Finding disease specific alterations in the coexpression of genes

Dennis Kostka
dennis.kostka@molgen.mpg.de

Max Planck Institute for Molecular Genetics
differential coexpression

disease (cancer)
differential coexpression

- disease (cancer)
- underlying mol. mechanism
- changes in coregulation of genes
- alterations in expression profiles
differential coexpression

disease (cancer)

underlying mol. mechanism

changes in coregulation of genes

alterations in expression profiles

up / down regulation
loss of coherent expression

differential gene expression
differential coexpression
differential coexpression

(a) diff. coexpression

(b) diff. expression
finding coexpression patterns

- differential expression cannot be analyzed gene by gene
- we need to take into account all the possible subsets of genes
finding coexpression patterns

- differential expression cannot be analyzed gene by gene
- we need to take into account all the possible subsets of genes
- therefore we need an efficient screening / scoring method:
 - we propose an additive model for scoring differential coexpression
 - this model allows for a fast search heuristic
outline

✔ introduction
 • a search algorithm for differentially coexpressed groups of genes
 • application of the method to
 - simulated data (proof of concept)
 - real data from a clinical study

• significance and comparison
• summary
coexpression patterns

Assume \(A = \{ a_{ij} \} \) is the usual expression matrix:

\[
a_{ij}
\]

samples
genes

Berlin, Feb. 16 2004 – p.6/26
coexpression patterns

Assume $A = \{a_{ij}\}$ is the usual expression matrix:

$$a_{ij}$$

<table>
<thead>
<tr>
<th>gA</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>gB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
coexpression patterns

Assume \(A = \{a_{ij}\} \) is the usual expression matrix:
coexpression patterns

Assume \(A = \{a_{ij}\} \) is the usual expression matrix:

.. image:: image.png
 :alt: Coexpression patterns diagram
additive model

An additive model assumes the expression matrix \(\{a_{ij}\} \) composed of *row effects* \(b_i \), *column effects* \(c_j \) and of an overall contribution \(d \) :

\[
a_{ij} = b_i + c_j + d + \epsilon_{ij}
\]
additive model

An additive model assumes the expression matrix \(\{a_{ij}\} \) composed of row effects \(b_i \), column effects \(c_j \) and of an overall contribution \(d \) :

\[
a_{ij} = b_i + c_j + d + \epsilon_{ij}
\]

We estimate the parameters as follows:

\[
\begin{align*}
b_i & \leftarrow a_{i\cdot} \quad \text{mean expression of gene } i \\
c_j & \leftarrow a_{\cdot j} \quad \text{mean expression of patient } j \\
d & \leftarrow a_{\cdot \cdot} \quad \text{overall mean of expression}
\end{align*}
\]
scoring coexpression

Score a group of genes I by their mean squared residuals. Say, we focus on $|J|$ patients:

$$S'(I, J) = \frac{1}{(|I| - 1)(|J| - 1)} \sum_{I,J} (a_{ij} - a_i - a_j + a_{..})^2$$
scoring coexpression

Score a group of genes I by their mean squared residuals. Say, we focus on $|J|$ patients:

$$S'(I, J) = \frac{1}{(|I| - 1)(|J| - 1)} \sum_{i,j} (a_{ij} - a_{i\bullet} - a_{\bullet j} + a_{\bullet\bullet})^2$$

In terms of coexpression that means the following:

- high coexpression \rightarrow low S'
- low coexpression \rightarrow high S'
differential coexpression

To score differential coexpression with respect to two groups \((G_1 \text{ and } G_2)\) of patients take the quotient of the two coexpression scores:

\[
S(I) = \frac{S'(I, J_1)}{S'(I, J_2)}
\]

if the genes in \(I\) are more coexpressed in group \(G_1\) than in group \(G_2\). This attribute renders a group of genes interesting.
differential coexpression

To score differential coexpression with respect to two groups (G_1 and G_2) of patients take the quotient of the two coexpression scores:

$$S(I) = \frac{S'(I, J_1)}{S'(I, J_2)}$$

$S(I)$ is low, if the genes in I are more coexpressed in group G_1 than in group G_2.

This attribute renders a group of genes interesting
search for low scoring gene sets

- We need to identify low scoring sets of genes
- The number of all possible subsets of genes too high for exhaustive search
search for low scoring gene sets

- We need to identify low scoring sets of genes
- The number of all possible subsets of genes too high for exhaustive search
- We resort to a heuristic:
 - take a random starting point
 - greedy stochastic downhill search
 - S lets you efficiently calculate downhill directions
search heuristic

- Neighborhood structure:
 Neighboring sets differ only by a single gene.
- Given a group of genes I we wish to exclude gene k:

\[
S(I) \propto \frac{\text{mean}_{I,G_1}(\text{res})}{\text{mean}_{I,G_2}(\text{res})} = \frac{A_k^{(1)} + B_k^{(1)}}{A_k^{(2)} + B_k^{(2)}}
\]
search heuristic

- Neighborhood structure:
 Neighboring sets differ only by a single gene.
- Given a group of genes I we wish to exclude gene k:

$$S(I) \propto \frac{\text{mean}_{I,G_1}(\text{res})}{\text{mean}_{I,G_2}(\text{res})} = \frac{A_k^{(1)} + B_k^{(1)}}{A_k^{(2)} + B_k^{(2)}}$$

and modulo refitting of the parameters:

$$S(I \setminus k) < S(I) \quad \text{iff} \quad \frac{B_k^{(1)}}{B_k^{(2)}} > S(I)$$
search heuristic

- Given a random set I we screen $\mathcal{N}(I)$ via the B_k
- We include / exclude a β–fraction of the genes that meet the criterion for a reduced score
search heuristic

