Detection of New Transcripts with Oligonucleotide Arrays

How can one use the plethora of expression data?

Presented by Stefan Röpcke
Thesis - Overview

Data analysis of Affymetrix-Chips
(Normalisation, data condensation, DB)

Cancer research
- reanalysis of public raw data
- Bhattacharjee et al (PNAS 2001)
- Garber et al (PNAS 2001)
- comparison of technologies
- comparison to literature data

Interdependencies of gene structure and expression
- yeast, fly
- reanalysis of public data

Transcript detection
- analysis of expression of the same genomic locus
- evidence for antisense transcripts
- artefact or biology?
Oligo Array Experiment

Extraction of poly-A-RNA

Amplification and labeling of the RNA

Fragmentation, hybridisation and staining
Overview – Data Analysis

1. Feature level normalisation: offset substraction, division by the median

2. Data condensation:

Wilcoxon test
• nonparametric, paired test
• tests whether the PM is brighter than the MM values

Third-Quartile-Method
75% percentile of the matching oligos (PM)

Result: ONE representative expression value and ONE detection score per probeset and chip
Implementation & Storage

CEL-files:
- an intensity and a deviation value for each feature

Data about:
- the sequences
- the experiments
- the samples

- Quality control
- Normalization

- Wilcoxon test
- expression value calculation

Perl database interface

expression database

metagen
Data analysis of Affymetrix-Chips
(Normalisation, data condensation, DB)

Cancer research
- reanalysis of public raw data
- Bhattacharjee et al (PNAS 2001)
- Garber et al (PNAS 2001)
- comparison of technologies
- comparison to literature data

Interdependencies of gene structure and expression
- yeast, fly
- reanalysis of public data

Transcript detection
- analysis of expression of the same genomic locus
- evidence for antisense transcripts
- artefact or biology?
Expression Analysis of Lung Cancer Samples
Comparison of Oligo and cDNA Array Data

Squamous cell carcinoma versus normal lung

Adenocarcinoma versus normal lung

> 0: higher in tumor, < 0: lower in tumor

X-Axis: Average LogRatio on cDNA-Arrays

Average LogRatio on Oligo-Arrays

RED points: most “differential“ genes in one of the data sets.
Thesis - Overview

Data analysis of Affymetrix-Chips
(Normalisation, data condensation, DB)

Cancer research
- reanalysis of public raw data
- Bhattacharjee et al (PNAS 2001)
- Garber et al (PNAS 2001)
- comparison of technologies
- comparison to literature data

Interdependencies of gene structure and expression
- yeast, fly
- reanalysis of public data
- avg expression vs gene length
- length of introns/exons

Transcript detection
- analysis of expression of the same genomic locus
- evidence for antisense transcripts
- artefact or biology ?
Highly expressed Genes are shorter

Yeast expression data set from Cho et al [PNAS 1998]

6200 predicted yeast genes

2820 annotated genes only (MIPS, SGD)

Length distribution of non annotated genes
Detection of Putative Transcripts

- Analysis of probesets from the same locus
- Evidence of antisense transcripts
- ? Real transcripts or technical artefact ?
Data Set

Sequence sets on metaGen chip I
• 6117 probesets (20 oligos PM-perfectly matching 25 bases + 20 MM)
• circa 4000 different genes
• 1066 Sense-antisense sequence pairs
• 588 CDS-UTR sequence pairs

Subset used for this presentation
• Blast against RefSeq database (NCBI)
• Criterion: exactly one almost complete hit (at least 18 oligos)
-> 102 Sense-antisense sequence pairs

310 Hybridisations with poly(A+)-RNA
• 250 Samples from cancer patients
• 60 Samples from cell lines
How to compare two different probesets on one chip? *(sense vs antisense probeset)*

Data Analysis

- **Third-Quartile-Method**
 - 75% percentile of the matching oligos (PM)

- **Wilcoxon test**
 - nonparametric, paired test
 - tests whether the PM is brighter than the MM values

