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Motivation: Gene regulatory networks

Cellular processes lead to complex dependency structure in gene expressions
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Microarray experiment

transcription ' .
Central dogma: | DNA |f2MSCrPtON| RN A | translation | o ein

e explore transcript abundance, taken as a proxy for gene expression
e hybridization properties

e gene expression profile data: measurements under different conditions
(certain points in time, treatments, tissues, etc.)
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Reverse engineering problem

e Given a set of measurements (=multiple time series data), what can we
deduce about the underlying network structure?

In particular:

Dimensionality problem: data feature space >> sample size

e Challenging problem whose tractability is controversially discussed (e.g.
Friedman et al. (2000) were the first to propose the use of Bayesian
networks)

e \What can we expect from available microarray data?
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Graphical models

e Graphical models provide appropriate statistical framework:

— association structure between multiple interacting quantities
— distinguish between direct and indirect correlations

— visualization in graph G = (V, E)

— concept of conditional independence

e There are many different graphical models:

— undirected vs. directed models
— dynamic vs. static models
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Some Definitions

Sample covariance matrix (with empirical mean ji; =7, = Zk | Yki)
|
b1y = sy = 9 (ki T s ~ ) (10,7 <G)
k=1

Empirical correlation coefficient matrix according to Bravais-Pearson
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Genetic Correlations

Possible reasons for high pairwise correlation coefficient:

e direct interaction
e indirect interaction
e regulation by common gene

Not accounting for intermediates can lead to considerably biased
conclusions (pseudo correlations, hidden correlations)!

We are mainly interested in direct interactions.
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Graphical Gaussian models

We focus in this talk on a very simple class of graphical models:
Undirected graphical Gaussian models (Dempster, 1972; Whittaker, 1990)

e Starting point:

— correlation structure, neither direction nor causality
— multivariate Normal distribution with parameters 1 and > assumed

e Based on the following:

— Conditional distribution of genes ¢ and 7, given all the rest of the
genes, is bivariate normal
— Partial correlations as opposed to simple correlations
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Graphical Gaussian models: Technical Details

e Partial correlations II = (7;;) are computed from the inverse of the
(G x G) correlation matrix (w;;) = Q= P71 with P = (p;;)

e the following are equivalent

1. Wij = 0
2. genes 7 and j conditionally independent given the remainder of the
genes

e Significance tests based on deviance difference between successive
models (i.e. large sample tests based on limiting x? distribution)

3. partial correlation coefficient m;; = p;;jrest = =0
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Problems arising in application to microarray data

e unstable partial correlation estimators for G > N
e multicollinearity: (nearly) linear dependencies in the data

e model selection: N is small, hence needs to be based on exact tests

— Application of GGMs so far restricted to assess relationships between
small number of genes (Waddell & Kishino, 2000) or clusters of genes
(Toh & Horimoto, 2002)

— Problem of interpretability

Small sample GGM framework needed!
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Trick 1: Use pseudoinverse to invert correlation matrix

e failure of standard definition for inverse of a matrix for singular matrices

e generalization using singular value decomposition: A =UX V7’
e Pseudoinverse (Moore Penrose inverse): AT =V (X1)" 12Ut

e Y (ATA — I)? minimized

This allows for computing partial correlations for N < G.
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Trick 2: Use Bagging (Bootstrap aggregation)

General algorithm to improve estimates (Breiman 1996):

Step 1 Generate bootstrap sample y*? with replacement from original
data. Repeat process b =1, ..., B times idependently (e.g. B = 1000).

Step 2 Calculate for each bootstrap sample 3*° estimate *b.

Step 3 Compute bootstrap mean

1 < A,
— N\ o
22
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Small Sample Estimates of Partial Correlation

1. II': use pseudoinverse for inverting P but do not perform bagging
(= observed partial correlation).

2. TI2: use bagging to estimate correlation matrix P, then invert with
pseudoinverse (= partial bagged correlation).

3. TI3: use bagging on estimate II!, i.e. use pseudoinverse for inverting
each bootstrap replicate estimate P** (= bagged partial correlation).
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Simulation study

To assess the statistical properties of the proposed procedures we need to
perform a simulation study:

1. Generate random artificial network, i.e. true matrix of partial
correlations 11

2. Compute corresponding matrix of correlations P

3. Simulate data from respective multivariate Normal distribution (with
zero mean and variance one)

4. Estimate partial correlations IT? from simulated data
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Trick 3: Generating GGMs

Problem: true P must be positive definite, thus completely randomly
chosen partial correlations do not necessarily correspond to valid graphical

Gaussian model.

Solution:

1. generate random diagonally dominant matrix

2. standardize to obtain partial correlation matrix 11

— resulting model is guaranteed to be valid
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Evaluation of empirical mean squared error
~ k 2 _
Zl§i<j§G(7Tz’j —mi;)° (k=1,2,3)

Example simulation setup:

e 100 nodes

e 2% non-zero partial correlations (biological networks are known to be
sparse)

— 99 true edges out of 4950 potential edges
e 1000 bootstrap replicates

e 50 simulation runs/sample size

Juliane Schifer, Department of Statistics, University of Munich

17



Random network with 100 nodes and edge fraction 0.02
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Total squared error
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Peaking phenomenon

e From a statistical point of view: VERY surprising!
e estimates expected to improve with increasing sample size

But:

e well known in small-sample regression and classification problems
(Raudys & Duin, 1998; Skurichina & Duin, 2002)
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Comparison of Point Estimates

e extremely bad performance of observed partial correlation I1! in critical
region (sample size N = feature size G)

e Partial bagged correlation 112 performs well for very small sample sizes
(reason: bagged sample correlation matrix positive definite)

e Bagged partial correlation estimate I3 best in critical region N =~ G

e the three methods coincide for N >> G (note that this is where
classical GGM theory applies)
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Model selection

Determination of network topology

e try all potentially adequate graphical models and evaluate their
goodness of fit
— impossible in realistic applications due to enormous effort

e textbook methods (e. g. stepwise selection based on significance tests
that are asymptotic y*-tests based on the deviance difference between
successive models) are unreliable for small sample sizes

Alternative strategy used here:
multiple testing of all possible edges using exact correlation test
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Null Distribution

Density under null hypothesis, i.e. p = 0, of Normal (partial) correlation
coefficient (Hotelling 1953):

fo(r) = (1 —r?)t==m/2 (1)

where K is the degree of freedom.

