
Collaborative Design using Solution Spaces

THÈSE No 2119 (2000)

PRÉSENTÉE AU DÉPARTEMENT D’INFORMATIQUE

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

POUR L’OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

Claudio LOTTAZ

Informaticien diplomé Université de Berne
originaire de Dirlaret (FR)

acceptée sur proposition du jury:

Prof. Boi. V. Faltings, directeur de thèse
Prof. James Bowen, corapporteur

Prof. Gerhard Schmitt, corapporteur
Prof. Ian. F. C. Smith, corrapporteur

Lausanne, EPFL
2000

ii

Abstract

Complex design tasks from many domains such as mechanical, electrical and civil engi-
neering make the collaboration of many partners unavoidable for several reasons: knowl-
edge from various experts is necessary, often more than one enterprises are involved and
deadlines impose concurrent engineering. However, collaboration also leads to certain in-
conveniences such as information loss and misunderstandings during communication and
iterative negotiation when suggested partial solutions for subtasks conflict. Moreover,
major problems are related to management of changes and ensuring design consistency.

This thesis conjectures that many of these problems are caused by the use of single
solutions during negotiation. Currently, project partners assign single values for sub-tasks
and then proceed, often after tedious negotiations with other partners, to integrate these
partial solutions into solutions for the whole project. While partners determine one single
solution for a sub-task, much information about potential alternatives is lost and prema-
ture decisions are taken. The integration of partial solutions then often leads to artificial
conflicts which are not due to incompatible design goals but arise because information
about possible compromises is no longer available. Consequently, many changes usually
occur during negotiation about parameter values and much effort must be invested in
order to keep the design consistent.

Therefore, we investigate the use of solution spaces instead of single solutions. When
solution spaces are used during negotiation, more information about alternatives is avail-
able, premature decisions are avoided and thus, no artificial conflicts arise. Moreover,
since project partners provide formal information about project requirements, real con-
flicts between diverging project goals can be detected.

However, the implementation of a collaboration system using solution spaces is far
from trivial, since in general the computation of exact solution spaces is intractable. We
employ constraint satisfaction techniques in order to calculate solution space approxima-
tions. Constraints arise naturally in many fields of engineering and are therefore suited
to formally express project requirements. Using constraints on design parameters, project
partners can describe large families of acceptable solutions. Moreover, descriptions using
constraints can be easily adapted to changes in the project’s context.

When project descriptions in terms of constraints are available, constraint satisfaction
techniques such as consistency can be employed to provide computational support during
collaboration. Consistency algorithms use local inconsistencies to prune regions from the
original search space where no solution can be expected and thus provide approximations of
solution spaces. Algorithms which ensure low degrees of consistency provide a rough over-
estimation of the solution space but have low complexity, while algorithms which enforce
high degrees of consistency provide a tight estimation of the solution space but suffer from

iii

iv ABSTRACT

high complexity. Since consistency algorithms provide over-estimations of solution spaces
they are suited to find real conflicts between the various project requirements.

In fact, using constraint satisfaction techniques in collaboration splits negotiation into
two phases: negotiation of project requirements and negotiation about parameter val-
ues. During the negotiation of requirements, expressed as constraints, partners search
for a feasible set of restrictions. Given such a set of restrictions, partners can negotiate
about parameter values within the corresponding solution space approximation. During
negotiation about parameter values some support for decision-making can be provided by
analysing the shape of the solution space approximations.

In order to illustrate the use of constraint satisfaction techniques in collaborative de-
sign, a prototype of an Internet-based communication platform has been implemented,
which focuses on the exchange of data related to constraints and solution spaces, includ-
ing the visualisation of constraints and projections of solution space approximation. It
provides access to several constraint satisfaction algorithms. Moreover, some standard
techniques were extended as follows: A reformulation algorithm transforms algebraic con-
straint satisfaction problems (CSPs) into ternary form, i.e., such that they contain exclu-
sively constraints involving at most three variables. Thereby, few auxiliary variables are
introduced and certain intermediary variables are removed in order to provide a small CSP
in ternary form. In addition, the use of interval arithmetic techniques to discretise con-
tinuous constraints is proposed. Moreover, variants of 2-consistency and 3-consistency for
ternary CSPs have been developed and an improvement of (3,2)-relational consistency’s
space efficiency. Finally, a description of search heuristics for interactive use is described.

The results of this research have been evaluated in the context of the construction in-
dustry. Construction projects are suitable test cases for collaboration systems, since they
always imply complex interactions between several partners from various domains. With
the help of practitioners, three realistic examples have been modelled. These projects
demonstrate the usefulness of constraint satisfaction techniques during negotiation and
collaboration within design projects. Constraint-based support leads to better manage-
ment of changes and easier implementation of least commitment decision strategies. The
results of this research may therefore improve the performance of collaboration systems
currently in use.

Résumé

La collaboration entre ingénieurs pour réaliser de manière efficace des projets complexes
de génie mécanique, électrique ou civil est rendue nécessaire pour plusieurs raisons : la
connaissance de plusieurs domaines est nécessaire, plusieurs entreprises sont souvent im-
pliquées et les délais forcent les participants à travailler en parallèle. Néanmoins, la
collaboration peut aussi causer des problèmes, notamment des malentendus, des pertes
d’information et des difficultés pendant les négociations en cas de conflits créés par la
confrontation entre des solutions partielles.

Notre thèse ici est que la plupart de ces problèmes sont dus au fait qu’aujourd’hui les
partenaires des projets utilisent des solutions isolées pendant les négociations. C’est-à-dire
que chaque participant ne propose qu’une seule solution pour sa partie du projet avant
que ces solutions partielles ne soient intégrées pendant des négociations souvent difficiles
pour trouver une solution complète pour le projet. Quand les ingénieurs déterminent des
valeurs uniques pour tous les paramètres, beaucoup de décisions sont prises de manière
prématurée, ce qui cause des conflits artificiels pendant les négociations. Ces conflits ne
sont pas dus à des buts de conceptions incompatibles, mais sont plutôt une conséquence de
la perte d’information concernant des alternatives possibles. Cela implique que, pendant
toute la conception du projet, de nombreux changements sont nécessaires et de nombreux
efforts doivent être investis pour garder la cohérence du projet.

En réponse à ces problèmes, nous proposons ici l’utilisation des espaces de solution à la
place des solutions isolées. Cette approche permet de garder plus d’information concernant
des alternatives possibles, évite la prise de décisions prématurée et évite ainsi des conflits
artificiels. De plus, étant donné que les ingénieurs formalisent leurs besoins, il devient
possible de détecter des vrais conflits causés par des buts de conception divergents plus
tôt dans le projet.

Bien que ce concept paraisse prometteur, sa réalisation n’est pas facile, parce que le
calcul avec des espaces de solutions exacts n’est pas possible en général. Nous proposons
des techniques de satisfaction de contraintes pour calculer des approximations des espaces
de solutions. Les contraintes sont présentes dans de nombreux domaines de l’ingénierie et
peuvent donc servir à exprimer formellement les conditions sur des projets. En imposant
des contraintes sur des paramètres du projet, les participant au projet peuvent en fait
décrire des ensembles de solutions. De plus, la description utilisant des contraintes peut
être adaptée facilement à de nouvelles conditions de projets.

Etant donné que des descriptions de projets sous forme de contraintes sont disponibles,
des techniques de satisfaction de contraintes peuvent fournir un support de calcul pendant
les négociations. Des méthodes de cohérence utilisent des incohérences locales pour couper
les parties de l’espace de recherche où l’on ne peut pas trouver de solutions et permettent

v

vi RÉSUMÉ

ainsi de calculer une approximation de l’espace de solutions. Des algorithmes de cohérence
de bas niveau (très locale) fournissent une surestimation grossière de l’espace de solutions,
mais sont efficace en complexité, alors que les algorithmes qui assure un degré élevé de
cohérence (plus globale) déterminent une estimation plus précise mais sont de complexité
plus importante. Parce que les algorithmes de cohérence fournissent des surestimations
d’espaces de solutions, ils sont adaptés à détecter des conflits dans les restrictions du
projet.

En fait, l’utilisation de techniques de satisfaction de contraintes pour la collaboration
sépare les négociations en deux phases : la négociation des conditions et la négociation
de valeurs pour des paramètres. Pendant la première phase, les partenaires cherchent un
ensemble acceptable de restrictions, exprimé sous forme de contraintes. Etant donné un tel
ensemble de contraintes, les participants au projet peuvent négocier les valeurs précises des
paramètres en respectant l’approximation de l’espace de solutions correspondant. Pendant
cette phase de négociation une aide à la prise de décisions peut être fournit en analysant
la forme de l’espace de solutions.

Pour illustrer l’utilisation de techniques de satisfaction de contraintes en collabora-
tion dans la conception, un prototype d’environnement de communication spécialisé pour
l’échange d’informations liées à des systèmes de contraintes a été réalisé. Il fournit entre
autres des possibilités de visualisation de contraintes et de projections d’espaces de solu-
tion approchés et permet l’accès commun à plusieurs algorithmes de satisfaction de con-
traintes. Les extensions suivantes sont ajoutées aux méthodes standards : Un algorithme
de reformulation transforme des systèmes de contraintes algébriques en forme ternaire,
c’est-à-dire, de sorte que toutes les contraintes du système transformé contiennent au plus
trois variables. Pour générer un CSP petit, cet algorithme élimine certains variables in-
termédiaires du système original et minimise le nombre de variables auxiliaires ajoutés
pendant la ternarisation. De plus, l’utilisation de l’arithmétique d’intervalles est proposée
pour la discrétisation des contraintes, des variantes de 2-consistency et de 3-consistency
pour des contraintes ternaires sont développées, et une amélioration des performances de
(3,2)-relational consistency relative à l’utilisation de mémoire est décrite. Finalement, des
heuristiques pour la recherche interactive sont décrites.

Les résultats de cette recherche sont évalués dans le contexte de l’industrie de con-
struction. Des projets de construction permettent de tester de méthodes de collaboration
parce qu’ils impliquent toujours des interactions complexes entre plusieurs participants
de domaines divers. Avec l’aide de plusieurs bureaux d’ingénieurs, nous avons modélisé
trois exemples réalistes de projets de construction. Ils montrent l’utilité de techniques de
satisfaction de contraintes pendant la négociation et la collaboration. Le support à base
de contraintes facilite la gestion de changements ainsi que l’implantation de stratégies least
commitment. Les résultats de cette recherche peuvent par conséquent améliorer l’efficacité
des systèmes de collaboration actuels.

Acknowledgements

Probably the most important thing I learnt during this work about collaboration is, how
important is smooth and efficient collaboration in order to successfully accomplish a com-
plex task such as writing a thesis. Therefore, acknowledging all the people involved is an
honest desire to me.

