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Exploratory data analysis/unsupervised learning

• “Look at the data”; identify structures in the data and visualize
them.

• Can we see biological/experimental parameters; are there
outliers?

• Find groups of genes and/or samples sharing similarity.

• Unsupervised learning: The analysis makes no use of
gene/sample annotations.



Clustering

Aim: Group objects according to their similarity.
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Clustering gene expression data

• Clustering can be applied to rows (genes) and/or columns
(samples/arrays) of an expression data matrix.

• Clustering may allow for reordering of the rows/columns of an
expression data matrix which is appropriate for visualization (heat
map).



Clustering genes

Aims:

• identify groups of co-regulated genes

• identify typical spatial or temporal expression patterns (e.g. yeast
cell cycle data)

• arrange a set of genes in a linear order which is at least not totally
meaningless



Clustering samples

Aims:

• detect experimental artifacts/bad hybridizations (quality control)

• check whether samples are grouped according to known
categories (meaning that these are clearly visible in terms of gene
expression)

• identify new classes of biological samples (e.g. tumor subtypes)



Clustering: Distance measures

• Aim: Group objects according to their similarity.

• Clustering requires a definition of distance between the objects,
quantifying a notion of (dis)similarity. After this has been specified,
a clustering algorithm may be applied.

• The result of a cluster analysis may strongly depend on the
chosen distance measure.



Metrics and distances

A metric d is a function satisfying:

1. non-negativity: d(a, b) ≥ 0;

2. symmetry: d(a, b) = d(b, a);

3. d(a, a) = 0.

4. definiteness: d(a, b) = 0 if and only if a = b;

5. triangle inequality: d(a, b) + d(b, c) ≥ d(a, c).

A function only satisfying 1.-3. is called a distance.



Distance measures: Examples

Vectors x = (x1, . . . , xn), y = (y1, . . . , yn)

• Euclidean distance: dE(x, y) =
√∑n

i=1(xi − yi)2

• Manhattan distance: dM(x, y) =
∑n
i=1 |xi − yi|

• One minus Pearson correlation:

dC(x, y) = 1−
∑n
i=1(xi − x̄)(yi − ȳ)

(
∑n
i=1(xi − x̄)2)1/2(

∑n
i=1(xi − x̄)2)1/2



Distance measures/standardization

• The correlation distance is invariant wrt shifting and scaling of its
arguments:

dC(x, y) = dC(x, ay + b), a > 0.

• One may apply standardization to observations or variables:

x 7→
x− x̄
σ(x)

,

where σ(x) is the standard deviation of x.



• The correlation distance and the Euclidean distance between
standardized vectors are closely related:

dE(x, y) =
√

2ndC(x, y).



Distances between clusters

Extend a distance measure d to a measure of distance between
clusters.

• Single linkage The distance between two clusters is the minimal
distance between two objects, one from each cluster.

• Average linkage The distance between two clusters is the
average of the pairwise distance between members of the two
clusters.



• Complete linkage The distance between two clusters is the
maximum of the distances between two objects, one from each
cluster.

• Centroid linkage The distance between two clusters is the
distance between their centroids.



Hierarchical clustering

• Build a cluster tree/dendrogram, starting from the individual
objects as clusters.

• In each step, merge the two clusters with the minimum distance
between them - using one of the above linkage principles.

• Continue until everything is in one cluster.

• If you want a partition of the set of objects, cut the tree at a certain
height.

• R function hclust in package mva.



Hierarchical clustering, example

Golub data, 150 genes with highest variance
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Example: Clustering of rows and columns

Alizadeh et al.(2000): Distinct types of diffuse large B-cell lymphoma identified

by gene expression profiling. Nature.

