
Introduction to R

Benedikt Brors
Dept. Intelligent Bioinformatics Systems

German Cancer Research Center

What is R?

• R is a statistical computing environment with graphics capabilites

• It is fully scriptable and contains elements of programming
languages

• A very high number of statistical procedures have been made
available for R

• R is completely free, open source, and available for windows,
Uni*es (including Linux and MacOS X), and also for MacOS ≥
8.6

Relation to S and S-Plus

• Originally, a statistical language called S has been developed by
Bell Labs (now AT&T)

• Several versions of this language have been issued, the latest
being S4

• It has been licensed to Insightful Inc. The commercial software
is called S-Plus

• Starting from 1997, the language has been reimplemented in a
free software called R

• Though not fully compatible to S-Plus, much of the code runs
also in R without alterations. Changes are mainly in graphics
commands

Some of R’s features

• effective data handling and storage facility

• suite of operators for calculations on arrays, in particular matrices

• large, coherent, integrated collection of intermediate tools for
data analysis

• graphical facilities for data analysis and display either on-screen
or on hardcopy

• well-developed, simple and effective programming language
which includes conditionals, loops, user-defined recursive
functions and input and output facilities.

What R is NOT

• It is not a database, but it can connect to DBMS (Postgres,
Oracle)

• No graphical user interface (interfaces to JAVA and Tcl/Tk exist)

• no spreadsheet view of data (connection to Excel possible)

• as an interpreted language, some procedures may be slow;
however, compiled C, C++ or FORTRAN code can be called from
within R

Starting R

Objects

• Everything in R is an object. Objects mostly hold data, or function
code

• All functions are written with round brackets, even if they don’t
take arguments, e.g. q() [quit], ls() [list workspace], or dir()
[list working directory]

• if the name of an object is entered without assignment, or a
function without brackets, the contents of this object is printed.
Caution: For large objects (e.g. matrices), this will take a long
time!

• Some of the functions are polymorphic, i.e. they will behave
differently if they operate on different objects. The most important
examples are print , summary , and plot

Data types and data structures

• Some important data types are numeric, character, and logical

• In R, unlike in other programming languages, there is only one
internal representation for numbers (double). There is no need to
declare numbers explicitly as int , longint , float etc.

• Numbers can be single numbers (constants, scalars), vectors
(ordered list of numbers), matrices (2-dimensional array of
numbers), or arrays (any-dimensional array of numbers)

How to enter scalars, vectors, or matrices

Operators and arithmetic functions

• Some important operators are:

type examples

arithmetic + – * / ˆ %% (modulo) %*% (matrix product)
comparison < > <= >= ! =

logical & (AND) | (OR) ! (NOT)
assignment <- (also = in R ≥ 1.5)

• ‘usual’ arithmetic functions exist (sin(), cos(), exp(),
log(), log10(), abs(), sqrt())

• unless for special operators (%. . . %), arithmetic operators and
functions operate element-wise on vectors and matrices

Sequences and random numbers

• Sequences are produced by seq() . Its arguments are from,
to , and (optional) by (increment) or length . A shortcut for
integer series of increment 1 is e.g. 1:100 .

• There are a number of functions for producing random numbers
according to various distributions, e.g. runif() (uniform),
rnorm() (normal), rbeta() (beta)

• The default random number generator or random seed are quite
sensible, so there is no need to change this unless you’re doing
very special simulations

Simple plotting

x <- rnorm(100, sd=0.5)
y <- rnorm(100, sd=1.2)
plot(x,y)

x <- seq(0,2*pi, length=100)
plot(x, sin(x), type="l")

Plotting capabilities

• Overview statistics: histogram, boxplot, quantile-quantile plot,
scatterplot matrices

• 2D and 3D-scatterplots, barplots, line plots, 3D wireframe plots

• contour plots, levelplots, image plots

• large number of graphics parameters changeable

Example of complex plotting
x <- seq(-10,10, by=0.04); y <- seq(-10,10, by=0.04)
f <- function(x,y) {

r <- sqrt(xˆ2 + yˆ2) + 1e-10
return(sin(r)/r) }

z <- outer(x,y,f)
persp(x,y,z, theta=40, phi=25, col=fill, border=NA, shad=0.3)

Missing values and special numbers

• As missing values are quite frequent in statistics, a special
symbolic value has been introduced: NA. Please note:

? NA is NOT the same as 0
? NA is NOT the same as ""
? NA is NOT the same as FALSE

• Operations on objects that contain an NAusually return NA, e.g.

> x <- c(2, 5, 7, NA, 3)
> sum(x)

[1] NA

• Often an argument na.rm or na.action can be supplied to
drop NAvalues:

> x <- c(2, 5, 7, NA, 3)
> sum(x, na.rm=TRUE)

[1] 17

• For infinity and undefined numbers (0/0) exist special values,
too:
Inf, -Inf, NaN

Lists and factors

• vectors and matrices only hold data of the same type (numerical,
character, logical)

• Lists can hold data of different types:

doe <- list(name="john", age=28, married=FALSE)
doe$name

[1] "john"

• Lists are usually accessed by names, vectors and matrices by
indices (see below)

• In statistics, character vectors exist that can take only one of
several values, e.g. "M" or "F" for sex, or "low", "medium"
or "high" for blood pressure. This is encoded in a data structure
called factor. The different possible values are called levels.

bp <- factor(c(0,0,1,2,2,1,2,0))
levels(bp) <- c("low", "medium", "high")
> bp

[1] low low medium high high medium high low
Levels: low medium high

Data frames

• In statistics, data come often as a table containing numbers
and descriptional text. This is read into a data frame, a matrix
containing numerical as well as character columns or rows. While
reading in data from files, data are converted to appropriate types.
If no column or row headers are supplied, these are filled in by
defaults.