I wish to address my sincere thanks to Professor Boi Faltings, who gave me the op-
portunity to work at the AI-Lab of the Swiss Federal Institute of Technology, for giving
me much freedom in my work and for his constant encouragement during my time in Lau-
sanne. I am very grateful also to Professor Ian Smith. He was responsible for both research
projects I was working for and was therefore directly involved in my work. His pragmatic
views on engineering protected me from loosing contact with the real worlds and during
discussions with him many of the ideas in this thesis emerged. He also encouraged and
supported me during the elaboration of most of my publications. Furthermore, I would
like to thank the Professors James Bowen and Gerhard Schmitt for participating on the
jury for this thesis, for in-depth discussions and comments.

The theoretical foundation of the constraint techniques used on this research have
been elaborated by Dr. Djamila Sam-Haroud. I would like to acknowledge her continued
support and consulting in all questions about constraint satisfaction problems.

The evaluation of my work was only possibly through the close collaboration with
industry partners and civil engineers from the Civil Engineering Department of the EPFL.
I would like to thank André Flückiger from Zwahlen & Mayr who directly or indirectly
provided all information about the 3 collaboration projects analysed during evaluation
and I am particularly grateful to Denis Clément, Yvan Robert-Nicoud and Etienne Fest
for actually performing this analysis.

In order to develop and implement the link to the ICC information environment many
hours of close computer supported collaborative work with Professor Rudi Stouffs, Kuk
Hwan Miwusset, Bige Tunçer, David Kurmann and Benjamin Stäger were necessary. Many
thanks therefore to the whole group which worked on this in CAAD of ETHZ.

During my first two years in Lausanne Ruth Stalker was my closest collaborator.
Together we realised a particularly successful project under the guidance of Professor Ian
Smith. I would like to thank her for this collaboration and for continued discussions later
on.

During the actual writing of the thesis many people provided valuable comments. I
would like to thank Esther Gelle for reading and very carefully commenting almost the
entire thesis. I would also like to acknowledge the many comments by Marc Torrens, Ruth
Stalker, Djamila Sam-Haroud, Steven Willmott,Lorenz Brügger, Marius Silaghi, Romaric
Besançon and Christian Frei.

vii

viii ACKNOWLEDGEMENTS

I would like to thank Steven Willmott and Christian Bliek for encouragement and
important comments on my work on reformulating numeric CSPs. I also received valuable
input from Professor Ulises Cortés during a trip to Barcelonna. Moreover, I am grateful to
Monique Calisti for fruitful discussions about agent technology and negotiation. I would
also like to thank all former and current members of the LIA, who helped creating a warm
and joyful working environment.

I would also like to thank my parents and my brother for their continued and generous
support through my whole life. Their affection and warmth gave me the security and
confidence I needed to achieve whatever I accomplished.

This research has been funded and thus made possible by the Swiss National Science
Foundation in two applied research project within the Priority Program on Computer
Science.

Contents

Abstract iii

Résumé v

Acknowledgements vii

1 Introduction 1
1.1 Current Practice of Collaborative Design . 1

1.1.1 Paper-based Communication . 2
1.1.2 Electronic Communication . 3
1.1.3 The Crux of Current Collaboration Approaches 3

1.2 Collaborative Design using Solution Spaces (CDSS) 3
1.2.1 Augmenting Single Solution with Solution Spaces 4
1.2.2 Implementation using Constraint Satisfaction Techniques 5
1.2.3 Support for Collaborative Negotiation and Decision-Making 6

1.3 Recent Research into Related Topics . 7
1.3.1 Computer Supported Cooperative Work (CSCW) 7
1.3.2 Collaborative Design and Concurrent Engineering 9
1.3.3 Constraint Satisfaction Techniques in Collaborative Design 9

1.4 Guide to this Thesis . 10

2 Collaborative Design using Solution Spaces 11
2.1 Traditional Approach using Single Solutions Only 12

2.1.1 Artificial Conflicts . 12
2.1.2 Undetected Real Conflicts . 13
2.1.3 Responsibility for Design Consistency 13
2.1.4 Management of Changes . 14

2.2 Augmenting Single Solutions with Solution Spaces 15
2.2.1 Negotiation about Project Requirements 15
2.2.2 Negotiation about Parameter Values 18

2.3 Representing Solution Spaces through Constraints Sets 19
2.3.1 Expressiveness of Constraint Sets . 20
2.3.2 Constraint Satisfaction Techniques 22

ix

x CONTENTS

2.4 Summary . 22

3 Implementing CDSS using Constraint Techniques 25
3.1 Consistency Algorithms for Ternary CSPs 26

3.1.1 Local Consistency . 27
3.1.2 Global Consistency . 28
3.1.3 Consistency Algorithms . 29
3.1.4 Degrees of Consistency and Solution Spaces 40

3.2 Rewriting Numeric Constraint Satisfaction Problems 41
3.2.1 Constraint Arity and Consistency Algorithms 43
3.2.2 Removing Unnecessary Intermediary Variables 44
3.2.3 Making Constraint Satisfaction Problems Ternary 46
3.2.4 Complexity Considerations . 49

3.3 Discretised Constraints on Continuous Variables 50
3.3.1 Spatial Data Structures to Represent Feasible Regions 51
3.3.2 2k-trees for Constraint Satisfaction Techniques 54
3.3.3 Generation of Feasible Regions . 55
3.3.4 Set Operators for Consistency Algorithms 59

3.4 Interactive Search for Single Solutions . 62
3.4.1 Searching with Minimal Change . 63
3.4.2 Feasible Ranges . 66
3.4.3 Illustration of Interactive Solution Adaptation 66

3.5 Summary . 68

4 Porting CDSS onto the Internet 71
4.1 SpaceSolver’s System Architecture . 71
4.2 User Interface to the Worldwide Web . 72

4.2.1 Specifying Design Parameters and Constraints 73
4.2.2 Management of Collaboration Projects 75
4.2.3 Visualisation of Constraints and Solution Spaces 75
4.2.4 Interactive Exploration of Solution Spaces 76

4.3 Linking to an Information Management System 78
4.3.1 The ICC Collaboration Environment 78
4.3.2 Linking the ICC Communication Environment to SpaceSolver 82

4.4 Summary . 84

5 Evaluating CDSS in the Construction Industry 87
5.1 Example 1: A Steel-framed Computer Building 87

5.1.1 Project Description . 87
5.1.2 Describing the Problem using Constraints 88
5.1.3 Collaboration Structure . 92
5.1.4 Ternarisation of the numeric CSP 93

CONTENTS xi

5.1.5 Finding Real Conflicts . 94
5.1.6 Planning Negotiations . 94

5.2 Example 2: Stacked Gymnastic Halls . 96
5.2.1 Project Description . 96
5.2.2 Collaboration Structure . 97
5.2.3 Finding Causes of Conflicts . 100
5.2.4 Approximations of Solution Spaces 102

5.3 Example 3: A Storage Hall with 50t Crane 103
5.3.1 Project Description . 103
5.3.2 Making a CSP Treatable by Reformulation 107
5.3.3 Tradeoff Analysis . 108
5.3.4 Exploring Solution Spaces . 111

5.4 Summary . 111

6 Related Work 117
6.1 Communication and Information Management 118

6.1.1 Shared Project/Product Models . 118
6.1.2 Heterogeneous Agent Systems for Concurrent Engineering 119
6.1.3 Internet-Based Collaboration Environments 120
6.1.4 Management of Changes . 121
6.1.5 Management of Project Requirements 122
6.1.6 Information Management in CDSS 123

6.2 Conflict Management . 123
6.2.1 Avoiding Conflicts using Zones . 123
6.2.2 Design Rationale for Conflict Mitigation 124
6.2.3 Conflict Mitigation using Formal Domain Models 125
6.2.4 Understanding and Classifying Conflicts 126
6.2.5 Constraint Checking for Conflict Detection 126
6.2.6 Weak Commitment by Management of Inconsistencies 126
6.2.7 Conflict Management in CDSS . 127

6.3 Conflict Resolution . 128
6.3.1 Combining Agent Technology and Constraint Satisfaction 128
6.3.2 Conflict Resolution by Human Analysts 128
6.3.3 Rule-Based Conflict Resolution versus Genetic Algorithms 129
6.3.4 Conflict Resolution in CDSS . 130

6.4 Negotiation Methodologies . 130
6.4.1 Negotiation Support through Design Advice Tools 131
6.4.2 Progressive Negotiation among Collaborating Design Agents 131
6.4.3 Knowledge-Based Negotiation . 132
6.4.4 Game and Negotiation Theory . 133
6.4.5 Negotiation Considerations in CDSS 134

6.5 Tradeoffs and Decision-Making . 134

xii CONTENTS

6.5.1 Hierarchical Concurrent Engineering 134
6.5.2 Constraints, Criteria and Optimisation 135
6.5.3 Supporting Collaboration through Decision-Maintenance 136
6.5.4 Tradeoff Evaluation . 137
6.5.5 Advised Decision-Making . 138
6.5.6 Support for Decision-Making in CDSS 139

6.6 Summary . 139

7 Conclusions 141
7.1 Contributions . 141

7.1.1 Solution Spaces for Collaborative Design 141
7.1.2 Constraint Satisfaction Techniques 142
7.1.3 A Communication and Collaboration Platform 143
7.1.4 Evaluation in Civil Engineering . 144

7.2 Limitations . 144
7.3 Further Research . 145

7.3.1 Intuitive Interfaces . 145
7.3.2 Data Structures for Representing Feasible Regions 146
7.3.3 Exploiting Sparsity of Problems . 146
7.3.4 Decomposition of Constraint Satisfaction Problems 147
7.3.5 A Priori Decomposition . 148
7.3.6 Distributed Solution of Decomposed CSPs 148

7.4 Conclusion . 148

Bibliography 149

Curriculum Vitae 161

List of Figures

1.1 Collaboration using subtasks. 2
1.2 Intersection of solution spaces projected on common design parameters. . . 4
1.3 Real conflicts are detected when solution spaces to subtasks do not intersect. 6

2.1 Plans used during early negotiation about dimensioning of holes in beams. . 15
2.2 Projection of simplified solution space for steel-framed building. 17
2.3 Collaboration graph example. 21

3.1 Improved refinement of strong 2-consistency compared to arc-consistency. . 34
3.2 Solution space approximations of different precision. 40
3.3 Rewriting a 5-ary constraint in terms of several ternary ones. 41
3.4 Elimination of constants makes intermediary variable unnecessary. 42
3.5 Quadtree for the constraint y ≥ arctan(1

x−2). 54
3.6 Illustration of a total constraint. 55
3.7 A simple constraint with a complex feasible region: sin(x2)+sin(y2) < −0.25. 58
3.8 Translation array for projection from [x, y, z] to [y]. 60
3.9 Extended intersection is equivalent to composition. 62
3.10 Interactive adaptation of a floor plan. 67

