pg.

❍ pg is the probability under the null hypothesis that the test
statistic is at least as extreme as Tg. Under the null hypothesis,
Pr(pg < α) = α.



Statistical tests: Examples

❍ t-test: assumes normally distributed data in each class

❍ Wilcoxon test: non–parametric, rank–based

❍ permutation test: estimate the distribution of the test statistic
(e.g., the t-statistic) under the null hypothesis by permutations of
the sample labels:
The p–value pg is given as the fraction of permutations yielding a
test statistic that is at least as extreme as the observed one.



Example

Golub data, 27 ALL vs. 11 AML samples, 3,051 genes.
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t-test: 1045 genes with p < 0.05.



Multiple testing: the problem

Multiplicity problem: thousands of hypotheses are tested
simultaneously.

• Increased chance of false positives.

• E.g. suppose you have 10,000 genes on a chip and not a single
one is differentially expressed. You would expect 10000∗0.01 = 100
of them to have a p-value < 0.01.

• Individual p–values of e.g. 0.01 no longer correspond to significant
findings.

Need to adjust for multiple testing when assessing the statistical
significance of findings.



Multiple hypothesis testing

# non–rejected # rejected
hypotheses hypotheses

# true null hypotheses
(non-diff. genes) U V m0

Type I error

# false null hypotheses
(diff. genes) T S m1

Type II error

m−R R m
From Benjamini & Hochberg (1995).



Type I error rates

1. Family–wise error rate (FWER) . The FWER is defined as the
probability of at least one Type I error (false positive):

FWER = Pr(V > 0).

2. False discovery rate (FDR) . The FDR (Benjamini & Hochberg
1995) is the expected proportion of Type I errors among the
rejected hypotheses:

FDR = E(Q),
with

Q =

{
V/R, if R > 0,

0, if R = 0.



Multiple testing: Controlling a type I error rate

❍ Aim: For a given type I error rate α, use a procedure to select a
set of “significant” genes that guarantees a type I error rate ≤ α.

❍ The type I error is defined with respect to a given configuration
of true and false null hypotheses.

❍ Weak control of type I error: only under the assumption that all
null hypotheses are true (complete null hypothesis, H0).

❍ Strong control of type I error: for all possible configurations of
true and false null hypotheses.



FWER: The Bonferroni correction

Suppose we conduct a hypothesis test for each gene g = 1, . . . ,m,
producing

an observed test statistic: Tg

an unadjusted p–value: pg.

Bonferroni adjusted p–values:

p̃g = min
(
mpg, 1

)
.



FWER: The Bonferroni correction

Choosing all genes with p̃g ≤ α controls the FWER at level α:

FWER = Pr(V > 0) = Pr(at least one p̃g ≤ α|H0)

= Pr(at least one pg ≤ α/m|H0)

≤
∑m
g=1Pr(pg ≤ α/m|H0)

= m ∗ α/m = α.

Here, H0 denotes the complete null hypothesis that no gene is
differentially expressed.



Example

Golub data, 27 ALL vs. 11 AML samples, 3,051 genes.
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98 genes with Bonferroni-adjusted p̃g < 0.05⇔ pg < 0.000016
(t-test)



More is not always better

❍ Suppose you produce a small array with 500 genes you are
particularly interested in.

❍ If a gene on this array has an unadjusted p-value of 0.0001, the
Bonferroni-adjusted p-value is still 0.05.

❍ If instead you use a genome-wide array with, say, 50,000 genes,
this gene would be much harder to detect, because roughly 5 genes
can be expected to have such a low p-value by chance.



FWER: Improvements to Bonferroni
(Westfall/Young)

❍ The minP adjusted p-values (Westfall and Young):

❍ p̃g = Pr(mink=1,...,mPk ≤ pg|H0).

❍ Choosing all genes with p̃g ≤ α ⇔ pg ≤ cα controls the FWER
at level α:

FWER = Pr(V > 0) = Pr(at least one p̃g ≤ α|H0)

= Pr(min p̃g ≤ α|H0)

= Pr(min pg ≤ cα|H0)

= α.

