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Visualization of similarity/distance matrices

Matrix of correlation coefficients between any two hybridizations,
ordered by array batch.



Projection methods

❍ Map the rows and/or
columns of the data matrix
to a plane such that similar
rows/columns are located
close to each other.

❍ Different methods (principal
component analysis,
multidimensional scaling,
correspondence analysis) use
different notions of similarity. −20 −10 0 10 20
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Principal component analysis

❍ Imagine k observations (e.g. tissue samples) as points in n-
dimensional space (here: n is the number of genes).

❍ Aim: Dimension reduction while retaining as much of the
variation in the data as possible.

❍ Principal component analysis identifies the direction in this
space with maximal variance (of the observations projected onto
it).

❍ This gives the first principal component (PC). The i + 1st PC is
the direction with maximal variance among those orthogonal to the
first i PCs.

❍ The data projected onto the first PCs may then be visualized in
scatterplots.



Principal component analysis

❍ PCA can be explained in terms of the eigenvalue decomposition
of the covariance/correlation matrix Σ:

Σ = SΛSt,

where the columns of S are the eigenvectors of Σ (the principal
components), and Λ is the diagonal matrix with the eigenvalues
(the variances of the principal components).

❍ Use of the correlation matrix instead of the covariance matrix
amounts to standardizing variables (genes).

❍ R function prcomp in package mva.



PCA, Golub data
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Multidimensional scaling

❍ Given a n x n dissimilarity matrix D = (dij) for n objects
(e.g. genes or samples), multidimensional scaling (MDS) tries to
find n points in Euclidean space (e.g. plane) with a similar distance
structure D′ = (d′ij) - more general than PCA.

❍ The similarity between D and D′ is scored by a stress function.

❍ Least-squares scaling: S(D,D′) = (
∑

(dij − d′ij)
2)1/2.

Corresponds to PCA if the distances are Euclidean.
In R: cmdscale in package mva.

❍ Sammon mapping: S(D,D′) =
∑

(dij − d′ij)
2/dij. Puts more

emphasis on the smaller distances being preserved.
In R: sammonin package MASS.



Projection methods: feature selection

❍ The results of a projection method also depend on the features
(genes) selected.

❍ If those genes are selected that discriminate best between two
groups, it is no wonder if they appear separated.

❍ This may also happen if there is no real difference between the
groups.



Projection methods: feature selection
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Left: PCA for a 5000 x 50 random data matrix. For the right plot,
90 “genes” with best discrimination between red and black were
selected (t-statistic).



Correspondence analysis:
Projection onto plane

genes

samples



Correspondence analysis:
Properties of projection

• Similar row/column
profiles (small χ2-
distance) are projected
close to each other.

• A gene with
positive/negative
association with a
sample will lie in the
same/opposite direction
from the centroid.



Projection methods: Correspondence analysis

❍ Correspondence analysis is usually applied to tables of
frequencies (contingency tables) in order to show associations
between particular rows and columns – in the sense of deviations
from homogeneity, as measured by the χ2-statistic.

❍ Data matrix is supposed to contain only positive numbers - may
apply global shifting.

❍ R packages CoCoAn, multiv .



Correspondence analysis - Example
Golub data
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ISIS - a class discovery method

❍ Aim: detect subtle class distinctions among a set of tissue
samples/gene expression profiles (application: search for disease
subtypes)

❍ Idea: Such class distinctions may be characterized by differential
expression of just a small set of genes, not by global similarity of
the gene expression profiles.

❍ The method quantifies this notion and conducts a search for
interesting class distinctions in this sense.

❍ R package ISIS available at
http://www.molgen.mpg.de/˜heydebre
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