4.1 SpaceSolver’s system architecture. 73
4.2 SpaceSolver’s Internet-based user interface for specifying CSPs. 74
4.3 SpaceSolver’s collaboration extension. 75
4.4 Three dimensional projection of a path consistent space. 77
4.5 Interactive exploration of solution space approximation. 77
4.6 View of the ICC prototype interface. 79
4.7 A 3-dimensional visualisation of a project’s information structure. 81
4.8 Overview of the ICC architecture. 82
4.9 A SpaceSolver client can communicate and synchronise with an ICC client. 83
4.10 SpaceSolver (top) navigates in the ICC environment (bottom). 85

5.1 Construction site of the steel-framed computer building example. 88
5.2 Parameter definitions for holes in beams to hold ventilation ducts. 89
5.3 Dependencies between partners through shared variables (Example 1). . . 93

xiii

xiv LIST OF FIGURES

5.4 Negotiation plan for Example 1. 95
5.5 Solution space approximation by (3,2)-relational consistency 96
5.6 Two triple gymnastic halls, one placed on top of the other. 96
5.7 Plans for stacked gymnastic halls example. 97
5.8 Dependencies between partners through shared variables (Example 2). . . 99
5.9 Negotiation plan for Example 2. 99
5.10 Short walk through the information space corresponding to a CSP. 100
5.11 Longer walk through the information space corresponding to a CSP. 101
5.12 Approximation of solution spaces for Example 1 103
5.13 Storage hall with 50-tons crane and important security restrictions. 103
5.14 Parameters of storage hall example. 104
5.15 Loads and maximum crane load hazard scenario for Example 3 104
5.16 Chained elimination of unnecessary intermediary variables. 107
5.17 Two constraints after elimination of unnecessary intermediary variables. . . 108
5.18 Optimisation criteria (z-axis), depend on column/beam flange width 110
5.19 Pairwise tradeoffs for storage hall example. 110
5.20 Overall tradeoff for storage hall example. 110
5.21 SpaceSolver’s interactive solution space explorer 112
5.22 Moved wB in SpaceSolver’s solution space explorer 113

List of Tables

2.1 Evaluation of parameter values during negotiation. 13
2.2 Single solutions versus solution spaces in collaborative design. 23

3.1 Compare new generation methods with those proposed in [Sam-Haroud, 1995]. 58
3.2 Compare space efficiency of spatial data structures. Numbers in bytes. . . . 59

5.1 Definition of parameters for the steel framed building. 90
5.2 Constraints providing requirements for a steel-framed computer-building . . 91
5.3 Definition of parameters for the stacked gyms building. 98
5.4 Constraints related to dynamic and static aspects of the stacked gyms . . . 98
5.5 Definitions of parameters for storage hall example (excerpt) 105
5.6 Constraints for the storage hall example (excerpt). 106

xv

xvi LIST OF TABLES

List of Algorithms

3.1 Arc-consistency algorithm similar to AC-3. 30
3.2 Initialise queue and labels for arc-consistency. 31
3.3 Revision step for conventional arc-consistency. 31
3.4 Determine arcs to be revised after successful revision of (i, j). 32
3.5 Revision step for 2-consistency for ternary constraints. 33
3.6 3-consistency algorithm similar to PC-2. 35
3.7 Initialise queue and labels for strong 3-consistency. 36
3.8 Revise L(i, j) for path-consistency through k and Constraints. 36
3.9 Determine paths to be revised when label Lij changes. 37
3.10 Algorithm for (3,2)-relational consistency. 38
3.11 Compile all total constraints into the labels. 38
3.12 Revise Lijk for (3,2)-relational consistency, through u and v. 39
3.13 Determine 5-tuples to be revised after successful revision of Lijk. 39
3.14 Eliminate constants and unnecessary intermediary variables. 45
3.15 Simple algorithm to make one constraint ternary. 47
3.16 Make numeric CSPs ternary. 48
3.17 Generation of quadtrees for binary constraints. 56
3.18 Determine the projection-array for quadrants. 60
3.19 Project a tree of dimension d. 61
3.20 Extended intersection, a and b together contain d variables. 63
3.21 Direct revision for (3,2)-relational consistency. 64

xvii

xviii LIST OF ALGORITHMS

Chapter 1

Introduction

Collaboration is unavoidable when solving complex design tasks. Usually such tasks can
only be accomplished using knowledge from various domains, often more than one enter-
prises are involved and restrictions in time may require concurrent engineering. Therefore,
several experts, who may work in different locations, must work together as smoothly as
possible in order to solve complex design tasks efficiently.

However, collaboration tasks are complicated by factors such as information loss and
misunderstandings during communication, as well as iterative negotiation when subtask
solutions conflict. Moreover, changes in context, costs, requirements, deadlines, etc. re-
quire constant re-negotiation of issues that may modify important project characteristics.
These factors often cause important delays and can even lead to inconsistent designs. Cor-
rection of such inconsistencies in a late phase of a design project can result in additional
costs as well as sub-optimal solutions.

For these reasons, efficient and reliable techniques and tools for collaboration are
needed. Such techniques should provide:

• Facilities for efficient communication,

• Improve negotiation between partners and

• Support collaborative decision-making.

In this thesis we propose a solution space in order to provide computational support for
negotiation and collaborative decision-making. Constraints are used in order to formally
represent project requirements and a communication platform on the Internet provides
facilities for information exchange related to constraints as well as access to constraint
satisfaction techniques.

1.1 Current Practice of Collaborative Design

Collaboration is common in many domains such as mechanical, electrical and civil engi-
neering. Complex tasks are divided into independent or specialised subtasks such that

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Collaboration using subtasks.

project partners can work on individual subtasks concurrently. All project partners nego-
tiate in order to integrate subtask solutions into a solution for the whole task as illustrated
in Figure 1.1.

Communication and negotiation techniques must be established in order to collaborate
between project partners in this way. Currently traditional ways of communication and
negotiation are used.

1.1.1 Paper-based Communication

In many industry domains the traditional approaches to collaboration are still the state of
affairs. Much paper work is needed to coordinate collaborators and serious problems and
delays in communication and data exchange occur. In fact, physical meetings are often
necessary in order to allow for efficient negotiation. However, such meetings are no longer
always possible, because often collaborators work in geographically distant locations, thus,
meetings are very expensive.

For example, paper-based communication and negotiation as it is common in the con-
struction industry caused problems in the following case. During the preliminary design
of a steel-framed computer building to be built in Geneva (Switzerland), the architect
decided to drill holes into floor beams, in order to pass ventilation ducts. This allowed at
the same time to accommodate for the particular ventilation requirements for a computer
building as well as the limited building height imposed by law. The architect suggested
many large holes in the beams and sent the plans on to civil engineer. The civil engineer,
worried about the static behaviour of the steel structure, suggested much fewer holes with
just half the diameter. In consequence, the ventilation subcontractor objected, because
the ventilation requirements could no longer be met.

Since negotiation with plans sent back and forth by priority mail took too much time,
the steel fabricator started to manufacture the beams before the negotiation was finished in
order to keep up with the construction schedule. Unfortunately, the manufactured beams
were eventually rejected. This led to additional costs and a significant delay. Efficient
communication and negotiation could have saved thousands of dollars and much time.

1.2. COLLABORATIVE DESIGN USING SOLUTION SPACES (CDSS) 3

1.1.2 Electronic Communication

The advent of electronic communication methods such as e-mail at first glance seems to
remedy the problem of inefficient communication. Indeed, electronic communication is
fast and inexpensive. However, improved communication techniques also present risks. It
is too simple to suggest changes. The responsibility for maintaining design consistency is
often taken away from the initiator of a change. Instead, recipients of changes become
solely responsible for approving changes. In complex projects, change recipients often
become overwhelmed; they are no longer able to verify all suggestions due to the enormous
amount of information received. In some cases, collaborators become very restrictive when
confronted with new ideas in order to reduce the risk of error and inconsistency. In other
cases, the integrity of the design project decreases while probability for missing deadlines
and additional costs increase.

In construction projects the responsibility for the static and dynamic integrity of a
building is typically delegated to a civil engineer. Since almost any suggestion for a
change involves verification of structural integrity, civil engineers are very likely to become
overwhelmed by a mass of verification tasks. This partially explains why civil engineers
have the reputation to prevent innovative ideas. Innovative ideas imply time consuming
verifications by the civil engineer and an increased risk of error. Given the time-restrictions
of construction projects, innovative ideas are indeed often dropped due to objections from
civil engineers.

1.1.3 The Crux of Current Collaboration Approaches

Our hypothesis is that most of the problems encountered in collaborative engineering are
due to the exclusive use of single solutions during negotiation. When project partners work
on individual subtasks, they usually determine only single solutions for their subtasks,
often represented by plans. In the process of determining a single value for all design
parameters involved in the subtask many preliminary decisions must be taken. These
decisions are often taken arbitrarily.

Integration of partial solutions in order to obtain a solution for the whole task usually
leads to artificial conflicts. Such conflicts may be less related to conflicting project goals
than to premature decisions. Many of the preliminary decisions are revised in order to
resolve these artificial conflicts. Unnecessary negotiation is, however, needed to resolve
artificial conflicts and much effort is spent during this phase.

In fact, the single solutions suggested by collaborators just demonstrate satisfiability
of subtask requirements but rarely represent the only acceptable solution. Therefore, the
exclusive use of single solutions in collaboration is insufficient.

1.2 Collaborative Design using Solution Spaces (CDSS)

In this thesis we suggest the use of solution spaces in addition to single solutions. Collab-
orators specify large families of acceptable solutions for their subtask. We conjecture that

4 CHAPTER 1. INTRODUCTION

augmenting single solutions with solution spaces has the potential to enhance collaborative
design by providing support for collaborative negotiation and decision-making.

1.2.1 Augmenting Single Solution with Solution Spaces

When collaborators specify large sets of acceptable solutions for their specific subtask,
they provide additional information about alternative solutions. Possibly they also de-
termine one single solution to demonstrate the existence of a solution which satisfies all
requirements. Such sets of acceptable solutions are in fact solution spaces.

The impact of a certain subtask on other subtasks can be determined by projecting
its solution space on the design parameters which are common to all subtasks. The
intersection of all projections must contain all solutions for the whole task (see Figure 1.2).
When this intersection is empty, no solution exists and not all design goals can be achieved
simultaneously.

Figure 1.2: Intersection of solution spaces projected on common design parameters.

In order to describe solution spaces a formal description of project requirements is
more efficient than enumeration of acceptable solutions for several reasons:

• A formal description is more concise than the enumeration and is therefore easier to
communicate.

• A formal description can represents an infinite number of solutions. Given that
many design parameters may be continuous, solution spaces are likely to contain an
infinite number of solutions.

