Linear models for data analysis
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The problem

e Data matrix X with variables z; in rows

e Transform variables x; to more convenient coordinates s;
T = f(8) +1]

e Estimate transformation from the data
(unlike e.g. smoothing, fourier or wavelet transform)



What is convenient?

e Reduce dimensionality (keeping maximal information) for

— visualisation
— further processing (classification, discrimination, regression)
— storing/transmitting
e Simplify data
— separate effects
— simpler coding (possibly in more dimensions)
e Estimate underlying distribution
— denoising
— regression

— estimate “real” underlying factors



Linear models

e Probabilistic model:
T=[0+A5+7
with mean ji, < §>= 0, 77 independent gaussian noise

e Data transformation to components s
Ty = pi + Y, Aik Sk + T
k

with estimates of u, A, n

e Centering (use empirical center of mass as estimate of 1)
and transformation to new basis ( “loadings”, columns of A)
(may be under- or overcomplete)

e matrix factorisation is underdetermined
AS = ATT 'S =A'S

further constraints are necessary — different linear methods



Principal component analysis (PCA)

Basic idea
Explain most of the data variance by a small subspace

Calculation

assumption: data are multivariate normal with p ox exp(—1/2 2’ ¥ x)

estimate ¥7! by empirical covariance matrix C =< (z — p)(z — u)’ >

e (' is symmetric — orthogonal eigenvectors, eigenvalues = variances

use eigenvectors (ordered by variances) as the new basis A
Properties

e centering and rotation of the data
e solution is unique (unless different directions show the same variance)
e first n components explain as much variance as possible

e eliminate high components — linear dimension reduction with minimal loss of variance



Factor analysis

Basic idea
Estimate a small number of interpretable factors, as well as measurement noise

e underlying model
T=[A+As5+7

with s independent gaussian (less components than variables) with unit covariance
and 7 independent gaussian (with different variances)

e estimate factor subspace and measurement noise using the correlation matrix
e estimate significant number of factors using likelihood ratio test

e Achieve “simple structure” of loadings matrix (large vs. small values) by rotation

“varimax” criterion: maximize sum of squared loadings



Independent component analysis (ICA) and projection pursuit

Basic idea
Find non-gaussian components with minimal statistical dependencies
Use higher-order (covariance is second-order) dependencies for the estimation

Projection pursuit (Friedman and Tukey, 1974)

e Project data to low-dimensional space such that “interesting” features (e.g. clusters)
become visible

e Central limit theorem — in high dimensions, almost all (random) projections yield
almost normal data

e “Interesting” means non-normal — maximise some higher-order measure of non-normality



Independent component analysis (ICA) and projection pursuit

Basic idea
Find non-gaussian components with minimal statistical dependencies
Use higher-order (more than covariance) dependencies for the estimation

ICA

e Basic model
T=0g+A%
where sj (same number as variables) are independent, but not gaussian (sub- or supergaussian)
e distribution p(3) = I pi(sk)

e Estimation:
minimize the Kullback “distance” between empirical distribution and model distribution
<> minimize the (empirical) mutual information between components s
<> minimize the sum of marginal entropies

e fastica algorithm (A. Hyvarinen):
maximize “contrast” (dissimilarity between (unknown) marginal distributions from normal)
by a gradient descent search



Illustrative example: reconstruct two Laplacian-distributed variables

Produce artificial data:




What PCA does:
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What ICA does (fastica):
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Linear correlations

o |CA removes linear correlations

e With gaussian data, the solution is not unique — bad convergence
Degeneracies

e The original variables are assumed to have zero mean.
e |C are scaled to variance=1 by convention.
e The signs can be chosen arbitrarily.

e There is no natural order of the IC (use variance, contrast, or other)
Applications

e Blind source separation
e Suited to find almost sparse components

e Noisy and overcomplete variants, and variants with priors on A exist

see
A. Hyvdrinen, Survey on independent component analysis [5]
A. Hyvdirinen, E. Oja, Independent component analysis: a tutorial [1]



Assumptions on gene expression

cell state
#~ 7 ( cellbehaviour
metabolism

e

M\\

expression

e A cell/tissue state is characterized by ¢ variables
(“expression mode levels”).

e The genes’ log expression levels are functions of
(some of) them.

e The genes’ input functions can be approximated
by linear functions.

Sparseness assumption (ICA etc.)

e The influence weights of different modes are
approximately independent and sparse.

e If N(experiments) >> N(genes)
— use factor analysis instead



A biological example

see H. Causton, Remodeling of yeast genome expression in response to environmental changes [2]

Expression in yeast after shock treatments:
heat, acid, alkali, msn 2/4 deletion + acid, hydrogen peroxide, NaCl, sorbitol
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A biological example
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Some other linear models

e Topographic ICA

see A. Hyvdrinen et al., Topographic Independent Component Analysis 7]

Assume graph topology between components.

Estimate components such that dependencies of squared data are located between neighbour com-
ponents.

e Non-negative matrix factorisation
see D. Lee and H. Seung, Learning the parts of objects by non-negative matriz factorization [9]
data, loadings and components are constrained to be non-negative — almost sparse representation
e Overcomplete representations

see M. Lewicki, T. Sejnowski, Learning overcomplete representations [10]
more components than variables: prior needed to make the model identifiable
sparse representation

e Bayesian decomposition

see T. D. Moloshok et al., Application of Bayesian decomposition for analysing microarray data
[11]



Only to mention some nonlinear models...

e Self-organised feature maps (SOM)
Map data points to a discrete n-dimensional grid

e Non-linear component analysis

see R. Duda, P. Hart, D. Stork, Pattern classification [3]
5-layer neural autoencoder network (maps data to themselves)
The (low-dimensional) middle layer represents the components.

e Nonlinear ICA

see Harri Lappalainen et al., Nonlinear independent component analysis using ensemble learning:
experiments and discussion [8]

7= f(5)

where f represented by a neural network and s is non-gaussian and independent
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The idea behind fastica

The goal:
Given the data matrix X, find a mixing matrix A
to minimize the statistical dependence between the “independent components” (rows of S).

Assumption: the joint distribution factorizes into a product of component distributions.

e Decompose A into
A=BR

where R is a rotation and B = (X7 X)'/2 produces the linear correlations.
Use the decorrelated ( “whitened”) data.

e Statistical dependence is quantified by the mutual information between the components.

e mutual information is minimal ff entropy of the components is minimal

e entropy is approximated by a contrast function Jg (dissimilarity from normal distribution)
Ja(s) =< G(s) > = <G(y) > |

where the test function GG is an even, non-quadratic smooth function, y is normally distributed.

Robustness depends on the choice of G.



The fastica algorithm

see
Aapo Hyvdrinen and Erkki Oja, A fast fized-point algorithm for independent component analysis [6]

e Remove mean and linear correlations from the data matrix X:
force <x>=0and < x'x >= 1.

e Guess initial W = A~! with columns w
e lterate

1. new w =< xT g(xw) > —w < ¢'(xw) >
where g is the derivative of the test function G.

2. Compute expectation values using batches of input data
3. Orthogonalize W

until convergencence.
Properties of fastica:

e Good results for artificial data (even with moderate noise)
e Bad convergence for gaussian data

e A robust estimation of A is achieved using gaussian moments [4] as nonlinearity g.
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A biological example: PCA
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