For p = 0 the degree of freedom is equal to the inverse of the variance, i.e.
Var(r) = +, and to sample size minus one (k = N — 1).

For partial correlations: k =N —-1—-(G—-2)=N -G+ 1.

Negative for N < G!!!
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Model Validation

- S
Do small sample estimates 7;;, 77,

indeed follow this distribution?

and 7j; of partial correlations under Hy

Trick 4: Estimate degree of freedom k adaptively (details later).

Next two slides:

e QQ plots of all three point estimates for large (N=200, top row) and
small (N=20, bottom row) sample size. Data simulated assuming
G = 100 and no edges at all in underlying graph.

e plot of effective sample size Ny =~ + G — 1
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Effective sample size
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Results: Fit of Null-Model

e Empirical null distributions of estimates 11 agree to a high degree with
the theoretical distribution for the normal sample correlation.

e Estimated variance, degree of freedom and effective sample size differ
among estimators and investigated region (N << G, N = G, N >> ().

e Small total mean squared error and large effective sample size coincide
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Inference of Edges

Trick 5: Exploit highly parallel structure of the problem and sparsity of
biomolecular networks.

e Assume most edges to be zero.

e more specifically: observed partial correlations p across all edges follow
mixture distribution:

f(p) = nofo(p; k) + nafa(p) (2)
with 19 +n14 =1 and ng >> na.

e alternative distribution f4: uniform distribution from -1 to 1
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Trick 5 in style of empirical Bayes methods for problems of differential
expression (Sapir & Churchill, 2000; Efron et al., 2001; Efron, 2003)

Fit of Mixture Distribution (next slide):

e QQ plots for all three estimates in small-sample example with N = 20,
G = 100, and n4 = 0.02 (top row)

e supplementary: empirical posterior probability plots of an edge being
present (bottom row)

A

nafa(p)
f(p; &) )

pr(non-zero edge|p) =
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Model Selection Using FDR Multiple Testing

False discovery rate criterion (Benjamini & Hochberg, 1995): control
expected proportion of false positives

1. Set of ordered p-values p(1), p(2), - - -, P(ar) corresponding to all potential
edges €(1),€(2)y - - -5 €E(M)

2. Let i be largest 7 with p; < ﬁ%

3. Reject null hypothesis of zero partial correlation for edges
6(1), 6(2), e o vy e(iQ)

Approximation to proper model search!
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Power analysis

Investigation of statistical properties of proposed model selection procedure
for IIt, 1I?, and II°:

e FDR level Q = 0.05

e empirical power (sensitivity, true positive rate)
e empirical false positive rate (1-specificity)

e positive predictive value

Simulation setup: G = 100 and n4 = 0.02 with N =10, 20,...,210
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Summary: Recipe of Analysis

1. choose suitable point estimate of partial correlation
2. estimate degree of freedom x of underlying null distribution

3. compute two-sided p-values and posterior probabilities, respectively, for
all possible edges

4. apply multiple testing procedure using FDR criterion to determine graph
topology (exploratory tool!)

5. visualize resulting network structure
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Molecular Data

e cell cycle in Caulobacter crescentus (Laub et al., 2000)
e 3062 genes and ORFs at 11 sampled time points

e reduced to 1444 (due to missing values) and further to 42 potentially
interesting genes and ORFs (Wichert et al., 2004)

e 47 significantly non-zero partial correlations
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#08039 #04700
#05886 (GGDEF)
0.74

peptidase (M23/M37)

#01459 (receptor)

#06446

#01232 (regulator)

0.53

ABC transporter

#03649

0.57

#02998 (5-repeat)
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Discussion

We have presented a novel framework for inferring large GGMs from
small-sample data sets such as microarray (time series) data sets.

Key Insights:

e we may employ bagging to obtain improved point estimates of partial correlation

e we can exploit the sparsity of the network to estimate the null distribution from the
point estimate of the correlation matrix

e heuristic (but fast) model selection can be done via multiple testing (using frequentist
FDR method or empirical Bayes)
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Discussion ctd.

Advantages:

® in contrast to other applications of GGMs to micorarray data the analysis can take
place on the gene level (interpretability)

e our simulation results suggest that sensible estimation of sparse graphical models is
possible in the proposed graphical Gaussian modeling framework, even for small
samples.

e the inference procedure is computationally efficient

e software will soon be made available in R (GeneTS version 2.0)
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Discussion ctd.

Further points to consider:

e critical review of model assumptions (i.i.d., normality)

e though estimation of Kk somehow accounts for longitudinal autocorrelation in the data,
data should be treated as proper time series

e heuristic network search may be improved

e imperfect null distribution of II2 may be modified to improve statistical testing for
very small samples

e GGMs may serve as a starting point to build more sophisticated graphical models
(Bayesian nets, dynamics etc).

e graphical model framework is suitable statistical approach to modeling, but inference
and model selection remain challenging
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