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“Look at the data”; identify structures in the data and visualize
them.

Can we see biological/experimental parameters; are there
outliers?

Find groups of genes and/or samples sharing similarity.

Unsupervised learning: The analysis makes no use of
gene/sample annotations.
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Clustering can be applied to rows (genes) and/or columns
(samples/arrays) of an expression data matrix.

Clustering may allow for reordering of the rows/columns of an
expression data matrix which is appropriate for visualization (heat
map).




Clustering genes

Identify typical spatial or temporal expression patterns (e.g. yeast
cell cycle data)

arrange a set of genes in a linear order which is at least not totally
meaningless




Aims:
detect experimental artifacts/bad hybridizations (quality control)

check whether samples are grouped according to known
categories (meaning that these are clearly visible in terms of gene
expression)

iIdentify new classes of biological samples (e.g. tumor subtypes)




Aim: Group objects according to their similarity.

Clustering requires a definition of distance between the objects,
guantifying a notion of (dis)similarity. After this has been specified,
a clustering algorithm may be applied.

The result of a cluster analysis may strongly depend on the
chosen distance measure.




Metrics and distances

2. symmetry: d(a,b) = d(b,a);

3. d(a,a) = 0.

4. definiteness: d(a,b) = 0 if and only if @ = b;
5. triangle inequality: d(a,b) 4+ d(b,c) > d(a, c).

A function only satisfying 1.-3. is called a distance.
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Distance measures. Examples

Manhattan distance: das(x, y) = >0, |2 — il

One minus Pearson correlation:
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Distance measures/standardization

do(x,y) = dc(x,ay + b),a > 0.

One may apply standardization to observations or variables:

r — I

YT (@)

where o (x) is the standard deviation of x.
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Extend a distance measure d to a measure of distance between
clusters.

Single linkage The distance between two clusters is the minimal
distance between two objects, one from each cluster.

Average linkage The distance between two clusters is the
average of the pairwise distance between members of the two
clusters.




distance between their centroids.




Build a cluster tree/dendrogram, starting from the individual
objects as clusters.

In each step, merge the two clusters with the minimum distance
between them - using one of the above linkage principles.

Continue until everything is in one cluster.

If you want a partition of the set of objects, cut the tree at a certain
height.

R function hclust In package mva.




Hierarchical clustering, example

Cluster Dendrogram
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Alizadeh et al.(2000): Dist

Inct types of diffuse large B-cell ymphoma identi
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User specifies the number k of desired clusters. Input: Objects
given as vectors in n-dimensional space (Euclidean distance is
used).

For an initial choice of k cluster centers, each object is assigned
to the closest of the centers.

The centroids of the obtained clusters are taken as new cluster
centers.

This procedure is iterated until convergence.




Self-organizing maps (SOMs), or Kohonen networks, are a
special variant of neural networks

They may be used for clustering

A predetermined number of clusters and a network topology
must been chosen. Networks are always rectangular (e.g., 3x4)

Initially, the network is randomly mapped into data space




Training requires a high number of iterations. In each step, one
of the data points is chosen randomly.

This points attracts the nearest node of the net by a certain force.
Nodes connected to the nearest node are also attracted, but by
smaller forces.

There Is a certain elasticity of the net, exerting a reset-force.
Think of the edges of the net as made of rubber.

With higher iterations, the net freezes and becomes more Sstiff.
Nodes tend to stay near their final positions.

e



In the end, the nodes should ideally mark cluster centers. Data
points may be assigned to clusters by a number of methods, e.qg.
Voronol tesselation, fixed-radius hyperspheres, or non-exclusive
methods (which allow points to be in different clusters).




SOM: Initial mapping (2D data space)




SOM: training




SOM: final state




The concept of fuzzy clustering abandons the idea of fixed cluster
membership. Instead, there is a certain probability for any object
to belong to one of the clusters.

This allows to judge how reliable an assignment to a cluster is.

There are certain variants of fuzzy clustering, mainly build on k-
means or c-means (fuzzy c-means, Gath-Geva-Algorithm). Some
of them are available from R packages el0/1 and cluster
(routine fanny ).

Fuzzy c-means or k-means assumes spherical clusters of same
size, while more advanced algorithms allow for ellipsoidal clusters
of differing sizes.




Many methods require the user to specify the number of clusters.
Generally it is not clear which number is appropriate for the data
at hand.

Several authors have proposed criteria for determining the
number of clusters, see Dudoit and Fridlyand 2002.

Sometimes there may not be a clear answer to this question -
there may be a hierarchy of clusters.




Data should be normalized and transformed to an appropriate
scale before clustering (log or the generalized log resulting from
variance stabilization (R package vsn)).

Clustering genes: Standardization of gene vectors or the use
of the correlation distance is useful when looking for patterns of
relative changes - independent of their magnitude.

Clustering samples: Standardizing genes gives relatively smaller
weight for genes with high variance across the samples - not
generally clear whether this is desirable.







A clustering algorithm will always yield clusters, whether the data
are organized in clusters or not.

The bootstrap may be used to assess the variability of a
clustering (Kerr/Churchill 2001, Pollard/van der Laan 2002).

If a class distinction is not visible in cluster analysis, it may still
be accessible for supervised methods (e.g. classification).




Duda, Hart and Stork (2000). Pattern Classification. 2nd Edition. Wiley.

Dudoit and Fridlyand (2002). A prediction-based resampling method for
estimating the number of clusters in a dataset. Genome Biology, Vol. 3(7),
research 0036.1-0036.21.

Eisen et al. (1998). Cluster analysis and display of genome-wide expression
patterns. PNAS, Vol 95, 14863—14868.

Kerr and Churchill (2001). Bootstrapping cluster analysis: Assessing the
reliability of conclusions from microarray experiments. PNAS, Vol. 98, p. 8961—
8965.

Pollard and van der Laan (2002). Statistical inference for simultaneous
clustering of gene expression data. Mathematical Biosciences, Vol. 176, 99—
121.

ﬂLnl