- **Detection Call**
 - p-Value > 0.05: **absent**
 - p-Value < 0.05: **present**
Counting Schema

Reverse complement

<table>
<thead>
<tr>
<th></th>
<th>present</th>
<th>absent</th>
</tr>
</thead>
<tbody>
<tr>
<td>present</td>
<td>5</td>
<td>255</td>
</tr>
<tr>
<td>absent</td>
<td>3</td>
<td>47</td>
</tr>
</tbody>
</table>

Forward strand

<table>
<thead>
<tr>
<th>HIT ID</th>
<th>Count experiments</th>
<th>ORI</th>
<th>HIT HEADER</th>
</tr>
</thead>
<tbody>
<tr>
<td>NM_017657</td>
<td>47 3 250</td>
<td>10 +/-</td>
<td>hypothetical protein FLJ20080 (FLJ20080), mRNA</td>
</tr>
<tr>
<td>NM_022473</td>
<td>47 3 255</td>
<td>5 +/-</td>
<td>zinc finger protein 106 (ZFP106), mRNA</td>
</tr>
<tr>
<td>NM_019000</td>
<td>45 0 235</td>
<td>30 +/-</td>
<td>hypothetical protein (FLJ20152), mRNA</td>
</tr>
</tbody>
</table>

* p_a means present sense probeset and absent antisense probeset
Contradictory Chip Results to the Annotation out of 102 Pairs

RED marked entries contrary to the expectations

<table>
<thead>
<tr>
<th>HIT ID</th>
<th>Count experiments</th>
<th>ORI</th>
<th>Mean of F-R</th>
<th>HIT HEADER</th>
</tr>
</thead>
<tbody>
<tr>
<td>NM_005033</td>
<td>a_a 13 p_a 187 p_p 18</td>
<td>+/+</td>
<td>0.6110</td>
<td>polymyositis/scleroderma autoantigen 1 (75kD) (PMSCL1)</td>
</tr>
<tr>
<td>NM_014943</td>
<td>183 0 127 p_p 0</td>
<td>+/+</td>
<td>0.2265</td>
<td>KIAA0854 protein (KIAA0854)</td>
</tr>
<tr>
<td>NM_015310</td>
<td>282 5 23 p_p 0</td>
<td>+/+</td>
<td>-1.6180</td>
<td>KIAA0942 protein (KIAA0942)</td>
</tr>
<tr>
<td>NM_031431</td>
<td>300 0 10 p_p 0</td>
<td>+/+</td>
<td>1.6951</td>
<td>tethering factor SEC34 (SEC34)</td>
</tr>
<tr>
<td>NM_022497</td>
<td>136 159 0 15</td>
<td>+/-</td>
<td>3.4254</td>
<td>mitochondrial ribosomal protein S25 (MRPS25)</td>
</tr>
<tr>
<td>NM_032659</td>
<td>219 89 2 0</td>
<td>+/-</td>
<td>1.6605</td>
<td>hypothetical protein MGC11138 (MGC11138)</td>
</tr>
<tr>
<td>NM_014654</td>
<td>252 58 0 0</td>
<td>+/-</td>
<td>-0.3542</td>
<td>KIAA0468 gene product (KIAA0468)</td>
</tr>
<tr>
<td>NM_024709</td>
<td>296 14 0 0</td>
<td>+/-</td>
<td>-1.2547</td>
<td>hypothetical protein FLJ14146 (FLJ14146)</td>
</tr>
</tbody>
</table>

p_a means present sense probeset and absent antisense probeset
Evidence for Antisense Transcripts