- Given a random set I we screen $\mathcal{N}(I)$ via the B_k
- We include / exclude a β–fraction of the genes that meet the criterion for a reduced score.
- To tune the size of the finally found gene sets we introduce a tuning parameter α.
- The final criterion for including or excluding a gene now reads:

$$C_k(\alpha) = \frac{B_k^{(1)}}{B_k^{(2)}} \pm \{ \alpha \cdot S(I) + (1 - \alpha) \cdot 1/|I| \} > 0$$
algorithm

initialize I randomly
$G \leftarrow \emptyset$

while counter < maxiter do
 for all $I' \in \mathcal{N}(I)$ do
 $k \leftarrow I' \triangle I$
 if $C_k(\alpha) > 0$ then
 $G \leftarrow G \cup \{k\}$
 if $G \neq \emptyset$ then
 $n \leftarrow \max\{\lfloor \beta \cdot |G| \rfloor, 1\}$
 $g \leftarrow$ uniform sample of size n from G
 $I \leftarrow I \triangle g$
 else
 return I
 counter ← counter + 1
 return I
outline

✔ introduction
✔ a search algorithm for differentially coexpressed groups of genes
 • application of the method to
 - simulated data (proof of concept)
 - real data from a clinical study
 • significance and comparison
 • summary
simulated data

- Two groups of 10 samples each
- 120 genes:
 - 20 genes drawn according to the additive model with $\epsilon \sim \mathcal{N}(0, \sigma)$
 - 100 genes drawn independently $\sim \mathcal{N}(0, 1)$

Berlin, Feb. 16 2004 – p.15/26
simulated data

- Two groups of 10 samples each
- 120 genes:
 - 20 genes drawn according to the additive model with $\epsilon \sim \mathcal{N}(0, \sigma)$
 - 100 genes drawn independently $\sim \mathcal{N}(0, 1)$
- strength of signal relative to noise
 - $\sigma = 1/10$ low noise
 - $\sigma = 1/4$ medium noise
 - $\sigma = 1$ high noise
simulated data – results

[Graph showing the relationship between tuning parameter α and the number of genes in I_{final}, with curves for low, medium, and high noise conditions.]

- Low noise
- Medium noise
- High noise

Berlin, Feb. 16 2004 – p.16/26
clinical data

- expression levels in bone marrow from children with acute leukemia
- 327 samples divided into subgroups according to characteristic cytogenetic aberrations, including one normal group
- we compare all subgroups against the normal group
clinical data

- expression levels in bone marrow from children with acute leukemia
- 327 samples divided into subgroups according to characteristic cytogenetic aberrations, including one normal group
- we compare all subgroups against the normal group
- scaling of the groups is necessary, otherwise the algorithm does not discover coexpression patterns
clinical data

- expression levels in bone marrow from children with acute leukemia
- 327 samples divided into subgroups according to characteristic cytogenetic aberrations, including one normal group
- we compare all subgroups against the normal group
- scaling of the groups is necessary, otherwise the algorithm does not discover coexpression patterns
- as an example we compare the philadelphia positive (t(9;22)+, BCR-ABL+) to the cytogenetically normal leukemias
clinical data – results

a set of genes displaying differential coexpression:
in the *norm* group the genes display a coherence they lose in the *phil+* group.
outline

✓ introduction
✓ a search algorithm for differentially coexpressed groups of genes
✓ application of the method to
 - simulated data (proof of concept)
 - real data from a clinical study
 • significance and comparison
 • summary
significance

- are those patterns artifacts of the high dimensionality of the data?
significance

- are those patterns artifacts of the high dimensionality of the data?

- permutation procedure:
 - assume that coexpressed genes do not exist, i.e. take all genes are independent
 - we sample from this null hypothesis by (group wise) shuffling the expression values for each gene
 - empirical p-value is 0.001 for 1000 draws
significance

- are those patterns artifacts of the high dimensionality of the data?
- permutation procedure:
 - assume that coexpressed genes do not exist, i.e. take all genes are independent
 - we sample from this null hypothesis by (group wise) shuffling the expression values for each gene
 - empirical p–value is 0.001 for 1000 draws
- it’s unlikely we are seeing a chance artifact
comparison

- We illustrate that two widespread approaches
 - ranking genes by t-scores
 - hierarchical clustering

would not identify the same gene pattern we found
comparison

- We illustrate that two widespread approaches
 - ranking genes by \textit{t–scores}
 - \textit{hierarchical clustering}
 would not identify the same gene pattern we found
- for the \textit{t–score}, the ranks of 'our' genes are from 106 to 6114, with a mean of 2340.
comparison

- We illustrate that two widespread approaches
 - ranking genes by t-scores
 - hierarchical clustering
 would not identify the same gene pattern we found
- for the t-score, the ranks of 'our' genes are from 106 to 6114, with a mean of 2340.
- for clustering we present two dendrograms.
 - we form 100 representative clusters in a first aggregation step
 - we use average linkage and euclidean distance
comparison

unscaled data

scaled data
outline

✔ introduction
✔ a search algorithm for differentially coexpressed groups of genes
✔ application of the method to
 - simulated data (proof of concept)
 - real data from a clinical study
✔ significance and comparison
 • summary
wrap up

we have ...

- addressed the problem of detecting *sets of differentially coexpressed genes*
- described a heuristic algorithm to find them
- demonstrated they exist in real data
- illustrated that our method can be used to complement other exploratory analysis tools
biological meaning?

- any interpretation of exploratory analyses is speculative
- two most prominent different coexpression patterns contain several genes of the proteasome–ubiquitin pathway
- for some cancer types it has been shown that inhibition of proteasome activity results in apoptosis
- further investigation necessary
thank you