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Visualization of similarity/distance matrices

Matrix of correlation coefficients between any two hybridizations,
ordered by array batch.



Projection methods

1 Map the rows and/or
columns of the data matrix
to a plane such that similar
rows/columns are located
close to each other.

[1 Different methods (principal
component analysis,
multidimensional scaling,
correspondence analysis) use
different notions of similarity.
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Principal component analysis

[1 Imagine k£ observations (e.g. tissue samples) as points in n-
dimensional space (here: n Is the number of genes).

[ Aim: Dimension reduction while retaining as much of the
variation in the data as possible.

[I Principal component analysis identifies the direction in this
space with maximal variance (of the observations projected onto

it).

[1 This gives the first principal component (PC). The 7 + 1st PC is
the direction with maximal variance among those orthogonal to the
first 1 PCs.

[1 The data projected onto the first PCs may then be visualized in
scatterplots.



Principal component analysis

[1 PCA can be explained in terms of the eigenvalue decomposition
of the covariance/correlation matrix >:

> =SASY,

where the columns of S are the eigenvectors of > (the principal
components), and A is the diagonal matrix with the eigenvalues
(the variances of the principal components).

[1 Use of the correlation matrix instead of the covariance matrix
amounts to standardizing variables (genes).

[1 R function prcomp Iin package mva.



PC2

PC3

10

-10 0

-20

20

10

-10

PCA, Golub data

Al
Q'I\_/IEML ALL '%\I'I'_MLA.Ll
AML AREL
AN - ALE ARy
AMML AIELN—I-_L
RS
ALALL
ALL
AL |

| | | | |
—-20 -10 0) 10 20

PC1

ALALL
ALL

v

MALAALL
- EL A
ALL
ALL L
sl Akakﬂ
—-20 -10 (0] 10

PC 2

PC3

Variances

20

10

-10

100 150

50

0

\ML

AML

A'X!E)M{ALL A!E\ AL |

AML
AMAMH

AALLL
ALk L

ARLE

AL,&LL Alﬁlf
ALL % ALL
|

—-20 -10

0) 10 20

PC1

variances of PCs

IIIIDDDDDD



Multidimensional scaling

[ Given a n x n dissimilarity matrix D = (d;;) for n objects
(e.g. genes or samples), multidimensional scaling (MDS) tries to
find n points in Euclidean space (e.g. plane) with a similar distance
structure D’ = (d;;) - more general than PCA.

[0 The similarity between D and D’ is scored by a stress function.

0 Least-squares scaling: S(D,D’) = (X (dij — dj)»)Y2
Corresponds to PCA if the distances are Euclidean.
In R: cmdscale in package mva.

0 Sammon mapping: S(D,D’) = 3 (di; — dj;)?/d;;. Puts more
emphasis on the smaller distances being preserved.
In R: sammonin package MASS



Projection methods: feature selection

[1 The results of a projection method also depend on the features
(genes) selected.

[1 If those genes are selected that discriminate best between two
groups, it is no wonder If they appear separated.

[1 This may also happen if there is no real difference between the
groups.



Projection methods: feature selection

PCA, all features PCA, feature selection
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Left: PCA for a 5000 x 50 random data matrix. For the right plot,
90 “genes” with best discrimination between red and black were
selected (t-statistic).



Correspondence analysis:
Projection onto plane

samples —»

genes

l T




Correspondence analysis:
Properties of projection

o Similar row/column

profiles (small x4
distance) are projected

close to each other. . °m
* A gene with '.‘ft
positive/negative o Hm
association with a %e
sample will lie in the 0
same/opposite direction 0O

from the centroid.



Projection methods: Correspondence analysis

[1 Correspondence analysis is usually applied to tables of
frequencies (contingency tables) in order to show associations
between particular rows and columns — in the sense of deviations
from homogeneity, as measured by the y?-statistic.

[1 Data matrix is supposed to contain only positive humbers - may
apply global shifting.

[1 R packages CoCoAn, multiv
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Correspondence analysis - Example

Golub data
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ISIS - a class discovery method

[ Aim: detect subtle class distinctions among a set of tissue

samples/gene expression profiles (application: search for disease
subtypes)

[ ldea: Such class distinctions may be characterized by differential
expression of just a small set of genes, not by global similarity of
the gene expression profiles.

[1 The method guantifies this notion and conducts a search for
Interesting class distinctions in this sense.

[ R package ISIS available at
http://www.molgen.mpg.de/"heydebre
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