1.2. COLLABORATIVE DESIGN USING SOLUTION SPACES (CDSS) 5

• A formal description is easily adaptable to changes in the context of a project. Large
parts of the description can usually be reused, the adaptation normally consists of
adding or removing a small set of restrictions.

Based on formal descriptions of project requirements, solution spaces and intersections
of solution spaces must be computed automatically. The intersection of solution spaces
is established more easily when project requirements are formalised. It is enough to
determine the solution space of the conjunction of requirements imposed by all project
partners. Therefore, formal descriptions of project requirements are used hereafter to
describe solution spaces.

1.2.2 Implementation using Constraint Satisfaction Techniques

The practical implementation of the collaborative design approach using solution spaces
is far from trivial. The exact representation and handling of solution spaces is intractable
in general. However, constraint satisfaction techniques can approximate solution spaces
in polynomial time and space. Constraint satisfaction techniques have the properties we
need for an implementation of collaborative design using solution spaces for:

• Constraint satisfaction problems (CSPs) are concise, formal representations of solu-
tion spaces. Constraints represent requirements.

• Consistency algorithms compute solution space approximations for CSPs with poly-
nomial time and space complexity.

• CSPs occur naturally in many engineering disciplines. Therefore, engineers are likely
to accept CSPs in collaborative work.

A CSP is defined by a set of variables, their domains (a priori possible values for each
variable) and a set of constraints. Domains of variables are either discrete or continuous.
Discrete domains are enumerations of possible values while continuous domains are usually
single intervals in <. A solution of a CSP is a variable assignment, which attributes one
value to each variable within the corresponding domain, such that all constraints are
satisfied simultaneously. A CSP’s solution space contains all solutions of the CSP. The
cross-product of all domains of a CSP is called its search space.

Solution spaces can be approximated by consistency algorithms. Such algorithms use
local inconsistencies between closely related variables to prune parts from the search space
where no solution is expected. Several degrees of consistency are defined depending on
the type of local inconsistencies used for pruning. In general, algorithms which ensure low
degrees of consistency overestimate the solution space but typically have low computa-
tional complexity. CSP algorithms that ensure high degrees of consistency provide a tight
estimation of the solution spaces but suffer from high complexity.

In engineering, constraints are typically numerical relationships (equalities and in-
equalities) that influence feasible values of continuous and discrete variables. Variables

6 CHAPTER 1. INTRODUCTION

represent design parameters and constraints represent project requirements. If collaborat-
ing partners specify CSPs for their subtasks instead of single solutions, solutions to the
complete project task are obtained through solving the CSP formed by the conjunction of
all sub-CSPs.

1.2.3 Support for Collaborative Negotiation and Decision-Making

Since early decision-making about values for parameters is no longer necessary when so-
lution spaces are used instead of single solutions, artificial conflicts do no longer occur.
The corresponding portion of the negotiation process is no longer used and therefore,
negotiation is more efficient.

Moreover, when solution spaces are known, real conflicts can be detected automatically
as illustrated in Figure 1.3. In this case, project partners must negotiate about which
restrictions to weaken or release. In fact, the use of solution spaces splits the negotiation
process into two phases:

• Negotiation about project requirements represented as constraints.

• Negotiation about parameter values when no real conflicts have been detected.

Figure 1.3: Real conflicts are detected when solution spaces to subtasks do not intersect.

Therefore, detection of real conflicts can be advantageous compared to traditional col-
laboration. When project partners negotiate immediately about parameter values, it may
be very difficult to detect a conflict between diverging design goals. Several iterations of

1.3. RECENT RESEARCH INTO RELATED TOPICS 7

negotiation may be necessary before the conflict is detected. In contrast, when negotia-
tion about parameter values is only initiated after real conflicts have been ruled out, an
important source of inefficiency is eliminated. Since, in addition, negotiation takes place
within precomputed solution spaces, fast convergence towards a solution acceptable to all
partners can be expected.

Furthermore, the shape of the solution space can support informed decision-making.
When a decision about a certain design parameter is to be taken, the impact of that
decision on other variables can be deduced from the shape of the solution space. Hence,
better solutions to collaborative tasks may be detected and designers are less reactionary
towards innovative ideas, given the improved management of design consistency.

Implementation of the collaborative design approach using solution spaces represented
by CSPs uses a communication platform suited to the exchange of data related to con-
straints and design parameters. A common connection to a solver is provided, which
approximates solution spaces and allows for analysis of the results. We have developed an
Internet-based prototype of such a collaboration platform for concurrent engineering and
collaborative design.

1.3 Recent Research into Related Topics

The need for collaboration in complex design tasks has been widely recognised. The grow-
ing availability of high performance computer networks and the Internet has encouraged
research in industry and academy in order to develop computer support for communica-
tion and collaboration between human experts. Several commercial products (groupware)
as well as research projects have been realised and now support collaboration in practice.

1.3.1 Computer Supported Cooperative Work (CSCW)

Computer supported cooperative work (CSCW) looks at the cooperation of humans work-
ing together on common tasks in a shared environment [Ellis and Gibbs, 1991]. It covers
work in so different areas as computer conferencing, group decision support, co-authoring,
electronic mail, and coordination. CSCW helps to clear up the concept of cooperation.
There are many concepts of what cooperation means. For design applications the dis-
tinction between communication, collaboration and coordination [Ellis, 1991] seems to be
useful and appropriate:

• Communication covers the exchange of messages between cooperation partners. For
this neither a common information pool nor a common goal is necessary.

• Collaboration involves the work on common data no matter whether the designers
have a common goal or not.

• Coordination finally means the adjustment of the group members’ work towards a
common goal.

8 CHAPTER 1. INTRODUCTION

The computer facilities which support CSCW mainly fall into two categories: infor-
mation management systems and communication facilities. In both categories research
projects as well as commercial products have been realised. Many of the industry’s ba-
sic need for computer supported collaboration are accommodated by current commercial
tools. However, not all industry domains have already accepted computer support for their
communication and collaboration needs, many engineers still prefer to stay with known
paper-based documentation management.

Information Management

The availability of project information is crucial for the smooth collaboration of project
partners. Related problems include insufficient accessibility where documents are only
available as paper-copies in one specific location, and the lack of facilities to clearly or-
ganise information in a simple and intuitive way. In such an environment information loss
is unavoidable and data-consistency is difficult to maintain. Therefore, information man-
agement systems are a major field of interest. Commercial products provide important
facilities to control aspects such as:

• Centralised or distributed storage of documents,

• Version control and data consistency,

• Distributed access and efficient retrieval of documents, as well as

• Authorship information, responsibility and security management.

Closed solutions on Intranets are available as well as open approaches on the Internet.
For the latter, security is an additional important issue widely studied. Questions such as
where to store a document, whom to informed about new documents or updates and who
has the right to modify or remove documents need to be answered.

Proposals from research for advanced information management include graphical data
bases, shared project models and knowledge bases. A recent trend is to bring such con-
cepts, also within commercial products, to the Internet [Schmitt, 1998]. This step is
important since more and more often collaborators work in geographically distant places.

Communication and Collaboration Facilities

Simple communication facilities such as electronic mail and the Worldwide Web (WWW)
are very successful recently and widely used. The popularity of these services is mainly
due to high usability. Moreover, they are inexpensive and fast. However, no intelligent
support for collaboration is provided.

On the other hand, sophisticated services such as blackboards or video conferences are
not yet commonly accepted. For instance, certain sketchpads allow for collaborative work
on a sketch via large distances. However, people in industry are not at ease when using
such systems, because no human contact between collaborators is established. Supporting

1.3. RECENT RESEARCH INTO RELATED TOPICS 9

such shared sketchpads through video conferencing has not resolved the problem entirely.
However, video conferences increasingly often replace physical meetings for negotiation.

More sophisticated support for collaboration is provided by recent research projects
such as [Cutkosky et al., 1996, Fruchter, 1996, Roddis, 1998], blackboard systems and
video conference approaches are complemented by intelligent components such as cri-
tiquing and change notification. Much of this work is founded on the assumption that
improved communication helps engineers to carry out collaborative tasks such as negoti-
ation. As discussed in Section 1.1.2, this assumption only holds when support to resolve
conflicts and preserve design consistency is provided.

1.3.2 Collaborative Design and Concurrent Engineering

Concurrent engineering in product manufacturing is an active area for more than a decade
now. Work on shared product models as well as conflict detection and mitigation lead to
improvements in the collaborative product design. In [Love and Gunasekaran, 1997] the
authors point out the same needs in the construction industry and, for instance, identify
the possibility to improve up to 25% in development time without use of more resources
by elimination of non-value-added activities through concurrent engineering.

Although information consistency in the sense that all information available to all
partners is up to date is an important issue for current systems and much effort is invested
in order to resolve this problem, current systems usually do not deal with the more specific
need of design consistency in concurrent engineering. Even management of conflicts during
collaborative design is rarely treated.

Researchers from the collaborative design and concurrent engineering fields do worry
about these specific needs for change management and conflict mitigation. Many ap-
proaches have been suggested to cope with collaboration problems in engineering. One
of the most recognised approaches to improve the situation is the least commitment ap-
proach. It is observed that delaying decisions can avoid conflicts and improve the resulting
designs [Ward et al., 1995].

Moreover, there has been research into explicit computer support for negotiation and
conflict mitigation. Beginning with work into design rationale [Peña-Mora et al., 1995],
Peña-Mora has recently proposed a combination of negotiation and game theory to support
negotiation between partners [Peña-Mora and Wang, 1998, Peña-Mora, 1998]. Ndumu
and Tah [Ndumu and Tah, 1998] review agent technology from distributed AI in the light
of the construction industry and conclude that the agent metaphor is natural to the AEC
industry. Mokhtar et al. [Mokhtar et al., 1998] focus on change management to provide
an information model that assists in planning and scheduling design changes.

1.3.3 Constraint Satisfaction Techniques in Collaborative Design

Constraint satisfaction problems (CSPs) can model problems from preliminary design in
a natural way. The variables of a CSP represent design parameters, while constraints
express design requirements in a formal way. CSPs provide the possibility to detect

10 CHAPTER 1. INTRODUCTION

and manage conflicts [Haroud et al., 1995] and may find potential alternatives. The for-
malisation of project information using constraints augments the amount of information
available for subsequent decisions. For example, CADRE [Hua et al., 1996] and IDIOM
[Lottaz et al., 1998, Smith et al., 1996] use constraint solving on constraints on geometric
parameters to enhance apartment floor layout plans, thereby facilitating adaptation within
a case-based design approach.

The expressiveness of algebraic constraints in the context of collaborative product
design has been recognised by Serrano [Serrano, 1991]. Although Serrano reports the
presence of tradeoffs and the need for compromise in collaboration projects, he proposes
the use of single solutions for collaboration. The central components of his system is a
constraint propagation engine which keeps project partners informed about changes, but
does neither provide illustrations of tradeoffs nor facilitate multi-criteria optimisation.

