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Goal of this talk: to demonstrate how Graphical Models
and Bayesian Methods may be used for a variety of
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Inferring Gene Regulatory Networks from Microarray Data
Protein Structure Prediction
Biomarker Discovery in Microarray Data
Identifying Protein Complexes in High-Throughput Protein
Interaction Screens
Clustering Protein Sequences and Structures
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Basic Rules of Probability

P(x) probability of x
P(x |θ) conditional probability of x given θ
P(x , θ) joint probability of x and θ

P(x , θ) = P(x)P(θ|x) = P(θ)P(x |θ)

Bayes Rule:

P(θ|x) =
P(x |θ)P(θ)

P(x)

Marginalization

P(x) =

∫
P(x , θ) dθ
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Bayes Rule Applied to Machine Learning

P(θ|D) =
P(D|θ)P(θ)

P(D)

P(D|θ) likelihood of θ
P(θ) prior probability of θ
P(θ|D) posterior of θ given D

Model Comparison:

P(m|D) =
P(D|m)P(m)

P(D)

P(D|m) =

∫
P(D|θ, m)P(θ|m) dθ

Prediction:

P(x |D, m) =

∫
P(x |θ,D, m)P(θ|D, m)dθ

P(x |D, m) =

∫
P(x |θ)P(θ|D, m)dθ (for many models)
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Model structure and overfitting:
a simple example
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Using Bayesian Occam’s Razor to Learn Model
Structure

Select the model class mi with the highest probability given the
data by computing the Marginal Likelihood (“evidence”):
Interpretation: The probability that randomly selected
parameters from the prior would generate the data set.

Model classes that are too simple are unlikely to generate
the data set.
Model classes that are too complex can generate many
possible data sets, so again, they are unlikely to generate
that particular data set at random.

too simple

too complex

"just right"

All possible data sets

P
(Y

|M
i)

Y

Adapted from David J.C. MacKay “Information Theory, Inference and Learning Algorithms”
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Bayesian Model Selection: Occam’s Razor at Work
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e.g. for quadratic (M=2): y = a0 + a1x + a2x2 + ε, where
ε ∼ N (0, τ) and θ2 = [a0 a1 a2 τ ]



Motivation and Background
Inferring Gene Regulatory Networks from Microarray Data

Protein Structure Prediction
Conclusions

Graphical Models

Directed acyclic graph where each node corresponds to a
random variable.

x1

x2

x3

x4

x5

P(x) = P(x1)P(x2|x1)P(x3|x1, x2)

P(x4|x2)P(x5|x3, x4)

Key quantity: joint probability distribution over nodes:
P(x) = P(x1, x2, . . . , xn)

The graph specifies a factorization of this joint probability
distribution.
Also known as Bayesian Networks, Belief Nets and
Probabilistic Independence Nets.
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T cell activation

The Biological System
• The central event in the generation of an immune response is the

activation of T cells.

APC Peptide TCR

T cell
nucleus

Signaling Pathway

APC - Antigen Presenting Cell
TCR - T cell Receptor

Antigen ‘Primed’
B Cell

Activated 
T cell

Cytokines
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A Model of T cell Activation

In Vitro model of T-cell activation for 
analysis of transcriptional pathways.

PMA
Ionomycin

Stimulus

Human Jurkat cells

Response

Apoptosis: 
Jun B, Caspase 8

Inflammation:
 FYB, IL3R α

Cell cycle/ Adhesion:
Cyclin A2, Integrin α
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Hypothetical Networks Involved in T-cell Activation
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A Gaussian State-Space Model with Feedback

x1
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Output equation: yt = Cxt + Dyt−1 + vt
State dynamics equation: xt = Axt−1 + Byt−1 + wt

Key Concept: yt represents the measured gene expression
level at time step t and xt models the many unmeasured
(hidden) factors such as

genes that have not be included in the microarray,
levels of regulatory proteins,
the effects of mRNA and protein degradation, etc.
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Our Approach

Elements of matrix [CB + D] represent all gene-gene
interactions
Classical statistical approach uses cross-validation and
bootstrapping (Rangel et al., Bioinformatics, 2004).
Can also use variational approximations to perform
approximate Bayesian inference in state-space models
(Beal et al., Bioinformatics, 2005).
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Bootstrap Procedure for Parameter Confidence
Intervals (1)

