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Motivation

• T hink of a complicated question:

• Will it be sunny tomorrow?

• How can you answer it correctly if you DO
NOT  know the answer?

• Ask around or better, make a poll
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Majority vote

• S tudent: I heard it is  supposed to be sunny

• T V: partly sunny

• Yourself: Cons idering the past few days and looking
outs ide I would guess  it will rain

• Weather.com: partly cloudy with scattered showers

• Result: 2 (sunny) : 2 (not sunny)

• Better: Use weights

• Idea: remove redundant answers  as  well
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Biological task

• F ind informative genes
• (e.g. genes which can discriminate

between cancer and normal)
• Use series  of microarrays
• Compare results  from
   different tis sues
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Microarrays
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F inding informative genes

• Microarrays  from different tis sues

cancerous normal
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Current solution

• Use a test s tatis tic on all genes

• Rank them
• S elect top k

Gene Tumor 1 Tumor 2 Tumor 3 Normal 1 Normal 2 Normal 3 t-test P-value

A 80 72 85 50 44 15 0.0448836
B 80 72 85 50 44 51 0.0048027
C 71 53 62 57 64 70 0.8024078
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Problem with current solution

• Each gene independently scored
• T op k ranking genes might be very s imilar and

therefore no additional information gain
• Reason: genes in s imilar pathways probably

all have very s imilar score
• What happens if several pathways involved in

perturbation but one has main influence
• Poss ible to describe this  pathway with fewer

genes
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Problem of redundancy

Accession 
Number Adenoma 1 Adenoma 2 Adenoma 3 Adenoma 4 Normal 1 Normal 2 Normal 3 Normal 4

t-test P-
value

AF001548 54.55 43.93 55.69 28.47 1354.36 1565.42 1459.48 1612.85 0.00012

M12125 35.9 46.64 35.73 35.27 642.46 577.81 580.5 707.35 0.00028

X13839 46.16 47.72 26.79 17 652.66 653.14 546.12 720.43 0.0003

X15882 13.52 15.73 27.32 16.15 209.3 209.64 221.24 267.43 0.0004

AB002533 659.25 958.82 812.77 786.24 407.91 558.33 529.68 379.84 0.00557

M93651 40.1 54.77 39.93 40.37 8.74 21.07 14.45 32.94 0.01038

AF001548 M12125 X13839 X15882 AB002533 M93651

AF001548 1

M12125 0.99 1

X13839 0.991 0.996 1

X15882 0.992 0.995 0.988 1

AB002533 -0.87 -0.898 -0.891 -0.888 1

M93651 -0.8 -0.802 -0.789 -0.776 0.808 1

Top 3 genes highly correlated!



                    13/38

Outline

• Motivating example example
• Biological background
• Problem statement
• Current solution
• Proposed attack
• Results
• Future work



                    14/38

Proposed solution

• S everal poss ible approaches
– next neighbors
– correlation
– euclidean dis tance

• Approach: instead use clustering
• Advantages us ing clustering techniques

– natural embedding
– many different dis tance functions poss ible
– different shapes, models  poss ible
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Hard clustering – k-means

Randomly assign
cluster to each point

Reassign points
to nearest center

Iterate until
convergence

Find centroids
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S oft - Fuzzy Clustering

instead of hard assignment,
probability for each cluster

Very similar to k-means but fuzzy softness factor
m (between 1 and infinity) determines how hard
the assignment has to be
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Fuzzy examples

Nottermans carcinoma dataset:

18 colon adenocarcinoma and 18 normal tissues

data from 7457 genes and ESTs

cluster all 36 tissues
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Fuzzy softness  1.3
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Fuzzy softness  1.25
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Fuzzy softness  1.2
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Fuzzy softness  1.15
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Fuzzy softness  1.05
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S electing genes from clusters

• T wo way filter: exclude redundant genes,
select informative genes

• Get as  many pathways as  poss ible
• Cons ider cluster s ize and quality as  well as

discriminative power
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How many genes per cluster?

• Constraints :
– minimum one gene per cluster

– maximum as many as  poss ible

• T ake genes proportionally to cluster quality and s ize of
cluster

• T ake more genes from bad clusters

• S maller quality value indicates tighter cluster

• Quality for k-means: sum of intra cluster dis tance

• Quality for fuzzy c-means: avg cluster membership
probability
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Which genes to pick?

• Choices:
– Genes closest to center
– Genes farthest away
– S ample according to probability function
– Genes with best discriminative power
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Comparison Evaluation

extract features

microarray data: n examples
with m expression levels each

classify held-out
sample

Repeat for each of
the n examples:
leave out one sample

test data train data

train learner

apply same
feature
extraction to
left out sample
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S upport Vector machines

• F ind separating hyperplane with maximal dis tance to closest
training example

• Advantages:
– avoids  overfitting
– can handle higher order interactions and noise us ing kernel functions

and soft margin
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Experimental setup

• Datasets :
– Alons Colon (40 tumor and 22 normal colon

adenocarcinoma tis sue samples)
– Golubs Leukemia (47 ALL, 25 AML)
– Nottermans Carcinoma and Adenoma (18

adenocarcinoma, 4 adenomas and paired normal
tis sue)

• Experimental setup:
– calculate LOOCV us ing S VM on feature subsets
– do this  for feature s ize 10-100 (in s teps of 10) and

1-30 clusters
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Results
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fuzzy c-means vs  k-means
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Different test-s tatis tics
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Comparing best results
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How about randomly choos ing?
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Future work

• Problem how to find best parameters  (model
selection, model based clustering, BIC)

• Combine good solutions
• Incorporate overall cluster discriminative

power into quality score
• Use of non integer error score
• ROC analys is
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S ummary

• Used clustering as  a pre-filter for feature
selection in order to get rid of redundant data

• Defined a quality measurement for clustering
techniques

• Incorporated cluster quality, s ize and s tatis tical
property into feature selection

• Improved LOOCV error for almost all feature
s izes  and different related tests
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Result Notterman
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Result Golub
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Result Alon
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Result Alon 2