Constraints have been proposed to describe solution spaces in collaborative design by
Darr and Birmingham in the system ACDS [Darr and Birmingham, 1994]. A distributed
agent architecture solves collaborative tasks using catalogues and restrictions instead of
single propositions by collaborators. Local consistency methods are used to weaken the
combinatorial explosion in the task before the system determines an optimal solutions
according to some utility function.

Local consistency techniques are also used to enhance design consistency. Bahler et
al. [Bahler et al., 1995, Bowen and Bahler, 1993] proposed a design advice tool which uses
constraints to support negotiation and conflict resolution. An exception handling approach
studied by Klein [Klein, 1997] uses local methods for enhancing consistency. Realising the
need for constraint solving in the Redux’ system Petrie has enhanced the framework to
include a constraint manager which would plug into remote solvers [Petrie et al., 1997].
Khedro and Genesereth [Khedro and Genesereth, 1994] have developed a progressive ne-
gotiation strategy for conflict resolution where locally consistent solutions are used to con-
verge on global consistency. However in these studies, no explicit use of solution spaces
has been found for constraints expressed in terms of continuous variables.

1.4 Guide to this Thesis

Chapter 2 expands on the collaborative design using solution spaces approach (CDSS)
and compares it to the single solution approach. Chapter 3 contains a description of the
constraint satisfaction techniques we employ to implement CDSS. Chapter 4 describes
our prototype of a communication platform providing facilities to exchange and analyse
data related to constraint satisfaction problem in a collaborative environment. Chapter 4
illustrates our evaluation of CDSS in the context of civil engineering and the construction
industry by analysing several aspects of our communication platform using 3 real-world
examples. Chapter 6 situates our research compared to other recent results from the col-
laborative design and concurrent engineering community. Finally, we draw conclusions of
this thesis in Chapter 7 by summarising the contributions and limitations of this research,
before outlining some topics for future work.

Chapter 2

Collaborative Design
using Solution Spaces (CDSS)

Many common problems which arise during negotiation between collaborating engineers
can be traced down to the fact that engineers only provide one single solution to their
subtask. Thereby, they take many decisions about values for design parameters arbitrarily
although they could accept many different values. Therefore, much information about
possible alternatives is lost and subsequent negotiation is difficult.

When communication between collaborators includes solution spaces instead of single
solutions only, collaboration systems can provide additional engineering support. More
specifically, system using solution spaces can assist in:

• Avoiding artificial conflicts,

• Detecting real conflicts,

• Maintaining project consistency,

• Preventing responsibility-shift away from initiators,

• Making informed decisions and

• Guiding negotiation.

Improvements on one or several of these items have the potential to enhance not only the
efficiency of collaborative design but also the quality of the results achieved.

Constraints provide a convenient formalism for representing, manipulating and com-
municating information about solution spaces. A set of constraints on a set of design
parameters concisely represents a solution space. While transmission through computer
networks of large solution spaces as well as their adaptation to changes in problem context
is intractable when solution spaces are represented in their explicit form, representation
using constraints makes both, transmission and adaptation, feasible.

This chapter describes the current procedure for negotiation in collaborative design
and compares it with our proposal. Advantages and inconveniences of both approaches
are compared.

11

12 CHAPTER 2. COLLABORATIVE DESIGN USING SOLUTION SPACES

2.1 Traditional Approach using Single Solutions Only

Currently designers collaborate using single solutions, for instance represented by CAD-
plans. Complex tasks are divided into several subtasks. Collaborators suggest one solution
to the subtask they are responsible for and then negotiate about how to integrate the
partial solutions into a consistent solution for the whole problem. The negotiation phase
is usually carried out in one of two methods:

• Collaborators physically meet in one location.

• Documents are exchanged in a round-robin like procedure.

Due to cost and time restrictions meetings are often difficult to schedule. Therefore
the second method is chosen in many cases. Documents, which describe the project, are
initiated by the project leader. On these documents, e.g. plans and reports, collaborators
modify parameters and add components in order to satisfy their restrictions before handing
the draft over to the next project partner until the solution is approved by all participants.

Since in both cases, collaborators have to provide exactly one solution even though
many solutions to their subtask may be acceptable, valuable information about design
alternatives is lost, such that subsequent negotiation and conflict management more dif-
ficult. Moreover, we show, why computer support as suggested so far does not only not
resolve these problems but may even worsen the situation.

2.1.1 Artificial Conflicts

Many conflicts in traditional collaboration arise from uninformed decisions related to the
values of design parameters. Such decisions are forced in early stages of the project, be-
cause collaborators are required to suggest one single solution to their subtask, although
often many solutions may be acceptable. This loss of information about alternative so-
lutions causes artificial conflicts. Artificial conflicts do not arise due to diverging design
goals, but they are cause by premature decisions. Many of these decisions are taken ar-
bitrarily without prior discussion with other project participants and are therefore often
revised later during additional negotiation steps.

Often there is no real conflict even though negotiation does apparently not converge to
a solution acceptable for all partners. When negotiating over single values for parameters,
collaborators continually provoke artificial conflicts that lead to needless and possibly
unsuccessful iterations of negotiation, since the search space is usually very large.

For example, Table 2.1 illustrates the evolution of values for 4 parameters as project
partners applied requirements related to their goals for the task. This example refers to
geometrical parameters of a beam with holes for passing ventilation ducts. Parameter d

is the hole diameter, e is the hole spacing (centre to centre), h is the height of the beam,
and x is the distance from the support to the first hole (see Figure 5.2). The example was
inspired from the design, fabrication and erection of a steel-framed building in Geneva

2.1. TRADITIONAL APPROACH USING SINGLE SOLUTIONS ONLY 13

(Switzerland). Each row of the table represents an negotiation step; the partner named
in the row initiates the change and the changed values are typeset in bold.

d e h x

Architect 550 650 650 500
Steel fabricator 550 900 650 1100
Engineer 200 900 650 1100
Architect 200 900 650 1000
Ventilation sub. 450 800 650 600
Engineer 400 900 730 700
Steel fabricator 400 900 730 800

...
...

...
...

...

Table 2.1: Evaluation of parameter values during negotiation. Numbers are in [mm].

In Table 2.1 it is not clear whether these iterations will ever converge towards values
that are acceptable for all partners. Since all collaborators were defending their point of
view by choosing conservative values for their needs, many iterations were necessary during
negotiation. In fact, the steel fabricator had to assume values before these iterations had
terminated in order to satisfy the construction schedule. Several thousand dollars were
wasted because the assumed values were eventually refused by another partner. This
refusal made tens of fabricated beams worthless [Lottaz et al., 1999].

2.1.2 Undetected Real Conflicts

It may be very difficult to detect real conflicts, i.e., conflicts due to conflicting design
goals. Since collaborators do not formally specify their restrictions in a common language,
negotiations may last for a long time before such conflicts are detected. The search for a
solution within a large search space, while there is no solution to be found due to conflicts,
is difficult and time consuming. In fact, it is not possible to perform an exhaustive search
in such cases, thus at a certain point, collaborators just have to decide, that there is no
solution, without actually being able to prove it.

In fact, during the preliminary design phase of a project, collaborators should negotiate
about the goals to be achieved within the project instead of deciding about parameter
values. Only after project partners agreed upon a feasible set of project requirements, the
search of actual solutions should start. Within such preliminary negotiation about design
goals the detection of conflicts is essential, but very difficult to implement as long as no
formal characterisation of the requirements is elaborated.

2.1.3 Responsibility for Design Consistency

When working with point solutions, values for parameters change frequently over the
life of a project. Current proposals for collaborative computer support have often failed

14 CHAPTER 2. COLLABORATIVE DESIGN USING SOLUTION SPACES

because developers did not anticipate the implications of responsibility shift with respect
to management of changes.

The lack of formal information about the restrictions of the different collaborators
available to all project partners causes the mentioned responsibility shift. Since the ini-
tiator of a change has no means to check if the changed project is still consistent, the
responsibility to maintain design consistency is delegated to all other partners. More-
over, since computer support facilitates communication of changes to all other partners,
collaborators are encouraged to suggest many changes in a trial and error like fashion.

However, recipients of all these changes may be overwhelmed by this substantial in-
crease in consistency verification tasks to be performed, whenever they receive a suggestion
for a change. Due to this overload, partners may lose control of the project when they
become unable to maintain consistency. The result is a project that is more expensive, has
lower overall quality and takes longer to complete than a project without any computer
support at all. Therefore, collaboration systems may make matters worse.

2.1.4 Management of Changes

Since all decisions are made for exactly one single solution, and all results from negotiation
are only valid for the situation considered, a change in the context of the project leads to
important renegotiation. Very little of the work accomplished can be reused, most of the
negotiation has to be done again. Moreover, the continuous adaptation of parameter values
possibly leads the loss of project consistency. Most problems associated with complex
construction projects have been linked to an inability to manage change.

In the steel-framed building example mentioned in Section 2.1.1, many of the project
restrictions are specified by the engineer and closely related to important geometrical
variables such as building height. Most restrictions are therefore related to requirements
by all other project partners. Traditionally a change in the value of one variable could
require a reevaluation of the design by all partners. For example, if the architect decides
to change the beam spacing, the loading carried by beams increases, thereby requiring
modifications to cross-sectional characteristics (beam depth, flange size and web thickness)
and all associated requirements have to be reverified.

Such inter-dependencies partly explain the conservative behaviour of many structural
engineers; they add extra margins of safety in order to absorb most changes without
lengthy reverification. Under current situations, this is often economically justifiable. The
cost of reverifying a modification to a design that was initially optimised – along with the
accompanying need to reconsider relevant design decisions – often exceeds the extra cost
of the additional margin of safety in the original design. In this situation, the performance
of the tools available to engineers have a direct impact on project costs.

However, conservative suggestions can prohibit successful negotiation. When project
partners continually impose conservative values for common parameters, compromises are
difficult to find. For instance in the steel-framed building example, the architect first
suggests particularly many large holes to make sure that ventilation requirements can

2.2. AUGMENTING SINGLE SOLUTIONS WITH SOLUTION SPACES 15

be satisfied, while the engineer keeps proposing particularly few small holes in order to
preserve structural integrity of the building. Figure 2.1 illustrates this opposition by
showing two plans used during early negotiation about the dimensioning of the holes in
the beams. The left side shows a first suggestion by the architect with 16 holes in the
lower beam, while the right illustrates the engineer’s reaction, proposing only 11 holes in
the same beam.

architect’s first plan engineer’s first plan

Figure 2.1: Plans used during early negotiation about dimensioning of holes in beams.

