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Talks _

[ Statistically rigorous electronic gene annotation and
classification of protein data bank sequences using gene
ontology terms

[] A Piecewise subtractive quasi-global normalization and
gene identification method gives superior results for
dna-array analysis

[ MULTICLASS CANCER CLASSIFICATION USING GENE
EXPRESSION PROFILING AND PROBABILISTIC NEURAL
NETWORKS




Statistically rigorous electronic gene annotation and
classification of protein data bank sequences using
gene ontology terms, Werner G.Krebs, Philip E.
Bourne, UCSD

Allows automatic extension of existing
ontologies

Needs: Cluster of genes based on info
given in ontology

P-value for correlation of cluster with

ontology (modelled by hypergeometric
distrib)




Ontology based
Clasi_fc__ation

Bayesian probability for fraction of genes
In a cluster having a common GO term

[hird statistic gives confidence interval on
Bayesian prob

find falsely classified genes, help annotate
genes, automate process

PDB: 36000 chains, 23000 a priori
classified, 4000 additional with this
approach




A Piecewise subtractive quasi-global normalization and
gene identification method gives superior results for DNA-

array analysis, Yangdagger, Haddaddagger, Tomas, Alsaker,
Papoutsakis, NWU

Array normalization and gene
identification method

[Isegment entire intensity range in intervals

[Jdetermine mean and SD of ratios for each
Interval using nearest neighbor
nondifferentially expressed genes




I\/Iodel_

Noise In microarrays:

[Jrandom errors (scanning, spot-to-spot
variation) global on array

[Isystematic errors (array surface, printing,
DNA prep)

Let x* and y* be the true intensities (no

random errors), so x*/y* could be used

for normalization




I\/Iodel_ )

Consider K non-differentially expressed
genes closest to (x*,y*)

If K Is large enough

I 1- — E . 1
W % - - X1
log Alx,y) = El log

.1.. - E-l. _.i-

i fX o {f | E.1 00
=E !i. l‘.'-lli‘—.l.-!il 1_ .i! .il +E !i. ]":1'2- !il !II L — T Ii! !il I = _T .i! Iu! .i!"

normalization: log y = log y + log A(X,Y)




Normalization

Before nommalization After normialization
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Fig. 1. Normalization results. {3 and b} Original expression ratios {a) and
normalized expression ratios (B) for nylon (1), plastic (1), and glass (17} arrays

are shawn.

Random errors
In 2 different
arrays
Independent

wide spread In
low Intensity




Nondifferential genes

Remove outliers first
use Increase In stdev as criteria

Highly
—F expressed
genes
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Fig. 2. Identification of strongly expressed genes
function of th




Normalization

Divide whole range of log intensities Into
M equidistant intervals

use K nondifferentially expressed genes
around the middle of each interval to
determine logarithmic expression ratio
(LER) mean and its stdev (SD)

use percentile method to estimate
confidence level for each interval




Normalization quality

n is total number of genes
P IS number of membrane pairs
y Is normalized y

the closer to O the better

find optimal M,K for J. .. error (M=20,45,25:
K=250,300,200) B




Comparison

100

NN: no normalization

G-EM: global expr intsty mean

G-EMD: global expr inty median
G-ERM: global expr ratio mean
G-LERMD: global log ERMD

G-LR: global log ratio

CE-LERMD: constantly expressed genes
HK-LR: house keeping log ratio

RI-LR: rank invariant log ratio

RI-NLR: rank invariant nonlinear

regression

HK-ERPD: house keeping expr ratio prob

density

g SNN-LERM: segmental nearest neighbor
Normalization method mean of log of expr ratio

Fig. 4 Comparison of different normalization methods for 15 pairs (30 SNN-LERMD: segmental nearest

Arrays) of mylan arrays {painvise normallzation) (al, 30 nylan arrays (all nor

mallzed to the first array) (b)), and 22 glass arrays (). WM, no nermalization I’IEigthI’ median Of |Og Of eXpr I’atio
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Feature __Selection
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Flg. &. Comparison of different gene identif 1methods for a T cell pair
hybridized on plastic arrays {a) and a ¢ styticum B24{pS0sasdal)
H2AipGroEl) ¥
identified by QO-RT-PCRE a5

respCiivery.

CHM: mask countours (Netwon
et al.)

SNN-LERSD: segmental nearest
neighbor log expr ratio std dev

ERPD: expression ratio
probability density

MF&T: minimal fold change with
an intensity threshold




Mo. of genes identified by array analysis using

ERPD MF&T MF&T CHM CHM SNM-LERSD
Result with Q-RT-PCR {(95%) (Mf = 3; Th = 1,000) (Mf = 2.2; Th = 500) {Po = 100:10) (Po = 100:5) {95%)

14 L 0 16

18 a0 23 24 15

&bbreviations are asin Table 1.

[1 Assessing accuracy: megaplasmid deficient C. acetobutylicum strain M5
[] up to 178 genes knocked out due to lack of pSOL1 gene

[J T cell samples with Q-RT-PCR (148 measurements)




MULTICLASS CANCER CLASSIFICATION USING GENE
EXPRESSION PROFILING AND PROBABILISTIC

NEURAL NETWORKS, D.P. BERRAR, C. S. DOWNES, W.
DUBITZKY

PNN: RBF neural network

[1Bayes decision strategy
[1Parzen method of density estimation

PNN advantages:
[Imodel assymetric classification FN, FP
[Tconfidence of decision




Building a PNN

Bayes optimal classifier

e fAx)=h oo f (X)

Estimator for density function
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estimated density for the j-th class

fest case

i-th training sample of the j-th population / class
dimensionality of X,

smoothing factor

transpose

number of training cases in the j-th class




PNN example
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Classification Performance

Instead of plain accuracy also consider
prevalence




Comparison

PNN on all data, reduced (PCA)

PNN vs C5.0 vs. multi-layer feedforward
perceptron with back propagation network

PCA with 23 principal components (>75%
variance explained)




NCI6O

60 cell lines, 1405 genes for 9 cancer
classes, Scherf, Weinstein et al

missing values by mean in similar grps




PNN summary

Artifical neural networks disadv:
[Ino precise interpretation of network
[Theuristic parameter estimation

Probabilistic neural networks disadv:

[Jall training data left in memory
[Joptimal smoothing parameter needed
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