RED marked entries contrary to the expectations

<table>
<thead>
<tr>
<th>HIT ID</th>
<th>Count experiments</th>
<th>ORI</th>
<th>mean of F-R</th>
<th>HIT HEADER</th>
</tr>
</thead>
<tbody>
<tr>
<td>NM_018011</td>
<td>a_a p_p p_p_p</td>
<td>10</td>
<td>24 274</td>
<td>+/- 6,2635 hypothetical protein FLJ10154 (FLJ10154)</td>
</tr>
<tr>
<td>NM_016127</td>
<td>a_p p_p</td>
<td>3</td>
<td>34 270</td>
<td>+/- 9,8122 HSPC035 protein (LOC51669)</td>
</tr>
<tr>
<td>NM_018509</td>
<td>a_p p_p</td>
<td>9</td>
<td>32 266</td>
<td>+/- 9,4732 hypothetical protein PRO1855 (PRO1855)</td>
</tr>
<tr>
<td>NM_006526</td>
<td>a_p p_p</td>
<td>26</td>
<td>37 228</td>
<td>+/- 1,0152 zinc finger protein 217 (ZNF217)</td>
</tr>
<tr>
<td>NM_018975</td>
<td>a_p p_p</td>
<td>4</td>
<td>97 209</td>
<td>+/- 5,0257 TRF2-interacting telomeric RAP1 protein (RAP1)</td>
</tr>
<tr>
<td>NM_016629</td>
<td>a_p p_p</td>
<td>19</td>
<td>98 191</td>
<td>+/- 7,6667 hypothetical protein (LOC51323)</td>
</tr>
<tr>
<td>NM_024026</td>
<td>a_p p_p</td>
<td>35</td>
<td>65 178</td>
<td>+/- 1,4489 mitochondrial ribosomal protein 63 (MRP63)</td>
</tr>
<tr>
<td>NM_016617</td>
<td>a_p p_p</td>
<td>8</td>
<td>125 175</td>
<td>+/- 3,4644 hypothetical protein (BM-002)</td>
</tr>
<tr>
<td>NM_021238</td>
<td>a_p p_p</td>
<td>5</td>
<td>146 158</td>
<td>+/- 6,7714 TERA protein (TERA)</td>
</tr>
<tr>
<td>NM_030912</td>
<td>a_p p_p</td>
<td>7</td>
<td>147 155</td>
<td>+/- 6,247 tripartite motif protein TRIM8 (TRIM8)</td>
</tr>
<tr>
<td>NM_022349</td>
<td>a_p p_p</td>
<td>38</td>
<td>81 150</td>
<td>+/- 2,8373 CD20-like precusor (LOC64166)</td>
</tr>
<tr>
<td>NM_006283</td>
<td>a_p p_p</td>
<td>14</td>
<td>156 138</td>
<td>+/- 9,6877 transforming, acidic coiled-coil containing prot, 1 (TACC1)</td>
</tr>
<tr>
<td>NM_015385</td>
<td>a_p p_p</td>
<td>101</td>
<td>43 132</td>
<td>+/- 1,7782 SH3-domain protein 5 (ponsin) (SH3D5)</td>
</tr>
<tr>
<td>NM_014050</td>
<td>a_p p_p</td>
<td>67</td>
<td>64 124</td>
<td>+/- 2,373 mitochondrial ribosomal protein L42 (MRPL42)</td>
</tr>
<tr>
<td>NM_023037</td>
<td>a_p p_p</td>
<td>86</td>
<td>91 91</td>
<td>+/- 1,558 putative gene product (13CDNA73)</td>
</tr>
<tr>
<td>NM_022781</td>
<td>a_p p_p</td>
<td>25</td>
<td>50 78</td>
<td>+/- 1,6658 hypothetical protein FLJ21343 (FLJ21343)</td>
</tr>
<tr>
<td>NM_007106</td>
<td>a_p p_p</td>
<td>36</td>
<td>78 78</td>
<td>+/- 2,0472 ubiquitin-like 3 (UBL3)</td>
</tr>
<tr>
<td>NM_016052</td>
<td>a_p p_p</td>
<td>1</td>
<td>7 77</td>
<td>+/- -1,7541 CGI-115 protein (LOC51018)</td>
</tr>
<tr>
<td>NM_032323</td>
<td>a_p p_p</td>
<td>282</td>
<td>13 15</td>
<td>+/- 2,2953 hypothetical protein MGC13102 (MGC13102)</td>
</tr>
<tr>
<td>NM_020188</td>
<td>a_p p_p</td>
<td>7</td>
<td>2 162</td>
<td>+/- -1,0526 DC13 protein (DC13)</td>
</tr>
<tr>
<td>NM_015070</td>
<td>a_p p_p</td>
<td>39</td>
<td>93 147</td>
<td>+/- 0,6826 KIAA0853 protein (KIAA0853)</td>
</tr>
<tr>
<td>NM_017689</td>
<td>a_p p_p</td>
<td>62</td>
<td>16 111</td>
<td>+/- -7,3946 hypothetical protein FLJ20151 (FLJ20151)</td>
</tr>
</tbody>
</table>