2.2 Augmenting Single Solutions with Solution Spaces

Given the hypothesis that much of the trouble during collaboration is caused by requiring
collaborators to determine single solutions for their subtask, it is straightforward to pro-
pose the use of solution spaces instead of point solutions. However, the final result of the
negotiation during collaborative design must still be a point solution, the one which will
eventually be implemented. Therefore, two kinds of negotiation are needed:

• Negotiation about project requirements using solution spaces.

• Negotiation about parameter values using point solutions.

Negotiation using solution spaces avoids many of the drawbacks described above. For
itself it does not lead to a conclusive result which can be used for implementation, but
gathering information about solution spaces facilitates subsequent negotiation about pa-
rameter values.

2.2.1 Negotiation about Project Requirements

Negotiation about solution spaces is adequate to agree upon a feasible set project re-
quirements. During negotiation using solution spaces, project partners suggest possibly
large sets of acceptable solutions for their subtask to their collaborators. The intersection

16 CHAPTER 2. COLLABORATIVE DESIGN USING SOLUTION SPACES

of these sets of solutions projected onto the shared parameters contains all acceptable
solutions for the whole task and can therefore provide invaluable information.

Some of the disadvantages of collaborative design using single solutions, e.g. artificial
conflicts, do not occur while using solution spaces. Moreover, through departing from
traditional point solutions, solution spaces augment the amount of information available
for subsequent negotiation and decision-making about single parameter values. Therefore,
solution spaces have the potential to improve the efficiency of the collaboration as well as
the quality of the results achieved.

Avoiding Artificial Conflicts

When solution spaces are considered instead of point solutions, local solution spaces for
subtasks can be projected onto common variables. The projection of a local solution
space characterises the possible value combinations for common parameters, which are
valid candidates for the considered subtask. The intersection of projections of solution
spaces for all subtasks onto the common variables contains all possibilities for the whole
task. No value combinations acceptable for all subtasks simultaneously are outside of this
intersection.

In the phase of defining local solution spaces, no early decisions on single values for
parameters need to be taken and thus no artificial conflicts arise. The probability that
conflicts arise which induce negotiation between project partners is reduced compared to
the case when single solutions are used exclusively. Only when the intersection of local
solution space projections is empty, collaborators need to negotiate, since this indicates
a real conflict. In order to take decisions for parameter values, solution spaces can be
visualised and used to assist negotiation.

In the steel-framed building example mentioned in Section 2.1.1, it turns out that many
solutions would have been acceptable to all partners. Figure 2.2 visualises the projection
of solutions onto the variables d, e and x for a strongly simplified version of the problem.
Had this type of solution space based approach been available to the partners involved in
this project, no iterative negotiation would have been necessary.

Automatic Detection of Real Conflicts

The use of formal information in order to specify project requirement not only allows the
determination of solution spaces but also helps to find real conflicts in early stages of
a project. As soon as the intersection of local solution space projections onto common
variables becomes empty, a real conflict is detected. Such detection of a conflict is even
possible before the project requirements are elaborated entirely. Partial information about
project restrictions may suffice to cause a conflict at very preliminary stages of the work.

When the intersection of local solution space is empty, project partners know that
no negotiation about parameter values will ever issue a solution satisfying all restrictions
imposed. In such cases, collaborators must compromise on a higher level before the work

2.2. AUGMENTING SINGLE SOLUTIONS WITH SOLUTION SPACES 17

Figure 2.2: Projection of simplified solution space for steel-framed computer building.
Numbers are in [mm].

can proceed, usually by revising design goals, such that certain restrictions can be relaxed
or removed.

Responsibility for Design Consistency

The fact that formal information about possible alternative solutions is available and that
conflicts can thus be detected automatically, opens opportunities to fight the problem
of responsibility shift from initiators towards recipients of changes. Initiators of new
restrictions which further prune solution spaces, can detect when a conflict is caused
by the new restrictions. In this way, the use of solution spaces provides the possibility to
forewarn change initiators of consistency problems and subsequent extra work, if additional
restrictions are infeasible.

When the suggestion of a new restriction causes a conflict with the already existing
requirements, several policies can be adopted:

• Change initiators are still allowed to introduce conflicting restrictions,

• Change initiators suggest conflicting restrictions while all project partners try to
compromise in order to accommodate the critical suggestion, or

• Change initiators are obliged to find and resolve the cause of the conflict by negoti-
ation with the involved project partners.

All of these policies save negotiation efforts, since only those additional restrictions lead
to negotiation which cause consistency problems.

Even the weakest of these policies, still allowing the introduction of conflicting restric-
tions, encourages initiators of new restrictions to avoid conflicts, since conflicts always

18 CHAPTER 2. COLLABORATIVE DESIGN USING SOLUTION SPACES

imply some extra work.Blind trial and error is replaced by an approach which makes
project partners aware of potential problems. It can be expected that fewer conflicting
restrictions are imposed and therefore less consistency verification by change recipients is
needed.

While using the first policy project partners are just informed about the detection of
a conflict, the second policy informs all project partners about which restrictions could
not be introduced without causing a conflict. Still all project partners participate in the
search for and resolution of the conflict.

Finally the most restrictive policy obliges initiators of conflicting requirements to plan
and carry out the negotiation needed to resolve the conflict caused by their suggestion.
Thereby, only involved project partners participate in the negotiation. Recipients of
changes are further relieved, while the project itself is thus continually kept consistent.

In all cases, recipients of changes are much less likely to be overwhelmed by verification
tasks as the project progresses. Therefore, partners are likely not to loose control of the
project due to the loss of project consistency.

Management of Changes

When changes to the context of the project occur and new requirements are discovered,
most of the work performed in an approach using solution spaces can be reused. It is
enough to add the new restrictions or modify the existing ones in order to reflect the new
situation. Recalculation of solution spaces is then done automatically, thus supporting
better management of changes.

Negotiation about restrictions are only triggered when the context change imposes
restrictions such that the requirements partners agreed upon before can no longer be sat-
isfied and thus the intersection of local solution spaces becomes empty. Some negotiation
about parameter values within feasible spaces may be necessary more often, but this type
of negotiation is expected to be less critical.

2.2.2 Negotiation about Parameter Values

Negotiation about parameter values between project partners cannot be avoided by using
solution spaces. After negotiation about project requirements is accomplished, decisions
about which point solution should eventually be implemented have to be taken.

Guided Negotiation within Feasible Regions

Negotiation about parameter values between the project partners must take place in order
to determine the final solution within the intersection of all local solution spaces. This
phase appears to be similar to the negotiation needed during traditional collaboration.
However, negotiation is guided within feasible regions such that only alternatives which
are a priori acceptable for all participants are considered. Such guided negotiation is
likely to be less time consuming since fewer objections will occur. When objections still

2.3. REPRESENTING SOLUTION SPACES THROUGH CONSTRAINTS SETS 19

occur, they usually are related to preferences. Additional project requirements which
cause undetected conflicts are typically not revealed during this phase.

Solution spaces also make hidden dependencies and relations between apparently un-
related parameters explicit. This helps to understand the impact of a decision about one
parameter on other parameters during negotiation. Interactive exploration of such multi-
dimensional dependencies gives collaborators additional information about the decisions
to be made.

Optimally Directed Decision-Making

According to [Logan and Smithers, 1993] it is rarely possible to model project knowledge
completely in engineering. For example, aesthetical, social and political issues often de-
pend on many contextual aspects and thus, complete formal models are not possible.
Therefore, global optimisation is an unattainable goal and the corresponding methods are
not adequate.

However, within solution spaces, it may be useful to provide support for identifying
solutions that are better according to selected criteria. This is called optimally directed
decision-making and several algorithms exist to support such efforts. For instance, some
work on Pareto optimality contributes to this field [Petrie et al., 1995]. Solution spaces
improve the efficiency of these algorithms by defining the sets of possible point solutions.

Multi-criteria Optimisation

Many engineering tasks also have several optimisation criteria. Automatic multi-criteria
optimisation is not always adequate because priorities or weights for each criterion cannot
always be given. Visualisation of projections of solution spaces onto a set of optimisation
criteria illustrate tradeoffs between these criteria. Projections onto an optimisation crite-
rion and other design parameters can illustrate, which solutions can achieve good results
with respect to one or two selected criteria. These illustrations help to understand the
characteristics of the design problem at hand and lead to more informed decisions can be
taken during negotiation.

Less Conservative Behaviour

Finally, the assistance in keeping designs consistent is likely to encourage collaborators to
accept innovative solutions. Therefore, collaborative design using solution spaces has the
potential to allow project partners to find better solutions to their task more efficiently.

2.3 Representing Solution Spaces through Constraints Sets

So far we outlined the advantages of using solution spaces in addition to point solutions
for collaborative design tasks. We pretend that constraint satisfaction techniques offer
an appropriate technology for implementing collaborative design using solution spaces
(CDSS) for the following reasons:

20 CHAPTER 2. COLLABORATIVE DESIGN USING SOLUTION SPACES

• CSPs provide an unambiguous formal way of specifying project knowledge.

• They are simple to manipulate.

• Constraints occur naturally in engineering tasks.

• A CSP represents its solution space.

Therefore, considering also advantages of clarity and maintenance, constraint-based
systems are particularly suited to collaborative tasks in design. The definition of a CSP
contains a set of variables and a set of constraints. Each variable has a domain of possible
values. A solution to a CSP is an instantiation of a value to each variable from its domain
such that all constraints are satisfied.

We use constraints in the form of mathematical relations (equalities and inequali-
ties) using unary and binary operators on variables with continuous domains to represent
solution spaces. Such mathematical constraints are very natural in many engineering do-
mains and can model many important problems. Engineers are likely to accept the use
of constraints for problem formulation, because they are already used to expressing their
requirements in mathematical form.

2.3.1 Expressiveness of Constraint Sets

Much engineering knowledge is expressed in terms of constraints. Regulations, design cri-
teria, functional specifications, cost restrictions and planning strategies all employ explicit
declarations of constraints. Computer systems that propose support for engineering tasks
often involve a transformation of this knowledge into other forms such as rules, directed
relationships and post facto tests. This kind of transformations reduces clarity for engi-
neers who use such systems and thus results in systems that are hard to maintain and
often incomprehensible and therefore difficult to use. Since much engineering knowledge is
already in constraint format, direct use of constraint representations is obviously desirable.

Moreover, constraint satisfaction problems are adapted to implement the CDSS ap-
proach described in the previous section, since any CSP represents a solution space, i.e.,
the set of all its solutions. Constraint satisfaction techniques provide the technology to
approximate these solution spaces with tractable complexity. Some problems in collabo-
ration arise due to misunderstandings and imprecise communication. When collaborators
use a formal language such as constraints, variables and variable domains to specify their
needs, they necessarily specify their requirements in an unambiguous, precise way.

