

From Concentration to Regulation. Possible Approaches for Reconstructing Genetic Networks.

Axel Kowald
Kinetic Modelling Group
Max Planck Institute for Molecular Genetics

Culture Conditions Expression Patterns

Different Culture Conditions RNAi Experiment

Approaches

- Boolean Nets Genetic Programming
 - Popular approach Rarely used
 - Mathematically accessible Kind of black box
 - Produced several proofs
 - Lacking biological realism scenarios.

Boolean Nets

INPUT	OUTPUT			
$v_1 v_2 v_3$	$v_1' v_2' v_3'$			
0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1	$\begin{array}{ccccc} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ \end{array}$			
$\begin{array}{cccc} 1 & 1 & 0 \\ 1 & 1 & 1 \end{array}$	$\begin{array}{cccc} 1 & 0 & 0 \\ 1 & 1 & 0 \end{array}$			

$$\mathbf{v}_1' = \mathbf{v}_2$$

$$v_1' = v_2$$
 $v_2' = v_1 \text{ AND } v_3$ $v_3' = \text{NOT } v_1$

$$v_3' = NOT v_1$$

Solutions

Liampies								
	v_{I}	v_2	v_3	v_1'	v_2	v_3		
1	1	0	0	0	0	1	O_I	
2	0	1	0	0	1	1	O_2	
	_	4	4	4	_	^	\sim	

Evamples

$$G_{1}$$

$$v'_{1} = v_{3}$$

$$v'_{2} = v_{2} \text{ AND (NOT } v_{3})$$

$$v'_{3} = \text{NOT } v_{3}$$

$$G_{2}$$

$$v'_{1} = v_{3}$$

$$v'_{2} = v_{2} \text{ XOR } v_{3}$$

$$v'_{3} = \text{NOT } v_{3}$$

Necessary Examples

What is Genetic Programming?

Crossing Over

GP Representation of Biochemical Reaction Nets - I

GP Representation of Biochemical Reaction Nets - II

Result after 225 Generations

Test Network

In silico RNAi

Knock down of enzyme 1

EXTRA

Best of Generation 10