Bootstrap

Bootstrap

replications

samples

sample
TrainingZ = (z1, z2, . . . , zN )

Z
∗1

Z
∗2

Z
∗B

S(Z∗1) S(Z∗2) S(Z∗B)

Figure 7.10:

From Hastie, Tibshirani and Friedman “The Elements of Statistical
Learning”
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Bootstrap Procedure for Parameter Confidence
Intervals (2)
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Inferring Regulatory Networks
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Apoptosis

Inflammation

Adhesion

Cell cycle

Blue arrows (-)

Red arrows (+)

Other

Some key genes: FYB (1), IL3Rα (2), CD 69 (3), TRAF5 (4), IL4Rα (5), GATA binding protein 3 (6), IL-2Rγ
(7), chemokine receptor CX3CR1 (9), interleukin-16 (11), Jun B (13), Caspase 8 (14), Clusterin (15), Caspase
7 (18), survival of motor neuron 1 (19), Cyclin A2 (20), CDC2 (21), PCNA (22), Integrin alpha-M (26), MCL-1
(31)
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In-Silico Hypotheses
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Variational Bayesian Approach

Variational free energy minimization is a method of
approximating a complex distribution p(x) by a simpler
distribution q(x; θ). We adust the parameters θ so as to get q to
best approximate p in some sense.
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Lower Bounding the Marginal Likelihood

We can also lower bound the marginal likelihood:
Using a simpler, factorised approximation to
q(x, θ) ≈ qx(x)qθ(θ):

ln p(y|m) = Fm(qx(x), qθ(θ), y).

Maximizing this lower bound, Fm, leads to EM-like iterative
updates. −Fm is a variational free energy
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Results from the Variational Bayesian Approach
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In-Silico Hypotheses (2)
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Future Work

A framework to build on with future work:
incorporating biologically plausible nonlinearities
adding prior knowledge (especially in the form of
constraints on positive and negative interactions)
making and testing gene silencing and overexpresson
predictions
combining gene and protein expression data with
metabolomic data
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Protein Secondary Structure Prediction

Discriminant approach with neural networks,

Seminal work by Qian and Sejnowski (1988)
PHD (Rost and Sander, 1993) - evolutionary information
from multiple sequence alignment
Jones (1999) - position-specific scoring matrices (PSSM)
Cuff and Barton (2000) evaluated different types of multiple
sequence alignment profiles

Generative model (Schmidler, 2002) using primary
structure only with lower prediction accuracy
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Our Approach

Proteins as collection of local structural segments which
may be shared by unrelated proteins
Build a probabilistic generative graphical model that
describes the relationship between protein primary
structure and its secondary structure
Incorporate biological constraints (residue propensities,
long range interactions)
Learn model parameters from data sets of proteins with
known structure
Predict structure of novel proteins using Bayesian
inference
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Segmental Model

O15O1 O2 O3 O9O5 O11O7 O13O4 O6 O8 O10 O12

N1
N-cap C-cap

N2N1 C1N2N1 C1C1C2 C1C2N2N1
N-cap C-capInternalN-cap C-cap

Capping
Position

O14

e1=4 e2=7
T1=C T2=E

e3=9
T3 T4=H

e4=14

Protein Chain ... ...

T5

N1

1 A sequence of observations on n amino acid residues
O = [O1, O2, . . . , On]

2 A set of segmental variables, (m, e, T ), where m is the
number of segments, the segmental endpoints
e = [e1, e2, . . . , em] and the segment types
T = [T1, T2, . . . , Tm].
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Segmental Semi-Markov Models

On-1 On

T1=C T2=E ... ... Tm=C

O1 O8 O9 O10 O11O7O6O5O4O3O2 On-7 On-6 On-5 On-4... ...

l1=3 lm=4l2=4

On-2On-3

θn-1θn-6 θn-5 θn-4 θn-2θn-3

On-1On-6 On-5 On-4 On-2On-3

Wintra
5 Winter

4 Winter
3

2

Wintra
1 WcapWinter

Chu et al. ICML, 2004
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Individual Likelihood

This is a Dirichlet-Multinomial distribution.

P(Ok |O[1:k−1], Ti) =

∫
θk

P(Ok |θk , Ti)P(θk |O[1:k−1], Ti) dθk

Multinomial: P(Ok |θk , Ti) =
(
P

a Oa
k )!Q

a Oa
k !