CSPs are also a very concise and compact representation of solution spaces. Therefore,
they are well adapted for transmission through computer networks as it is needed during
collaboration. Transmission of explicit representations of solution spaces may not be
tractable for its exponential space requirements but constraints can be transmitted easily.

For instance, the solution space shown as illustration in Figure 2.2 is represented by
the following constraints where numbers are in mm:

2.3. REPRESENTING SOLUTION SPACES THROUGH CONSTRAINTS SETS 21

• Posted by architect: x < 1000, d > 300, e < 1200.

• Posted by engineer: x > 2d, d < 400, e > 900.

• Posted by steel fabricator: x > 700, x > d + 50.

Thereby the architect’s major concern is to ensure that enough, sufficiently large holes are
provided to satisfy the ventilation requirements, while the engineer states the needs for
the building’s structural integrity and the steel fabricator makes sure that wholes are not
too close to the edges for trouble-free fabrication. This is a very rough approximation of
the real example for illustration.

¡subsectionInterpreting Constraint Satisfaction Problems Structure
Constraint satisfaction problems can be represented as graph for a binary CSP and a

hyper-graphs for an n-ary CSP. A CSP is binary when all its constraints contain at most
two variables. Constraints of an n-ary CSP contain at most n variables. Variables are
represented as nodes of the constraint graph and constraints as edges which contain all
variables of the corresponding constraint. The structure of a constraint graph gives hints
about the nature of the CSP at hand. For instance, dense regions of the graph are likely
to provoke more conflicts while sparse parts are likely to be solved quickly. If a constraint
graph has tree structure it can be solved easily while the presents of cycles my cause
serious problems during propagation of changes [Dechter and Pearl, 1989, Freuder, 1982,
Gyssens et al., 1994].

The structure of a CSP in the context of collaborative design can also be used to
illustrate dependencies between collaborators. We suggest to represent the collaboration
structure of a collaborative design project as collaboration graph. The nodes of a col-
laboration graph represent project partners. When two project partners share variables,
the corresponding nodes in the collaboration graph are linked and labelled with the set
of shared variables. Collaboration graph show strong and weak dependencies between
subproblems as well as cyclic dependencies which are particularly difficult to solve for the
same reasons as cycles in constraint graphs. Figure 2.3 shows the collaboration graph for
the example mentioned in Section 2.1.1.

Figure 2.3: Collaboration graph example.

22 CHAPTER 2. COLLABORATIVE DESIGN USING SOLUTION SPACES

2.3.2 Constraint Satisfaction Techniques

Constraint satisfaction techniques include suitable methods to handle approximations of
solution spaces. By converting algebraic representation of CSPs into explicit spatial rep-
resentation and subsequent application of suitable consistency techniques the inherent
complexity of collaborative design using solution spaces can be kept under control.

The conversion of the algebraic representation of constraints into spatial representa-
tions of their feasible regions avoids many analytical problems. Instead of the analytical
treatment of intersections and composition of constraints, these operations can be per-
formed on a geometrical representation, using well known methods and data structures
from computer vision and graphics.

Using spatial representations of feasible regions we also can use robust polynomial
time and space methods to approximate high dimensional solution spaces, visualise pro-
jections and allow designers to explore solution spaces interactively. Both, visualisation
and interactive exploration are interesting tools for decision-making in collaboration.

2.4 Summary

Many of the drawbacks associated with most currently used methods for collaboration in
design can be derived from the fact that project partners only work with point solutions.
We suggest to augment the point solutions in collaborative design with solution spaces.
This breaks negotiation into two phases: negotiation about project requirements using
solution spaces and negotiation about parameter values within the solution space.

Several of the problems encountered in collaboration with single solutions do not occur
in the solution space approach (see Table 2.2). Premature decisions as they are provoked
when using single solution exclusively are not needed when designers can specify solution
spaces. Therefore, no artificial conflicts occur. Moreover, real conflicts can be detected
automatically when formal information about project requirements is available. When the
context of a project changes specifications of solution spaces can mainly be reused while in
the single solution approach complete renegotiation of all issues is triggered. In general, less
iterations during negotiation are expected when using solution spaces. Furthermore, the
automatic detection of real conflicts allows to delegate responsibility for design consistency
to change initiators, such that change recipients are no longer overwhelmed by verification
tasks as it is often the case when using single solutions.

Negotiation about parameter values cannot be eliminated altogether. In order to decide
which actual solution will be chosen, partners still need to agree in negotiations. During
these negotiations, however, less objections are expected, because the negotiations are
guided by the boundaries of solution spaces. Since consistency is guaranteed by computer
support, we can also expect that partners will be less restrictive to innovative solutions.

We propose the use of constraint satisfaction problems (CSPs) as concise description of
solution spaces. Constraints in the form of mathematical relations such as equalities and
inequalities are easy to manipulate, have a widely understood, unambiguous semantics and

2.4. SUMMARY 23

Collaboration aspect Single Solutions Solution Spaces
Premature decisions forced avoided
Artificial conflicts very likely avoided
Real conflicts difficult to detect automatic detection
Keep design consistent change recipients change initiators
Changes in context complete renegotiation reuse of previous work

Table 2.2: Single solutions versus solution spaces in collaborative design.

are compact enough for transmission through computer networks. Moreover, constraints in
mathematical form provide a natural means to describe and represent project restriction,
since much engineering knowledge is already provided in the form of constraints. Finally,
the structure of CSPs represented in constraint and collaboration graphs reveals important
information about dependencies between subtasks of different project partners.

Tools to visualise and interactively explore solution spaces can be provided in order
to support informed decision-making. The use of constraints and solution spaces helps to
delay decisions for variable values until they become essential for the completion of the
project. When premature decisions are reduced, information related to possible alterna-
tives is retained. This is a variant of the least commitment paradigm often employed for
planning tasks. In the automotive industry, decision delay strategies have already been
adopted by major manufacturers (see [Ward et al., 1995]).

In many practical cases, knowledge about a project cannot be modelled completely.
Our approach does not require constraint sets to be complete. If a constraint is missing
from the set, the real solution space may be smaller than the calculated approximation.
Constraints that cannot be represented algebraically are expressed during negotiation by
guiding the selection of the point solution in the solution space. Therefore, constraints
should not be thought of as defining feasible solutions but rather, they are a delimitation
of what is not possible. CSP techniques thus provide good support for interactive decision-
making when complete knowledge modelling is not possible.

24 CHAPTER 2. COLLABORATIVE DESIGN USING SOLUTION SPACES

Chapter 3

Implementing CDSS
using Constraint Techniques

Although the solution space approach to collaborative design described in Chapter 2 is
very promising, its implementation is far from trivial. In general, the exact representation
and treatment of solution spaces is not tractable. Constraint satisfaction techniques,
however, provide means to approximate solution spaces with polynomial complexity and
are therefore used in this thesis to represent and compute with solution spaces.

This chapter describes the techniques we propose for implementing collaborative de-
sign using solution spaces (CDSS). Collaborators specify the project requirements using
constraints given as sets of mathematical relations expressed with unary and binary op-
erators. Thereby, the variables involved have continuous domains, i.e., can take values
from an interval in <. Such sets of constraints together with the domains of the variables
involved define numeric constraint satisfaction problems (numeric CSPs). We propose to
approximate solution spaces of numeric CSPs by the following three steps:

1. Algebraic reformulation in terms of ternary constraints,

2. Conversion of constraints in algebraic form into explicit spatial representation and

3. Approximation of solution spaces through consistency techniques.

A constraint is called ternary, if it contains at most 3 variables. In order to motivate
steps 1 and 2, we first describe the consistency algorithms in Section 3.1. These algorithms
are restricted to ternary numeric CSPs but provide techniques with polynomial time and
space complexity to approximate solution spaces for such CSPs. Some standard methods to
enforce consistency are only defined for the binary case, while we here present consistency
algorithms adapted to ternary CSPs. Moreover, a variant of (3,2)-relational consistency’s
revision step with improved space efficiency is presented.

The restriction of consistency algorithms to ternary constraints is not problematic,
since numeric CSPs expressed using exclusively unary and binary mathematical operators
can always be reformulated in terms of ternary constraints. It is intuitively clear that the

25

26 CHAPTER 3. IMPLEMENTING CDSS USING CONSTRAINT TECHNIQUES

ternarisation can be reached by introducing auxiliary variables for intermediate results
of all binary operators. In Section 3.2 we suggest new methods to eliminate unnecessary
intermediary variables from the original CSP and heuristics to introduce fewer auxiliary
variables during ternarisation.

Reformulation in terms of ternary constraints also allows space efficient approximation
of the constraints’ feasible regions by an explicit spatial representation, Advantages of such
a spatial representation include the fact that robust composition and intersection as it is
needed for consistency calculation can be implemented. These operators can more easily
treat complex analytic problems, such as division by zero or branches going to infinity. In
this research we use 2k-trees as data-structure to represent constraints and solution space
approximations. Improved methods for conversion of algebraic constraints into spatial
representations using interval arithmetic are presented in Section 3.3.

Finally, new techniques for interactive exploration of solution spaces are described
in Section 3.4. Coupled with an intuitive user interface, such exploration allows better
understanding of multidimensional relations between design parameters.

3.1 Consistency Algorithms for Ternary CSPs

CSP algorithms fall into two categories. On one hand consistency techniques use a variety
of methods to restrict the search space to interesting regions. They prune parts of the
search space to discard those branches where no solutions can be found. On the other
hand splitting and backtracking techniques allow searching for solutions. The remainder
of this section focuses on consistency techniques for ternary numeric CSPs. Such methods
determine solution space approximations with polynomial complexity. Depending on the
consistency algorithm applied, different levels of quality for the approximation can be
achieved. We will use the following notation and definition of a CSP:

Definition 3.1 A constraint satisfaction problem P is a tuple (V,D, C), where

• V = {V1 . . . Vn} is the set of variables involved in P,

• D = {D1 . . . Dn} is the set of domains, containing one element Di for each variable
Vi, which contains all valid values for Vi, and

• C = {C1 . . . Cm} is the set of constraints which must hold for any solution of P.

The set of variables involved in a constraint Ci is called scope. Total constraints
represent the conjunction of all constraints involving the same set of variables {V1, . . . , Vk}
and are denoted CV1...Vk

. Each constraint CV1...Vk
defines a set of valid value combinations

for the variables V1, . . . , Vk. The search space S of a CSP P = (V,D, C) is given by the
Cartesian product of its domains S = D1 × . . .×Dn.