p_a means **present** sense probeset and **absent** antisense probeset

22 out of 102
Correlation of Expression Values of Sense and Antisense Probeset

Few Cases
similarly expressed annotated and antisense strand

Most Cases
higher and more variable expressed annotated strand
Biological Phenomenon or Technical Artefact

Sense-Antisense sequence pairs (total 102)

1. Reflection of the annotation in most pairs
2. **BUT** Contradictory chip results in 29 pairs:
 - 21 pairs of probesets (sense-antisense) are together present in more than 76 out of 310 experiments.
 - Further 8 pairs: contradictory chip results to the annotated orientation

In situ hybridization: Sense probe as standard control

bt12 Antisense (14885/94) bt12 Sense (14885/94)
No Systematic Effect of the General Quality of Experiments

Table of Indicators for the Extremes

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Counts of</th>
<th>Background</th>
<th>Range of values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Negative probe pairs</td>
<td>Saturated</td>
<td>Present calls</td>
</tr>
<tr>
<td>No_69_1_3</td>
<td>41804</td>
<td>1546</td>
<td>2394</td>
</tr>
<tr>
<td>No_138_1_1</td>
<td>41927</td>
<td>1928</td>
<td>2266</td>
</tr>
<tr>
<td>No_184_1_1</td>
<td>44132</td>
<td>328</td>
<td>2217</td>
</tr>
<tr>
<td>No_185_1_1</td>
<td>44918</td>
<td>330</td>
<td>2120</td>
</tr>
<tr>
<td>No_242_1_1</td>
<td>42214</td>
<td>1043</td>
<td>2389</td>
</tr>
<tr>
<td>No_254_1_1</td>
<td>41582</td>
<td>1202</td>
<td>2487</td>
</tr>
<tr>
<td>mdamb231_p5</td>
<td>40594</td>
<td>4449</td>
<td>2480</td>
</tr>
<tr>
<td>B61_1_1</td>
<td>41547</td>
<td>1478</td>
<td>2469</td>
</tr>
<tr>
<td>No7_3rd_15ug</td>
<td>53027</td>
<td>2</td>
<td>1297</td>
</tr>
<tr>
<td>No16_3rd_15ug</td>
<td>55847</td>
<td>4</td>
<td>983</td>
</tr>
<tr>
<td>No_27_1_1</td>
<td>50842</td>
<td>530</td>
<td>1526</td>
</tr>
<tr>
<td>No_78_1_1</td>
<td>55829</td>
<td>190</td>
<td>776</td>
</tr>
<tr>
<td>no_203x_1_2</td>
<td>50574</td>
<td>1</td>
<td>1526</td>
</tr>
<tr>
<td>C32_1_1</td>
<td>51371</td>
<td>124</td>
<td>1414</td>
</tr>
<tr>
<td>Cal6_14rere</td>
<td>51750</td>
<td>32</td>
<td>1433</td>
</tr>
<tr>
<td>Cal6_14___06_10</td>
<td>52238</td>
<td>20</td>
<td>1326</td>
</tr>
<tr>
<td>Cal6_7rere_06_10</td>
<td>51885</td>
<td>1</td>
<td>1346</td>
</tr>
</tbody>
</table>
No Systematic Effect of GC-Content

