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plan

• learning from examples

• connection with inverse problems

• regularization algorithms: tikhonov and iterative methods

• future work
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three slides on learning: ingredients

(Vapnik, ’98, Girosi and Poggio ’90, Cucker and Smale ’00)

• the sample space Z = X × Y , with X subset of IRd and Y subset of
IR

• the probability measure ρ(x, y) = ρ(y|x)ρX (x) on the sample space
Z

• the training set z = (x,y) = {(x1, y1), · · · , (xn, yn)}, a sequence of
n examples drawn i.i.d. according to the probability ρ

• the hypotheses space H is the function space where we look for the
solution.

find fz such that fz(xnew) ∼ ynew
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three slides on learning: problem formulation

(Cucker and Smale ’00, Györfi et. al. 02)

we want to minimize the expected error

E(f) =

∫

X×Y
(f(x) − y)2dρ(x, y)

the minimizer of the above functional is the regression function

fρ(x) =

∫

Y
yρ(y|x)

the problem is approximating fρ from H given the
sample z ∼ ρ
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three slides on learning: consistency

Formally we look for a probabilistic bound for all ε > 0

P [ E(fz) − E(fρ) > ε] ≤ η(ε, n)

and study the rate of the convergence in probability of E(fz) to E(fρ)

as the number of examples increase, namely consistency.

if we want to have convergence rates we need some assumption on
the problem, i.e. to restrict the class of possible probability measures.
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one dimensional regression

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

X

Y

– p.6/22



learning as function approximation: few remarks

• noise model: to an input x corresponds a set of outputs
distributed according to ρ(y|x), (compare with y = fρ(x) + ξ)

• the inputs x are not chosen but sampled according to ρX .

• very few assumption on ρ(y|x) and ρX .

• usually dimensionality = d >> n =number of data (bioinformatics,
image classification, text categorization...).
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two slides on inverse problems

let A : H → G given t ∈ G find f s.t.

Af = t

the problem can be ill-posed: the solution doesn’t exist, is not unique,
does not depend continuously on the data. consider the best solution
on the hypotheses space that is

tH = argmin
f∈H

‖Af − t‖2
G

– p.9/22



inverse problems (cont.)

the available data are usually affected by noise. in a deterministic
model

‖t − tδ‖G ≤ δ

The generalized solution tH is not stable w.r.t. noise.

regularization techniques allow to find stable approximation to tH.
Tikhonov regularization replaces the least squares problem with

argmin
f∈H

{‖Af − tδ‖2
G + λ ‖f‖2

H}
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more ingredients: hypotheses space

(schwartz ’64, aronzajin ’50)

we consider reproducing kernel Hilbert spaces (RKHS).

(very roughly) these are Hilbert spaces completely characterized by a
(symmetric) positive-definite function K(x, s) namely the kernel.

the following reproducing property holds, if f ∈ H and Kx = K(·, x)
then

〈f,Kx〉H = f(x)

where 〈·, ·〉H is the scalar product in H

we assume κ = supx∈X

√

K(x, x) < ∞
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an inverse problems point of view on learning

(De Vito et al. ’04)

recall that for f ∈ L2(X, ρX )

E(f) = ‖f − fρ‖2
ρ + E(fρ)

consider the inclusion operator IK : H → L2(X, ρX )

inf
f∈H

E(f) = inf
f∈H

‖IKf − fρ‖2
ρ

minimizing the expected error is the least square problem associated
to the embedding equation

IKf = fρ
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stochastic discretization

(Bertero et al. ’85, Girosi and Poggio ’89, Smale and Zhou ’04 De Vito et al. ’04)

given z = (x,y), consider the sampling operator Sx : H → IRd

(Sxf)i = f(xi)

we have

min
f∈H

1

n

n
∑

i=1

(f(xi) − yi)
2 = min

f∈H
‖Sxf − y‖2

d

minimizing the empirical error is the least square problem associated
to the problem

Sxf = y ⇐⇒ f(xi) = yi i = 1, . . . , n
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learning problem revisited...

(De Vito, Caponetto, Odone, De Giovannini, and Rosasco ’04)

we are interested to a linear inverse problem and its discretization

IKf = fρ Sxf = y

since we don’t control the discretization we demand the regularization
algorithmn to take care of such indetermination

convergence: given a solution fz ∈ H we want the residual to
converge to zero (in probability) as the number of samples increases
in fact

E(fz) − inf
f∈H

E(f) = ‖IKfz − Pfρ‖2
ρ

where P is th projection onto the closure of H in L2(X, ρX )
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regularization algorithms for learning

tikhonov regularization

fλ
z

= (S∗
x
Sx + λI)−1S∗

x
y

landweber iteration

f t+1
z

= f t
z
− γ(S∗

x
Sxf t

z
− S∗

x
y), f0

z
= 0,

with

γ =
1

κ2

– p.15/22



the algorithms

both algorithms boil down to find

fz(x) =

n
∑

i=1

αK(xi, x)

where for tikhonov

αλ = (K + λnI)−1y Kij = K(xi, xj)

while for landweber

αt+1 = αt − γ

n
(Kαt − y) Kij = K(xi, xj)

we want to know how well each solution
approximates fρ
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one dimensional regression
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one dimensional regression
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one dimensional regression
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tikhonov case: analytic result

∣

∣

∣

∣

√

E(fλ
z
) − E(fρ) −

√

E(fλ) − E(fρ)

∣

∣

∣

∣

≤

1√
λ

(

‖S∗
x
Sx − I∗KIK‖

L(H)√
λ

+ ‖S∗
x
y − I∗Kfρ‖H

)

the two terms in the rhs do not depend on λ and are of probabilistic
nature: the effect of the regularization procedure is factorized by
analytic methods
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generalized bennett inequality

• since H is an rkhs, that is, f(x) = 〈f,Kx〉H

S∗
x
y = 1

n

∑n
i=1 yiKxi

I∗Kfρ = Ex,y[yKx]

S∗
x
Sx = 1

n

∑n
i=1 〈·,Kxi

〉H Kxi
I∗KIK = Ex[〈·,Kx〉Kx]

• theorem [Smale-Yao (’04)]
let ξ : X × Y → H be a random variable, ‖ξ(x, y)‖H ≤ 1

P

[
∥

∥

∥

∥

∥

1

n

n
∑

i=1

ξ(xi, yi) − Ex,y(ξ)

∥

∥

∥

∥

∥

H

≥ ε

]

≤ 2 exp
[

−n

2
ε log(1 + ε)

]

= η
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probabilistic bound

with probability greater than 1 − η

∣

∣

∣

∣

√

E(fλ
z
) − E(fρ) −

√

E(fλ) − E(fρ)

∣

∣

∣

∣

≤
(

C1√
λ2n

+
C2√
λn

)
√

log
4

η
+o

(

1√
λ2n

)

• the subset of z ∈ (X × Y )n for which the bound holds depends on
n and η, but not on λ

• C1 and C2 are numerical (simple) constants

• o( 1√
λ2n

) depends also on η
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consistency and rates

if fρ ∈ H then

• for tikhonov: λn = n1/2 whp

E(fλn

z
) − E(fρ) ≤ Cηn

− 1

2

(caponnetto and de vito, 2005; smale and zhou, 2005)

• for landweber: tn = n1/3 whp

E(f tn

z
) − E(fρ) ≤ Cηn

− 1

3

(yao, rosasco, and caponnetto, 2005)
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future work

• semiterative regularization

• a posteriori regularization parameter choices: discrepancy
principle

• connection between sparsity, regularization and feature selection
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