Classification of biochemical texts using statistical learning methods

An Overview

Sebastian Schmeier
• Motivation
• Background
• Aim
• Proceeding
• Motivation
• Background
• Aim
• Proceeding
In Silico Modelling

Modelling of biological Systems
in silico:

- Mathematical Models
- Kinetics (Michaelis-Menten, Hill,…)

⇒ Kinetic Data
Kinetic Data

Constants
(e.g. Michaelis-Menten-Constant, Hill-Coefficient, \(k_{cat}\), \(v_{max}\))

This data is measured in elaborate experiments, that we can’t do ourselves
\(\rightarrow\) money, time, employees
• Searching such kinetic data in existing literature (here: Online-Journals)
• Only few data in a huge literature diversity
• To make a decision with regard to the relevance of a particular article

➔ Automatic Process?
• Motivation
• **Background**
• Aim
• Proceeding
Already done

- Python Program
 - Load article randomized (PDF)
 - 13 Online-Journals
 - PDF ➔ Text
 - Simple full text keyword search
The Data Set

- Loaded and searched **5000** articles
- Found relevant keywords in **900** articles
- After 3 months of reading:
 - **100** articles ➔ good
 - **800** articles ➔ bad
• Motivation
• Background
• **Aim**
• Proceeding
Bachelor-Thesis

- Building on this data set, an algorithm will be implemented, which can hopefully classify any new text with regard to its relevance for kinetic models.
• Motivation
• Background
• Aim
• Proceeding
SVMs

- SVM (support vector machine)
- A statistical learning method to train a classifier, which makes a decision on certain problems.
SVMs

• A feature vector represents an object, that has to be classified.

• Based on vector similarities, which means the distance between them, objects are clustered into different classes.

• Then a new object can be assigned to one of the classes.
Applied to this problem

1. A word vector has to be build, which contains all unique words of all 5000 articles.
2. For each of the 900 known articles a term frequency vector (tf) has to be build, that contains the absolute number of words in this article.

→ feature vector
Applied to this problem

3. A **document frequency vector** (df) has to be build, that indicates in how many articles a specific word appears.

4. tf’s have to be weighed:

 \[\text{tf*idf} \]

 \[\text{tf} = 1 + \log(\text{tf}_{t,d}) \]

 \[\text{idf (inverse document frequency)} = \log(N / \text{df}_t) \]
To obtain a word vector and the term frequency vectors, methods of Natural Language Processing (NLP) come into play:

- Tokenization
- Part-of-Speech-Tagging
- Stemming
TreeTagger

- A tool for annotating text.
- The input is standard text.
- The output:

 which WDT which
 is VBZ be
 thought VVN think
 to TO to
 be VB be
 the DT the
 greatest JJS great

Institute for Computational Linguistics of the University of Stuttgart
http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/DecisionTreeTagger.html
Overview

5000 articles loaded

900 articles sighted

PDF → txt

450 Training
400 bad / 50 good

450 Test
400 bad / 50 good

TreeTagger

tf*idfs

SVM_light

Model

Other articles