Number of samples (310) in which sense and antisense probes detect a signal.
No Systematic Effect of Preamplification

Total 247

Portion of TISSUE samples in which sense and antisense probes detect a signal (preamplified)

Total 63

Each red star represents one RefSeq transcript

Portion of Cell Line samples in which sense and antisense probes detect a signal
Potential Binding Sites for the T7-(dT)24 Primer

<table>
<thead>
<tr>
<th>ID</th>
<th>oligo(dT)</th>
<th>end_pos</th>
</tr>
</thead>
<tbody>
<tr>
<td>NM_032323</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>NM_030912</td>
<td>TTTTCCCTTTTGGATTTTTGTTTTTGGCTTTTTGATTTTTTTTTATT</td>
<td>800</td>
</tr>
<tr>
<td>NM_024026</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>NM_023037</td>
<td>TTTTCTT</td>
<td>600</td>
</tr>
<tr>
<td>NM_022781</td>
<td>TGGGTGGTATATTTACTGCCTTTTCTTTTTAAATTTTTTGTTT</td>
<td>1500</td>
</tr>
<tr>
<td>NM_022349</td>
<td>TTTTTTTTT</td>
<td>900</td>
</tr>
</tbody>
</table>
| NM_021238 | TT
Potential Artefacts of RNA preparation

Strongest hypothesis (known in EST-data)
Result of FASTA Search
Search for U-stretches in RefSeq-mRNA (FAST-score > 25)

U-stretch 5' of the oligo set

U-stretch 3' of the oligo set

Oligoset

total 102

selected 21

remaining 81

Oligoset

U-stretch 5'

U-stretch 3'

U-stretch 5'

U-stretch 3'

57.1%

71.4%

30.9%

49.4%
Sequence Selection for Wet Experiments
Hunting for antisense transcripts

- **Sequence Selection**
 - DD3, ZNF217, Ponsin, MRPL42 - most differential
 - CGI-115, DC13, ZNF217 - F-R plot
 - FLJ10154, HSPC035, PRO1855 - highest pp
 - PRO1855, HSPC035, MRP63 - no U-stretch
 - β-Actin, GapDH (st present in 97.4%, 58.5%) - well known?
 - CGI-115 - contrary to annotation

- **Rasterfahndung**

- **OPN3/KMO** (positive control)

NO hints for systematic technical problems
DC13 – Unknown Gene
One of the best candidates

Genomische Sequenz: NT_010380.7

mRNA: NM_020188 (706 bp)

Primer: 568-545
Primer: 34-53

Exon 1
Exon 2
Exon 3
Exon 4

140
256
328
706

Genotype Sequenz: NT_010380.7

mRNA: NM_020188 (706 bp)

Primer: 34-53
Primer: 568-545

EST data: partial overlap with BM039 (unknown gene antisense)
Confirmation of the Chip Results
Hybridisation of labeled oligos on a multiple tissue northern

• Oligo-Selection from the probeset and non overlapping
 -> per transcript 7-10 Oligos (25 bases long)
• radioactive end labeling & hybridisation

3 out 4 examples where confirmed
positive control did not workc

Specificity ?
RNA In Situ Hybridisation (DC13)

Breast cancer tissue, resected and paraffin embedded

DC13 Antisense Sonde
(Sense wird detektiert.)

DC13 Sense Sonde
(Antisense wird detektiert.)

1 strong, 2 weak signals for sense and antisense out 4
Summary & Perspectives

Findings

• Antisense transcripts for a high percentage of genes
• NO systematic technical error found
• (pending) Confirmation of the transcripts by RPA

If TRUE

• In-depth analysis of EST-data
• Design of an antisense array
Acknowledgement

Dr. Mennerich (project planning, lab work)
Dr. Pilarsky (Chip Lab)
Eva Klopacki
Anke Vogel
Nicol Creutzburg (ISH)

metaGen