Linear models for data analysis Wolfram Liebermeister

MPI für molekulare Genetik

The problem

- ullet Data matrix X with variables x_i in rows
- ullet Transform variables x_i to more convenient coordinates s_l

$$\vec{x} = f(\vec{s}) + \vec{\eta}$$

• Estimate transformation from the data (unlike e.g. smoothing, fourier or wavelet transform)

What is convenient?

- Reduce dimensionality (keeping maximal information) for
 - visualisation
 - further processing (classification, discrimination, regression)
 - storing/transmitting
- Simplify data
 - separate effects
 - simpler coding (possibly in more dimensions)
- Estimate underlying distribution
 - denoising
 - regression
 - estimate "real" underlying factors

Linear models

• Probabilistic model:

$$\vec{x} = \vec{\mu} + A \ \vec{s} + \vec{\eta}$$

with mean $\vec{\mu}$, $<\vec{s}>=0$, $\vec{\eta}$ independent gaussian noise

ullet Data transformation to $components\ s$

$$x_{il} = \mu_i + \sum_k A_{ik} \ s_{kl} + \eta_{il}$$

with estimates of μ, A, η

- Centering (use empirical center of mass as estimate of μ) and transformation to new basis ("loadings", columns of A) (may be under- or overcomplete)
- matrix factorisation is underdetermined

$$AS = ATT^{-1}S = A'S'$$

further constraints are necessary \rightarrow different linear methods

Principal component analysis (PCA)

Basic idea

Explain most of the data variance by a small subspace

Calculation

- assumption: data are multivariate normal with $p \propto exp(-1/2 \ x' \ \Sigma \ x)$
- estimate Σ^{-1} by empirical covariance matrix $C = \langle (x \mu)(x \mu)' \rangle$
- ullet C is symmetric o orthogonal eigenvectors, eigenvalues = variances
- ullet use eigenvectors (ordered by variances) as the new basis A

Properties

- centering and rotation of the data
- solution is unique (unless different directions show the same variance)
- ullet first n components explain as much variance as possible
- ullet eliminate high components o linear dimension reduction with minimal loss of variance

Factor analysis

Basic idea

Estimate a small number of interpretable factors, as well as measurement noise

• underlying model

$$\vec{x} = \vec{\mu} + A \ \vec{s} + \vec{\eta}$$

with s independent gaussian (less components than variables) with unit covariance and η independent gaussian (with different variances)

- estimate factor subspace and measurement noise using the correlation matrix
- estimate significant number of factors using likelihood ratio test
- Achieve "simple structure" of loadings matrix (large vs. small values) by rotation
- "varimax" criterion: maximize sum of squared loadings

Independent component analysis (ICA) and projection pursuit

Basic idea

Find non-gaussian components with minimal statistical dependencies Use higher-order (covariance is second-order) dependencies for the estimation

Projection pursuit (Friedman and Tukey, 1974)

- Project data to low-dimensional space such that "interesting" features (e.g. clusters) become visible
- ullet Central limit theorem o in high dimensions, almost all (random) projections yield almost normal data
- ullet "Interesting" means non-normal o maximise some higher-order measure of non-normality

Independent component analysis (ICA) and projection pursuit

Basic idea

Find non-gaussian components with minimal statistical dependencies Use higher-order (more than covariance) dependencies for the estimation

ICA

• Basic model

$$\vec{x} = \vec{\mu} + A \ \vec{s}$$

where s_k (same number as variables) are independent, but not gaussian (sub- or supergaussian)

- distribution $p(\vec{s}) = \Pi \ p_k(s_k)$
- Estimation:

minimize the Kullback "distance" between empirical distribution and model distribution \leftrightarrow minimize the (empirical) mutual information between components s

- ← minimize the sum of marginal entropies
- fastica algorithm (A. Hyvärinen): maximize "contrast" (dissimilarity between (unknown) marginal distributions from normal) by a gradient descent search

Illustrative example: reconstruct two Laplacian-distributed variables Produce artificial data:

What PCA does:

What ICA does (fastica):

Linear correlations

- ICA removes linear correlations
- ullet With gaussian data, the solution is not unique o bad convergence

Degeneracies

- The original variables are assumed to have zero mean.
- IC are scaled to variance=1 by convention.
- The signs can be chosen arbitrarily.
- There is no natural order of the IC (use variance, contrast, or other)

Applications

- Blind source separation
- Suited to find almost sparse components
- ullet Noisy and overcomplete variants, and variants with priors on A exist

see

- A. Hyvärinen, Survey on independent component analysis [5]
- A. Hyvärinen, E. Oja, Independent component analysis: a tutorial [1]

Assumptions on gene expression

- \bullet A cell/tissue state is characterized by q variables ("expression mode levels").
- The genes' log expression levels are functions of (some of) them.
- The genes' input functions can be approximated by linear functions.

Sparseness assumption (ICA etc.)