OCI Ly3
OCI Ly10
DLCL-0042
DLCL-0007
DLCL-0031
DLCL-0036
DLCL-0030
DLCL-0004
DLCL-0029
Tonsil Germinal Center B
Tonsil Germinal Center Centroblasts
SUDHL6
DLCL-0008
DLCL-0052
DLCL-0034
DLCL-0051
DLCL-0011
DLCL-0032
DLCL-0006
DLCL-0049
Tonsil
DLCL-0039
Lymph Node
DLCL-0001
DLCL-0018
DLCL-0037
DLCL-0010
DLCL-0015
DLCL-0026
DLCL-0005
DLCL-0023
DLCL-0027
DLCL-0024
DLCL-0013
DLCL-0002
DLCL-0016
DLCL-0020
DLCL-0003
DLCL-0014
DLCL-0048
DLCL-0033
DLCL-0025
DLCL-0040
DLCL-0017
DLCL-0028
DLCL-0012
DLCL-0021
Blood B;anti-IgM+CD40L low 48h
Blood B;anti-IgM+CD40L high 48h
Blood B;anti-IgM+CD40L 24h
Blood B;anti-IgM 24h
Blood B;anti-IgM+IL-4 24h
Blood B;anti-IgM+CD40L+IL-4 24h
Blood B;anti-IgM+IL-4 6h
Blood B;anti-IgM 6h
Blood B;anti-IgM+CD40L 6h
Blood B;anti-IgM+CD40L+IL-4 6h
Blood T;Adult CD4+ Unstim.
Blood T;Adult CD4+ I+P Stim.
Cord Blood T;CD4+ I+P Stim.
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CLL-68
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CLL-52
DLCL-0009
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k-means clustering

• User specifies the number k of desired clusters. Input: Objects
given as vectors in n-dimensional space (Euclidean distance is
used).

• For an initial choice of k cluster centers, each object is assigned
to the closest of the centers.

• The centroids of the obtained clusters are taken as new cluster
centers.

• This procedure is iterated until convergence.



Self-organizing maps

• Self-organizing maps (SOMs), or Kohonen networks, are a
special variant of neural networks

• They may be used for clustering

• A predetermined number of clusters and a network topology
must been chosen. Networks are always rectangular (e.g., 3×4)

• Initially, the network is randomly mapped into data space



SOM continued

• Training requires a high number of iterations. In each step, one
of the data points is chosen randomly.

• This points attracts the nearest node of the net by a certain force.
Nodes connected to the nearest node are also attracted, but by
smaller forces.

• There is a certain elasticity of the net, exerting a reset-force.
Think of the edges of the net as made of rubber.

• With higher iterations, the net freezes and becomes more stiff.
Nodes tend to stay near their final positions.



SOM continued

• In the end, the nodes should ideally mark cluster centers. Data
points may be assigned to clusters by a number of methods, e.g.
Voronoi tesselation, fixed-radius hyperspheres, or non-exclusive
methods (which allow points to be in different clusters).



SOM: Initial mapping (2D data space)



SOM: training



SOM: final state



fuzzy clustering

• The concept of fuzzy clustering abandons the idea of fixed cluster
membership. Instead, there is a certain probability for any object
to belong to one of the clusters.

• This allows to judge how reliable an assignment to a cluster is.

• There are certain variants of fuzzy clustering, mainly build on k-
means or c-means (fuzzy c-means, Gath-Geva-Algorithm). Some
of them are available from R packages e1071 and cluster
(routine fanny ).

• Fuzzy c-means or k-means assumes spherical clusters of same
size, while more advanced algorithms allow for ellipsoidal clusters
of differing sizes.



How many clusters?

• Many methods require the user to specify the number of clusters.
Generally it is not clear which number is appropriate for the data
at hand.

• Several authors have proposed criteria for determining the
number of clusters, see Dudoit and Fridlyand 2002.

• Sometimes there may not be a clear answer to this question -
there may be a hierarchy of clusters.



Which scale, which distance measure to use for
clustering?

• Data should be normalized and transformed to an appropriate
scale before clustering (log or the generalized log resulting from
variance stabilization (R package vsn )).

• Clustering genes: Standardization of gene vectors or the use
of the correlation distance is useful when looking for patterns of
relative changes - independent of their magnitude.

• Clustering samples: Standardizing genes gives relatively smaller
weight for genes with high variance across the samples - not
generally clear whether this is desirable.



• Gene filtering (based on intensity/variability) may be reasonable
- also for computational reasons.



Some remarks on clustering

• A clustering algorithm will always yield clusters, whether the data
are organized in clusters or not.

• The bootstrap may be used to assess the variability of a
clustering (Kerr/Churchill 2001, Pollard/van der Laan 2002).

• If a class distinction is not visible in cluster analysis, it may still
be accessible for supervised methods (e.g. classification).
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