But how to obtain the probabilities p̃g?



Estimation of minP-adjusted p-values through
resampling

❍ For b = 1, . . . , B, (randomly) permute the sample labels.

❍ For each gene, compute the unadjusted p-values pgb based on
the permuted sample labels.

❍ Estimate p̃g = Pr(mink=1,...,mPk ≤ pg|H0) by

#{b : min
g
pgb ≤ pg}/B.



Example

❍ Suppose pmin = 0.0003 (the minimal unadjusted p-value).

❍ Among the randomized data sets (permuted sample labels),
count how often the minimal p-value is smaller than 0.0003. If this
appears e.g. in 4% of all cases, p̃min = 0.04.

❍ If there is a positive dependence between the non-diff. genes,
this procedure can yield better results than the Bonferroni
correction.



Westfall/Young FWER control

❍ Step-down procedure (Holm): Enhancement for Bonferroni
and Westfall/Young: same adjustment for the smallest p-value,
successively smaller adjustment for larger ones.

❍ Idea: Compare the kth-smallest p-value to the kth-smallest
under the complete null hypothesis.



Westfall/Young FWER control

❍ Advantage: The method takes the dependence structure
between genes into account, which gives in many cases higher
power.

❍ Computationally intensive if the unadjusted p-values arise from
permutation tests.

❍ Similar method (maxT) under the assumption that the statistics
Tg are equally distributed under the null hypothesis - replace pg by
|Tg| and min by max. Computationally less intensive.

❍ All methods are implemented in the Bioconductor package
multtest, with a fast algorithm for the minP method.



FWER: Comparison of different methods

Golub data, 27 ALL vs. 11 AML samples, 3,051 genes.
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Example taken from the multtest
package in Bioconductor.

The FWER is a conservative criterion: many interesting genes may
be missed.



Estimation of the FDR (SAM, Storey 2001)

Idea: Depending on the chosen cutoff-value for the test statistic Tg,
estimate the expected proportion of false positives in the resulting
gene list through a permutation scheme.

1. Estimate the number m0 of non-diff. genes.

2. For each permutation b, compute the number of significant genes.
The average of these numbers, multiplied with m̂0/m, gives an
estimate of the number of false positives E(V ).

3. Estimate the FDR E(V/R) by ̂E(V )/R.



FDR - 1. Estimating the number m0 of invariant
genes

❍ Consider the distribution of
p-values: A gene with p > 0.5
is likely to be not differentially
expressed.

❍ As p-values of non-
diff. genes should be uniformly
distributed in [0, 1], the number
2 ∗#{g|pg > 0.5} can be taken
as an estimate of m0.

❍ In the Golub example with
3051 genes, m̂0 = 1592.
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2. Estimation of the FDR

❍ For b = 1, . . . , B, (randomly) permute the sample labels,
compute test statistics Tgb under the complete null hypothesis.

❍ For any threshold t0 of the test statistic, compute the numbers
nb of genes with Tgb > t0 (numbers of false positives).

❍ The estimation of the FDR is based on the mean of these
numbers, but the median or 90%-quantile may also be interesting.



Estimation of the FDR: Example

Golub data
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Estimation of the FDR

❍ The procedure takes the dependence structure between genes
into account.

❍ The q-value of a gene is defined as the minimal FDR at which it
appears significant.



FWER or FDR?

❍ Chose control of the FWER if high confidence in all selected
genes is desired. Loss of power due to large number of tests: many
differentially expressed genes may not appear as significant.

❍ If a certain proportion of false positives is tolerable: Procedures
based on FDR are more flexible; the researcher can decide how
many genes to select, based on practical considerations.



Prefiltering

❍ What about prefiltering genes (according to intensity, variance
etc.) to reduce the proportion of false positives - e.g. genes with
consistently low intensity may not be considered interesting?

❍ Can be useful, but:

❍ The criteria for filtering have to be chosen before the analysis -
not dependent on the results of the analysis.

❍ The criteria have to be independent of the distribution of the test
statistic under the null hypothesis - otherwise no control of the type
I error.
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