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plan

® |earning from examples
® connection with inverse problems
® regularization algorithms: tikhonov and iterative methods

e future work
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three slides on learning: ingredients

(Vapnik, ‘98, Girosi and Poggio '90, Cucker and Smale ’OO)

* the sample space Z = X x Y, with X subset of R? and Y subset of
R

* the probability measure p(z,y) = p(y|x)px (x) on the sample space
A

* the trainingset z = (x,y) = {(x1,¥1), -+, (xn,yn)}, @ SEQUENCE Of
n examples drawn i.i.d. according to the probability p

* the hypotheses space H Is the function space where we look for the
solution.

find f, such that f,(Zpecw) ~ Ynew
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three slides on learning: problem formulation

(Cucker and Smale '00, Gyorfi et. al. 02)

we want to minimize the expected error

e(f) = /X (@)~ 9P dpla.)

the minimizer of the above functional is the regression function
folx) = /Y yp(y|z)

the problem is approximating fp from H given the
sample z ~ p
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three slides on learning: consistency

Formally we look for a probabilistic bound for all ¢ > 0

P1E(fz) — E(fp) > el <ml(e;n)

and study the rate of the convergence in probability of £(f,) to E(f,)
as the number of examples increase, namely consistency.

If we want to have convergence rates we need some assumption on
the problem, i.e. to restrict the class of possible probability measures.
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one dimensional regression
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learning as function approximation: few remarks

* noise model: to an input = corresponds a set of outputs
distributed according to p(y|z), (compare with y = f,(x) + &)

* the inputs x are not chosen but sampled according to px.
* very few assumption on p(y|z) and px.

* usually dimensionality = d >> n =number of data (bioinformatics,
Image classification, text categorization...).
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two slides on inverse problems

let A: H — Ggivent € Gfind f s.t.
Af =t

the problem can be ill-posed: the solution doesn’t exist, is not unigue,
does not depend continuously on the data. consider the best solution
on the hypotheses space that is

tgc = argmin [|Af — t||3
fedl

4
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Inverse problems (cont.)

the available data are usually affected by noise. in a deterministic
model
It —tsllg <0

The generalized solution t4 IS not stable w.r.t. noise.

regularization techniques allow to find stable approximation to ¢ .

Tikhonov reqgularization replaces the least squares problem with

argmin{[|Af — t5] g + Al f]5¢
fer
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more ingredients: hypotheses space

(schwartz '64, aronzajin ’50)

we consider reproducing kernel Hilbert spaces (RKHS).

(very roughly) these are Hilbert spaces completely characterized by a
(symmetric) positive-definite function K (x, s) namely the kernel.

the following reproducing property holds, if f € H and K, = K(-,x)
then

<fa Ka:>j—( — f(lE)

where (-, )4 is the scalar product in J{

we assume x = sup,cx v/ K (z,z) < 0o
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an inverse problems point of view on learning

(De Vito et al. ’04)
recall that for f € L?(X, px)

EF) =1 = Lol + E(f,)

consider the inclusion operator Iy : 5 — L?(X, px)

inf = inf ||Ixf — fo|
flgﬁﬁ(f) }Qg{” xf = ol

minimizing the expected error is the least square problem associated
to the embedding equation

]Kf — fp
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stochastic discretization

(Bertero et al. '85, Girosi and Poggio '89, Smale and Zhou '04 De Vito et al. ’04)

given z = (x,y), consider the sampling operator Sy : H — R¢

(Sxf)i = f(xs)

we have
1 n
min — Y (f(z;) — yi)’

2
fegcn mHSxf_YHd

p— m.
; fedl

=1

minimizing the empirical error is the least square problem associated
to the problem

Sxf=y <= flz))=y i=1,...,n
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learning problem revisited...

(De Vito, Caponetto, Odone, De Giovannini, and Rosasco ’04)

we are interested to a linear inverse problem and its discretization

IKf:f,O Sxf:y

since we don’t control the discretization we demand the regularization
algorithmn to take care of such indetermination

convergence: given a solution f, € H we want the residual to
converge to zero (in probabllity) as the number of samples increases
In fact

E(fa) = it E(f) = M fa = Pyl

where P is th projection onto the closure of 3 in L*(X, px)
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regularization algorithms for learning

tikhonov regularization
f2 = (SxSx + M)~ Ssy
landweber iteration

it = fL— ~y(SESefL — Sty), f2=0,

with
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the algorithms

both algorithms boil down to find

fz(x) = Z aK(x;,x)

where for tikhonov
o’ = (K4 Anl) ™ty Kii = K(x;,x;)
while for landweber

Oét+1 _ Oét . Z(Kat — y) KZ] — K(sz) 33])
n

we want to know how well each solution
approximates f,
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one dimensional regression
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one dimensional regression
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one dimensional regression
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tikhonov case: analytic result

Ve - el - Jer - 66| <
1 1535 = T Ikl 99
VA VA

the two terms in the rhs do not depend on X\ and are of probabilistic

nature: the effect of the regularization procedure is factorized by
analytic methods

+[15xy - I}}prg{>
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generalized bennett inequality

e since K is an rkhs, that is, f(z) = (f, K.)4

S;y — %Z?:l yini ];(fp — Ex,y[ny]
S;Sx — %Z?:l <'>Ka:¢>9{Kx7; I;%IK Ex[ ’aKx> Ka:]

® theorem [Smale-Yao ('04)]
let{: X x Y — I be arandom variable, ||{(z,y)||4 < 1

d

1 n
= (0, i) — Eay (6)
1=1

> 5} < 2exp [—gelog(l—l—e) =
H
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probabilistic bound

with probability greater than 1 — 7

V-] = (g ) et ()

* the subset of z € (X x Y)" for which the bound holds depends on
n and n, but not on A

* (1 and (5 are numerical (simple) constants

* 0(\/7) depends also on 7
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consistency and rates

if f, € H then

e for tikhonov: A, = n!/2 whp

N |

E(fam) — &(fp) < Cyn™
(caponnetto and de vito, 2005; smale and zhou, 2005)

e for landweber: ¢, = n!/3 whp

W~

E(fi) = E(f,) < Cyn™
(yao, rosasco, and caponnetto, 2005)
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future work

® semiterative regularization

® a posteriori regularization parameter choices: discrepancy
principle

® connection between sparsity, regularization and feature selection
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