- The influence weights of different modes are approximately independent and sparse.
- If N(experiments) >> N(genes)
 → use factor analysis instead

A biological example

see $H.\ Causton,\ Remodeling\ of\ yeast\ genome\ expression\ in\ response\ to\ environmental\ changes\ [2]$ Expression in yeast after shock treatments: heat, acid, alkali, msn 2/4 deletion + acid, hydrogen peroxide, NaCl, sorbitol

A biological example

A biological example

Some other linear models

• Topographic ICA

see A. Hyvärinen et al., Topographic Independent Component Analysis [7] Assume graph topology between components. Estimate components such that dependencies of squared data are located between neighbour components.

• Non-negative matrix factorisation

see D. Lee and H. Seung, Learning the parts of objects by non-negative matrix factorization [9] data, loadings and components are constrained to be non-negative \rightarrow almost sparse representation

Overcomplete representations

see M. Lewicki, T. Sejnowski, Learning overcomplete representations [10] more components than variables: prior needed to make the model identifiable sparse representation

• Bayesian decomposition

see T. D. Moloshok et al., Application of Bayesian decomposition for analysing microarray data [11]

•

Only to mention some nonlinear models...

- Self-organised feature maps (SOM)
 Map data points to a discrete n-dimensional grid
- Non-linear component analysis see R. Duda, P. Hart, D. Stork, Pattern classification [3] 5-layer neural autoencoder network (maps data to themselves) The (low-dimensional) middle layer represents the components.
- Nonlinear ICA

see Harri Lappalainen et al., Nonlinear independent component analysis using ensemble learning: experiments and discussion [8]

$$\vec{x} = f(\vec{s})$$

where f represented by a neural network and s is non-gaussian and independent

References

- [1] Erkki Oja Aapo Hyvärinen. Independent component analysis: a tutorial. unpublished.
- [2] Helen C. Causton et al. Remodeling of yeast genome expression in response to environmental changes. *Molecular Biology of the cell*, 12:323–337, 2001.
- [3] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern classification. Wiley, 2 edition, 2001.
- [4] Aapo Hyvärinen. Gaussian moments for noisy independent component analysis. unpublished.
- [5] Aapo Hyvärinen. Survey on independent component analysis. *Neural Computing Surveys*, pages 94–128, 1999.
- [6] Aapo Hyvärinen and Erkki Oja. A fast fixed-point algorithm for independent component analysis. *Neural computation*, 9(7):1483–1492, 1997.
- [7] A. Hyvrinen, P.O. Hoyer, and M. Inki. Topographic independent component analysis. *Neural Computation*, 13(7):1525–1558, 2001.
- [8] Harri Lappalainen et al. Nonlinear independent component analysis using ensemble learning: experiments and discussion.
- [9] Daniel D. Lee and H. Sebastian Seung. Learning the parts of objects by non-negative matrix factorization. *Nature*, 401:788, 1999.
- [10] Terence J. Sejnowski Michael S. Lewicki. Learning overcomplete representations. unpublished.
- [11] T. D. Moloshok et al. Application of bayesian decomposition for analysing microarray data. *Bioinformatics*, 18(4):566–575, 2002.

The idea behind fastica

The goal:

Given the data matrix X, find a mixing matrix A to minimize the statistical dependence between the "independent components" (rows of S).

Assumption: the joint distribution factorizes into a product of component distributions.

• Decompose A into

$$A = BR$$

where R is a rotation and $B=(X^TX)^{1/2}$ produces the linear correlations. Use the decorrelated ("whitened") data.

- Statistical dependence is quantified by the **mutual information** between the components.
- \bullet mutual information is minimal iff entropy of the components is minimal
- \bullet entropy is approximated by a contrast function J_G (dissimilarity from normal distribution)

$$J_G(s) = | \langle G(s) \rangle - \langle G(y) \rangle |$$

where the test function G is an even, non-quadratic smooth function, y is normally distributed. Robustness depends on the choice of G.

The fastica algorithm

see

Aapo Hyvärinen and Erkki Oja, A fast fixed-point algorithm for independent component analysis [6]

- Remove mean and linear correlations from the data matrix X: force $<\mathbf{x}>=0$ and $<\mathbf{x}^T\mathbf{x}>=I$.
- ullet Guess initial $W=A^{-1}$ with columns ${f w}$
- Iterate
 - 1. new $\mathbf{w} = \langle \mathbf{x}^T \ g(\mathbf{x}\mathbf{w}) \rangle \mathbf{w} \langle g'(\mathbf{x}\mathbf{w}) \rangle$ where g is the derivative of the test function G.
 - 2. Compute expectation values using batches of input data
 - 3. Orthogonalize ${\cal W}$

until convergencence.

Properties of fastica:

- Good results for artificial data (even with moderate noise)
- Bad convergence for gaussian data
- \bullet A robust estimation of A is achieved using gaussian moments [4] as nonlinearity g.

A biological example: PCA

Components

A biological example: PCA