∏
a∈A (θa

k )Oa
k

Dirichlet Prior: P(θk |O[1:k−1], Ti) =
Γ(

P
a γa

k )Q
a Γ(γa

k )

∏
a∈A (θa

k )γa
k−1

Weights:
γk = Wcap +

∑`k
j=1 W j

intra ·Ok−j +
∑`

j=`k+1 W j
inter ·Ok−j .
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P(Ok |θk , Ti)P(θk |O[1:k−1], Ti) dθk

Multinomial: P(Ok |θk , Ti) =
(
P

a Oa
k )!Q

a Oa
k !

∏
a∈A (θa

k )Oa
k

Dirichlet Prior: P(θk |O[1:k−1], Ti) =
Γ(

P
a γa

k )Q
a Γ(γa

k )

∏
a∈A (θa

k )γa
k−1

Weights:
γk = Wcap +

∑`k
j=1 W j

intra ·Ok−j +
∑`

j=`k+1 W j
inter ·Ok−j .
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CASP5 Results
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Chain Length Qcasp5
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3 SOV culled

Average 215.75 74.6±10.3 % 73.4±12.3 % 74.9±7.5% 73.1±10.3%
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Long-range Interactions in β-sheets

Antiparallel Parallel

The β-sheet space is the set of all the possible combinations of
β-sheets;
A set of interaction variables, I, to describe one possible case.
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1PGA - PROTEIN G
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Combining the Probabilistic Model with Steric
Constraints

Model and moves

• Planar rigid peptide bonds

• Elastic Cα valence geometry

• Random pivotal rotations

• Random crankshaft rotations
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Ramachrandran Plots for Polyalanine

Simulated
Ramachandran

plots

• When H/RT = 0, extended
conformations are 70% more likely
compact helical ones

• At high H/RT values, three
distinctive compact conformations
dominate the distribution

Podtelezhnikov and Wild, Proteins, 2005.
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Ramachrandran Plots from PDB

Ho et al. (2003) Protein Science 12:2508–2522

• 500 nonhomologous proteins
from the PDB

• C-capping (panel D) contains
ϕ = –120° and ψ = –40°
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Hydrogen Bonding Patterns

H-bonding patterns

• 310-helices are 3 times more
likely than α-helices

• Double H-bonds with a
common acceptor are
responsible for
ϕ = –120° and ψ = –40°
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Contacts Sampled in Monte Carlo Procedure

True Contact Map of 1PGA
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Future Work

Combining probabilistic model and steric constraints
De-novo protein design
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Conclusions

Graphical models and Bayesian methods can be used for a
variety of modeling problems in Bioinformatics.
They allow robust statistical models to be learned and
sources of noise and uncertainty to be included in a
principled manner
Automatic model selection via Bayesian “Occam’s Razor”
We have looked at two problem domains: inferring genetic
regulatory networks and protein structure prediction
Models produce plausible biological hypotheses which can
be experimentally validated
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The basic features that underlie Bayesian Inference

From M.A. Beaumont and B. Rannala “The Bayesian Revolution in Genetics”
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The Function-Homology Gap

Functional assignment by homology: 
the function-homology gap

yeast data analyzed by GeneQuiz
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Structural Homologs and Analogs (1)

Russell et al.  J. Mol. Biol (1997) 269, 423-439
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Comparison to Cuff and Barton (2000)

METHOD DESCRIPTION Q3
NETWORKS USING FREQUENCY PROFILE FROM CLUSTALW 71.6%
NETWORKS USING BLOSUM62 PROFILE FROM CLUSTALW 70.8%
NETWORKS USING PSIBLAST ALIGNMENT PROFILES 72.1%
ARITHMETIC SUM BASED ON THE ABOVE THREE NETWORKS 73.4%
NETWORKS USING PSIBLAST PSSM 75.2%
OUR ALGORITHM WITH MSAP 71.3%
OUR ALGORITHM WITH PSIBLAST PSSM 72.2%
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The Helix-Coil Transition in Polyalanine

Helix-coil transition

• Hydrogen bonds are formed
and broken cooperatively

• Zimm-Bragg parameters
of the helix-coil transition:
s = 0.013e–H/RT and σ = 0.3
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