

Improved gene selection in microarrays by combining clustering and statistical techniques

Jochen Jäger University of Washington Department of Computer Science

> Advisors: Larry Ruzzo Rimli Sengupta

- Think of a complicated question:
- Will it be sunny tomorrow?
- How can you ans wer it correctly if you DO NOT know the ans wer?
- Ask around or better, make a poll

- Student: I heard it is supposed to be sunny
- Weather.com: partly doudy with scattered showers
- Yours elf: Considering the past few days and looking outside I would guess it will rain
- TV: partly sunny
- Result: 2 (sunny) : 2 (not sunny)
- Better: Use weights
- Idea: remove redundant answers as well

- Motivating example
- Biological background
- Problem statement
- Current solution
- Proposed attack
- Results
- Future work

- Find informative genes
- (e.g. genes which can discriminate between cancer and normal)
- Use series of microarrays
- Compare results from
 different tissues

- Motivating example
- Biological background
- Problem statement
- Current solution
- Proposed attack
- Results
- Future work

- Motivating example
- Biological background
- Problem statement
- Current solution
- Proposed attack
- Results
- Future work

• Use a test statistic on all genes

Gene	Tumor 1	Tumor 2	Tumor 3	Normal 1	Normal 2	Normal 3	t-test P-value
А	80	72	85	50	44	15	0.0448836
В	80	72	85	50	44	51	0.0048027
С	71	53	62	57	64	70	0.8024078

R ank them S elect top k

Problem with current solution

- Each gene independently scored
- Top k ranking genes might be very similar and therefore no additional information gain
- Reason: genes in similar pathways probably all have very similar score
- What happens if several pathways involved in perturbation but one has main influence
- Possible to describe this pathway with fewer genes

Problem of redundancy

Accession									t-test P-
Number	Adenoma 1	Adenoma 2	Adenoma 3	Adenoma 4	Normal 1	Normal 2	Normal 3	Normal 4	value
AF001548	54.55	43.93	55.69	28.47	1354.36	1565.42	1459.48	1612.85	0.00012
M12125	35.9	46.64	35.73	35.27	642.46	577.81	580.5	707.35	0.00028
X13839	46.16	47.72	26.79	17	652.66	653.14	546.12	720.43	0.0003
X15882	13.52	15.73	27.32	16.15	209.3	209.64	221.24	267.43	0.0004
AB002533	659.25	958.82	812.77	786.24	407.91	558.33	529.68	379.84	0.00557
M93651	40.1	54.77	39.93	40.37	8.74	21.07	14.45	32.94	0.01038

Top 3 genes highly correlated!

	AF001548	M12125	X13839	X15882	AB002533	M93651
AF001548	1					
M12125	0.99	1				
X13839	0.991	0.996	1			
X15882	0.992	0.995	0.988	1		
AB002533	-0.87	-0.898	-0.891	-0.888	1	
M93651	-0.8	-0.802	-0.789	-0.776	0.808	1

- Motivating example
- Biological background
- Problem statement
- Current solution
- Proposed attack
- Results
- Future work

- Several possible approaches
 - next neighbors
 - correlation
 - eudidean distance
- Approach: instead use dustering
- Advantages using dustering techniques
 - natural embedding
 - many different distance functions possible
 - different shapes, models possible

instead of hard assignment, probability for each cluster

Very similar to k-means but fuzzy softness factor m (between 1 and infinity) determines how hard the assignment has to be

Nottermans carcinoma dataset:

18 colon adenocarcinoma and 18 normal tissues

data from 7457 genes and ESTs

cluster all 36 tissues

18 tu	mors, 18 no	ormals, 5 •	fuzzy clu	isters,	m = 1.3	
				0	tumor	
				×	normal	
•					•	
		***	Ð			

18 tumors, 18 normals, 5 fuzzy clus	ters, m = 1.25
•	O tumor ★ normal
مرجع میں	, 0 00
×××	
•	

18 tumors, 18	normals, 5 fu 🛞	zzy clusters, i	m = 1.05
	Ŭ	0	tumor
			normai
0			0
0			U
×		×	
<u>^</u>			

- Two way filter: exclude redundant genes, s elect informative genes
- Get as many pathways as possible
- Consider duster size and quality as well as discriminative power

- Constraints:
 - minimum one gene per dus ter
 - maximum as many as possible
- Take genes proportionally to duster quality and size of duster
- Take more genes from bad dusters
- Smaller quality value indicates tighter duster
- Quality for k-means: sum of intra duster distance
- Quality for fuzzy c-means: avg duster membership probability

• Choices:

- Genes dos est to center
- Genes farthest away
- Sample according to probability function
- Genes with best discriminative power

Find separating hyperplane with maximal distance to dosest training example

- Advantages:
 - avoids overfitting
 - can handle higher order interactions and noise using kernel functions and soft margin

- Motivating example
- Biological background
- Problem statement
- Current solution
- Proposed attack
- Results
- Future work

- Datasets:
 - Alons Colon (40 tumor and 22 normal colon adenocarcinoma tissue samples)
 - Golubs Leukemia (47 ALL, 25 AML)
 - Nottermans Carcinoma and Adenoma (18 adenocarcinoma, 4 adenomas and paired normal tissue)
- Experimental setup:
 - calculate LOOCV using SVM on feature subsets
 - do this for feature size 10-100 (in steps of 10) and 1-30 dusters

- Tusher, Tibshirani and Chu (2001): Significance analysis of microarrays applied to the ionizing radiation response, PNAS 2001 98: 5116-5121
- Ben-Dor, A., L. Bruhn, N. Friedman, I. Nachman, M. Schummer, and Z. Yakhini (2000). Tissue dassification with gene expression profiles. In Proceeding of the fourth annual international conference on computational molecular biology, pp. 54-64
- Park, P.J., Pagano, M., Bonetti, M.: A nonparametric scoring algorithm for identifying informative genes from microarray data. Pac S ymp Biocomput :52-63, 2001.
- Golub T R, S Ionim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh M, Downing JR, Caligiuri MA, Bloomfield CD, and Lander 18 ES. Molecular dassification of cancer: dass discovery and dass prediction by gene expression monitoring. Science 286: 531-537, 1999.
- J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, and V. Vapnik. Feature selection for SVMs. In Sara A Solla, Todd K Leen, and Klaus-Robert Muller, editors, Advances in Neural Information Processing Systems 13. MIT Press, 2001. 11

- Motivating example
- Biological background
- Problem statement
- Current solution
- Proposed attack
- Results
- Future work

- Problem how to find best parameters (model selection, model based dustering, BIC)
- Combine good solutions
- Incorporate overall duster discriminative power into quality score
- Use of non integer error score
- ROC analysis

- Used dustering as a pre-filter for feature selection in order to get rid of redundant data
- Defined a quality measurement for dustering techniques
- Incorporated duster quality, size and statistical property into feature selection
- Improved LOOCV error for almost all feature sizes and different related tests

40 50 60 Number features

40/38

Alon Golub