

Classification of biochemical texts using statistical learning methods

An Overview

Sebastian Schmeier

- Motivation
- Background
- Aim
- Proceeding

- Motivation
- Background
- Aim
- Proceeding

In Silico Modelling

Modelling of biological Systems in silico:

- Mathematical Models
- Kinetics (Michaelis-Menten, Hill,...)
 - → Kinetic Data

Kinetic Data

Constants

(e.g. Michaelis-Menten-Constant, Hill-Coefficient, kcat, vmax)

This data is measured in elaborate experiments, that we can't do ourselves

→ money, time, employees

Literature Research

- Searching such kinetic data in existing literature (here: Online-Journals)
- Only few data in a huge literature diversity
- To make a decision with regard to the relevance of a particular article
 - **→** Automatic Process?

- Motivation
- Background
- Aim
- Proceeding

Already done

- Python Program
 - Load article randomized (PDF)
 - 13 Online-Journals
 - PDF → Text
 - Simple full text keyword search

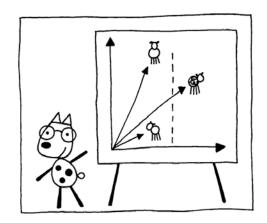
The Data Set

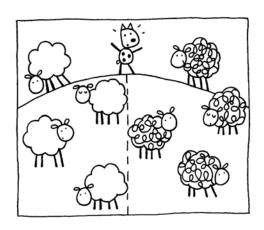
- Loaded and searched 5000 articles
- Found relevant keywords in 900 articles
- After 3 months of reading:
 - 100 articles → good
 - 800 articles → bad

- Motivation
- Background
- Aim
- Proceeding

Bachelor-Thesis

 Building on this data set, an algorithm will be implemented, which can hopefully classify any new text with regard to its relevance for kinetic modells.




- Motivation
- Background
- Aim
- Proceeding

SVMs

- SVM (support vector machine)
- A statistical learning method to train a classifier, which makes a decision on certain problems.

SVMs

- A feature vector represents an object, that has to be classified.
- Based on vector similarities, which means the distance between them, objects are clustered into different classes.
- Then a new object can be assigned to one of the classes.

Applied to this problem

- 1. A word vector has to be build, which contains all unique words of all 5000 articles.
- 2. For each of the 900 known articles a *term frequency vector* (tf) has to be build, that contains the absolute number of words in this article.
 - → feature vector

Applied to this problem

- 3. A document frequency vector (df) has to be build, that indicates in how many articles a specific word appears.
- 4. tf's have to be weigthed

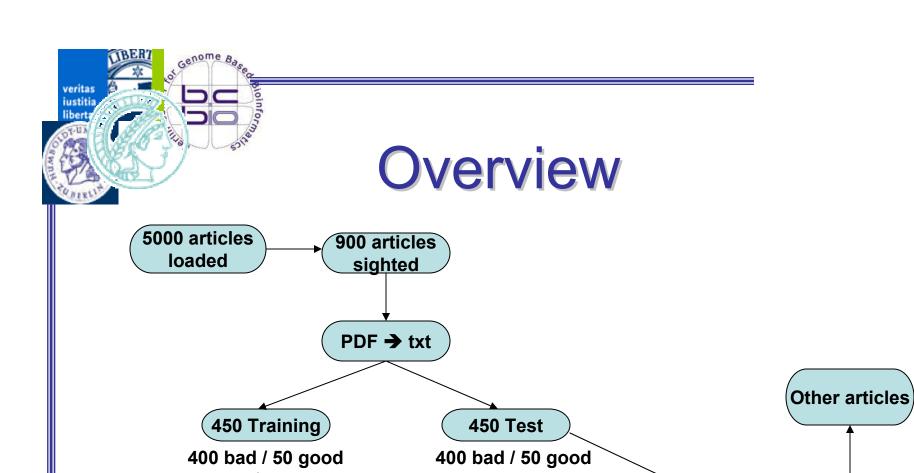
$$tf = 1 + log(tf_{t,d})$$

idf (inverse document frequency) = $log(N / df_t)$

NLP

To obtain a word vector and the term frequency vectors, methods of Natural Language Processing (**NLP**) come into play:

- Tokenization
- Part-of-Speech-Tagging
- Stemming



TreeTagger

- A tool for annotating text.
- The input is standard text.
- The output:

```
which
        WDT
                which
        VBZ
is
                be
thought VVN
                think
        TO
to
                to
        VB
be
                be
the
        DT
                the
greatest JJS
                great
```

Institute for Computational Linguistics of the University of Stuttgart

tf*idfs

SVM_light

TreeTagger

Model