• Data frames can be explicitly casted to other data types. For
example, as.numeric() will force numeric interpretation of
values. You shouldn’t apply this to strings/characters, of course!

Data frames (continued)

• Example: diagnostic test on leukemia:

> wbc test survivaltime
1 2300 present 65
2 750 present 156
3 4300 present 100
4 2600 present 134
5 6000 present 16
6 10500 present 108
7 10000 present 121
8 17000 present 4
9 5400 present 39
10 7000 present 143
11 9400 present 56
12 32000 present 26
13 35000 present 22

(...)

Indexing

• Vectors and matrices are indexed numerically. Most unlike C,
JAVA and PERL, indices start at 1 (NOT at 0).

> x[2]
[1] 5

> X[2,7]
[1] 10

• Ranges may be given, as well as any combination of row and
column indices; if all indices are wanted, nothing may be specified
for this dimension. X[1:10,] will give the first 10 rows and all
columns of X, X[c(1,3,5),1:2] the 1st, 3rd and 5th row and
the first two columns

• Indices may be dropped by adding a minus sign: X[-(1:2),]
will give all except the first two rows (and all columns)

• Logical indices may be given as well: x[x>0] will only return the
positive values of x

Importing and exporting data

• Data come usually as tab-delimited text files, or can be converted
to such files

• The functions read.delim(), read.table() and read.csv()
read these files and store data in a data frame. To get data types
correct, additional arguments (as.is, quote) may be needed –
read the help files. But getting your data into R can be as simple
as

my.data.frame <- read.delim("filename.txt")

• You can write tab-delimited files by using write.table()

• All variables and functions in the current workspace (i.e.
computer RAM memory) can be saved by save() . It will be then
written in some binary format called XDR.

• If you save your data while exiting, it is always stored in the
file “.RData”. Thus, if you work in the same directory on several
occasions, this file is frequently overwritten. This may not be what
you want (because old data are lost)

Functions

• A lot of predefined functions exist. However, if you want to write
your own function, which may also facilitate repetitive tasks, this
is quite easy.

• The general syntax is

my.function <- function(a,b,c,...){
< definition of function >
return(result) }

In round brackets are arguments of the function. Some default
values may be defined by e.g. function(a, b=50, c=TRUE) .
The return value doesn’t need to be explicitly defined, the result
of the last calculation is returned by default

Conditional expressions

• if-then-else statements can be made both interactively and (more
frequently) while writing functions:

if (logical expression) {
statements

} else {
alternative statements

}

The else branch is optional

Loops

• Loops (repetitive tasks) can be defined with

fact <- 1
for (i in 1:10) {

fact <- fact*i # calculates factorial 10!
}

i <- 2
while (i < 10) {

i <- i*sqrt(i)
print(paste("i is now", i, "\n"))

}

lapply, sapply, apply

• If loops contain complex functions and are called a large number
of times, they become very slow. Using one of lapply(),
sapply() or apply() will be much faster

• lapply() operates on lists, and returns a list with the same
names, containing the results of this operation.

> li = list("klaus","martin","georg")
> lapply(li, toupper)

[[1]]
[1] "KLAUS"

[[2]]
[1] "MARTIN"

[[3]]
[1] "GEORG"

• sapply() works similar, but casts the results to a vector.

apply

• apply() works on either columns or rows of a matrix. Its syntax
is

apply(matrix, margin, function, args)

where margin=1 works on rows, margin=2 on columns, and
args are additional arguments to function , which must operate
on vectors

• Example:

> x
[,1] [,2] [,3]

[1,] 5 7 0
[2,] 7 9 8
[3,] 4 6 7
[4,] 6 3 5

> apply(x, 1, sum)
[1] 12 24 17 14

> apply(x, 2, sum)
[1] 22 25 20

Getting help

• A number of introductory documents come together with R, as
well as a reference manual

• However, for daily work the online help is most useful: type
?t.test or help(t.test) if you want help on a specific
function

• help.search() allows for keyword search, help.start()
opens an HTML help page.

• For very special questions, you may want to consult the
R mailing list at http://www.r-project.org (searchable
versions exist)

http://www.r-project.org

R help window

R HTML help pages

Web resources

• The R home page is at http://www.r-project.org (TU
Vienna, Austria).

• The R program as well as packages (additional statistical
program libraries) are available from CRAN (pronounce siih-
ran), the Comprehensive R-Archive Network: http://cran.
r-project.org . Numerous mirror sites exist.

http://www.r-project.org
http://cran.r-project.org
http://cran.r-project.org