An important class of CSPs involves variables that have finite domains, i.e. all elements
of D are enumerable sets of values. Efficient methods to achieve various degrees of con-
sistency [Bessière, 1994, Mackworth, 1977a, Mohr and Henderson, 1986] are available and

3.1. CONSISTENCY ALGORITHMS FOR TERNARY CSPS 27

sophisticated techniques for identifying solutions through intelligent backtracking exist
[Kondrak and van Beek, 1997]. While in many fields such as planning and resource allo-
cation it is often useful and efficient to consider variables with finite domains only, tasks
in engineering in general also involve variables that have continuous domains. Mixed dis-
crete and continuous CSPs are considered in [Gelle, 1998]. In this thesis we concentrate
on CSPs which involve exclusively continuous variables, the domains of which are intervals
in <.

Resolution of CSPs involving variables with continuous domains (numeric CSPs) is
different from solving CSPs on variables with finite domains. Most successful resolution
techniques for numerical CSPs concentrate on finding single solutions, possibly consid-
ering optimisation criteria. Most techniques are not related to CSP research. Popular
techniques include linear and non-linear programming, numerical analysis, hill-climbing
and stochastic techniques. In order to approximate solution spaces in a tractable way,
however, we propose consistency techniques. These algorithms determine in polynomial
time a labelling which restricts the original search space to interesting regions.

3.1.1 Local Consistency

Local consistency algorithms provide an overestimation of the solution space. They are
used to filter the search space before searching for solutions, and to detect conflicts in CSPs.
Local consistency algorithms approximate solution spaces by using local inconsistencies
to prune the original search space. Constraints characterise local inconsistencies, value
combinations which cannot occur in any solution to the problem. Consistency algorithms
analyse small subproblems of CSPs in order to detect such inconsistencies, prune the
search space accordingly and propagate these changes into connected subproblems.

According to the size k of subproblems analysed during computation of consistency, k-
consistency is defined [Freuder, 1978]. A k-consistency algorithm provides an approxima-
tion of the solution space where each subproblem of k variables is consistent. This amounts
to ensuring that each partial instantiation of k− 1 variables within the k-consistent space
can be extended consistently to any kth variable. A constraint network fulfils strong k-
consistency if it is i-consistent for 1 ≤ i ≤ n, where n is the number of variables in the
CSP. Thereby, k is smaller than n for local consistency,

In practice, the solution space approximation determined by k-consistency algorithms
is represented by a (k − 1)th-order labelling:

Definition 3.2 A kth-order labelling L of a CSP P is a set of labels LF1,...Vk
⊆ D1×. . .×Dk

for each combination of k variables,

For each k−1-tuple of variables a label is determined which contains all value combinations
for the k − 1 variables involved that can be extended to any kth variable. Thus a 3-
consistency algorithm produces a two-dimensional label for any pair of variables, i.e. a
2nd-order labelling. For all combinations of values contained within such a 2-dimensional

28 CHAPTER 3. IMPLEMENTING CDSS USING CONSTRAINT TECHNIQUES

label, any third variable can be instantiated such that all constraints of the CSP are
satisfied.

Although k-consistency ensures extensibility of partial solutions involving k − 1 vari-
ables to any kth variable, there is in general no guarantee that such partial solutions are
extensible to a complete solution if the CSP contains more than k variables. Locally
consistent labellings usually overestimate the solution space and it is even possible that
a locally consistent label does not contain any value combination that is extensible to a
solution for the whole problem.

However, enforcing local consistency has the advantage that it has polynomial com-
plexity [Mackworth and Freuder, 1985] and therefore, low degrees of consistency can be
achieved quickly. Moreover, if some local consistency algorithm results in empty labellings,
it is guaranteed that no solution to the CSP exists. As a result, local consistency methods
are often used in practice to improve search through pruning inconsistent values from the
original search space and to detect conflicting constraint sets.

3.1.2 Global Consistency

A stronger notion than local consistency is often desirable. When the labelling constructed
by a consistency algorithm contains only those values or value combinations that occur in
at least one complete solution, it is said to be globally consistent. A globally consistent
labelling is a compact and conservative representation of all solutions admitted by a CSP.
It is sound in the sense that the labelling never admits any value combination which does
not lead to a solution. It is complete in the sense that all solutions are represented in it.
In a globally consistent constraint network, search can be performed without backtracking
[Freuder, 1982].

In general, a globally consistent labelling may require explicit representation of all
induced constraints for all variables in the problem (i.e., computing n − 1-dimensional
labels for a problem of size n by enforcing n-consistency), a task which has exponential
complexity in the worst case. For special classes of problems, however, low orders of
consistency are equivalent to global consistency. These results lead to polynomial time
algorithms for computing globally consistent labellings and can be summarised as follows:

• Strong 2-consistency (often called arc-consistency) is equivalent to global consistency
when the CSP is binary and its constraint graph is a tree [Freuder, 1982],

• Strong 3-consistency (often called path-consistency) is equivalent to global consis-
tency when the CSP is convex1 and binary [Dechter et al., 1991, van Beek, 1992].

• (3,2)-relational-consistency (a variant of 5-consistency defined in [Sam-Haroud, 1995,
Sam-Haroud and Faltings, 1996] is equivalent to global consistency when the CSP
is convex and ternary.

1A CSP is convex when all its constraints are convex. A constraint is convex if the straight line between
any two feasible points entirely lies within the feasible region.

3.1. CONSISTENCY ALGORITHMS FOR TERNARY CSPS 29

Note that numeric CSPs expressed as mathematical relations using exclusively unary
and binary constraints can always be transformed into ternary CSPs as needed by (3,2)-
relational consistency (see Section 3.2 for details). Therefore, the global consistency result
for convex ternary CSPs is of particular interest.

In summary, algorithms which achieve 2-, 3- and (3,2)-relational consistency can com-
pute complete and sound descriptions of the entire solution space with polynomial com-
plexity under certain conditions. When the problem has no special simplifying conditions,
these algorithms are still useful pre-processing tools for reducing the size of the search
space. They can be interleaved with interval based backtrack search algorithms to gener-
ate consistent subregions of the solution space [Jussien and Lhomme, 1998]. Alternatively,
users may wish to explore the solution space approximation interactively, particularly when
it is known that available formalised knowledge is incomplete.

3.1.3 Consistency Algorithms

Many of the standard definitions of consistency algorithms such as arc-, path- and k-
consistency are only valid for binary CSPs, i.e., CSPs which only contain constraints
involving at most two variables. However, in engineering constraints are rarely binary
and numeric CSPs cannot easily be converted into binary form. In the remainder of this
section we propose versions of consistency algorithms for ternary constraints, because the
treatment of higher arity constraints is very difficult and because numeric CSPs using
unary and binary operators can always be rewritten in terms of ternary constraints (see
Section 3.2).

The implementation of the algorithms described here are based on the explicit represen-
tation of labels and feasible regions of constraints using a spatial data-structure. Thereby,
2k-trees as they are known from computer vision [Samet, 1990a, Samet, 1990b] are used.
2k-trees allow the representation of high-dimensional spaces, have the ability to compact
homogenous regions, and provide efficient and robust set operators like intersection and
projection as they are needed in the context of consistency (see Section 3.3)..

Conventional Arc-Consistency

Arc- and 2-consistency analyse subproblems of size 2 during revision and originally have
been defined for binary CSPs only. In the context of binary CSPs, arc-consistency and
strong 2-consistency are in fact equivalent. However, when ternary or in general n-ary
constraints are allowed, the approach to consider one constraint at a time for revision of
labels (arc-consistency) is not equivalent to revising labels by considering all constraints
which involve the arc revised (2-consistency). Versions of both algorithms for ternary
CSPs are presented here.

Conventional arc-consistency was originally proposed for binary CSPs on discrete vari-
ables [Mackworth, 1977a] and was extended to n-ary discrete CSPs in [Mackworth, 1977b].
An adapted version of arc-consistency for n-ary continuous CSPs represented using 2k-trees
was proposed in [Sam-Haroud, 1995], and a general schema for achieving arc-consistency

30 CHAPTER 3. IMPLEMENTING CDSS USING CONSTRAINT TECHNIQUES

Algorithm 3.1: Arc-consistency algorithm similar to AC-3.

function τ -arc(Constraints)
τ -arc-init(Constraints, Q, L)
while Q 6= ∅ do

(i, j)← pop(Q)
if τ -arc-revise(Constraints, i, j, L) then

Q← Q ∪ related-arcs(i, j, Constraints)
end

end
return L

end.

for non-binary discrete CSPs has been suggested in [Bessière and Régin, 1997]. The fol-
lowing properties define an arc-consistent labelling:

Definition 3.3 A 1st-order labelling L = {LV1 , . . . , LVn} for a ternary CSP P = (V,D, C)
is arc consistent when for every value x ∈ LX , where X ∈ V, and every constraint
CXY Z ∈ C, there exist values y ∈ LY and z ∈ LZ such that CXY Z is satisfied.

Every variable has a unary label which gives the values the variable can possibly take.
The algorithm presented here repeatedly refines these labels as long as changes occur (see
Algorithm 3.1). The arc-consistency algorithm relies on three subroutines:

• Initialisation of the queue and the labels (Algorithm 3.2),

• Revision of an arc (Algorithm 3.3) and

• Determination of arcs to be revised after successful revision (Algorithm 3.4).

Defining auxiliary functions for these tasks facilitates the formalisation of the arc-
consistency algorithm (Algorithm 3.1). τ -arc receives total binary and ternary constraints
as 2k-trees in Constraints. A total constraint is computed by intersecting all constraints
which contain the same set of variables, thereby improving the refinement of variables by
considering such constraints simultaneously. Algorithm 3.1 determines one unary label
per variable in L. The queue Q in Algorithm 3.1 contains the arcs which still need to
be revised. Thereby an arc is a pair of variables (i, j) where i is the variable whose label
changed recently and j is the variable whose label is to be revised.

Algorithm 3.1 is very similar to AC-3 [Mackworth, 1977a]. From a theoretical point
of view it is applicable to n-ary constraints. However in practice, 2k-tree representations
of n-ary constraints grow excessively large for n > 3. Therefore, we suggest its use for
ternary CSPs.

3.1. CONSISTENCY ALGORITHMS FOR TERNARY CSPS 31

Algorithm 3.2: Initialise queue and labels for arc-consistency.

procedure τ -arc-init(Constraints, Q, L)
Input: Constraints
Output: Q, L
Q← {(i, j)|∃C ∈ Constraints, i, j ∈ vars(C)}
Li ← universal ∀i ∈ vars(Constraints)
foreach C ∈ Constraints do

if C is unary then
{i} ← vars(C)
Li ← C
remove C from Constraints

end
end

end.

Algorithm 3.3: Revision step for conventional arc-consistency.

function τ -arc-revise(Constraints, i, j, L)
revised← FALSE
foreach C ∈ Constraints|{i, j} ⊆ vars(C) do

if C is binary then L′ ← Lj ⊗
∏

j (C ⊗ Li)
else {k} ← vars(C)− {i, j}; L′ ← Lj ⊗

∏
j (C ⊗ Li ⊗ Lk)

if L′ 6= Lj then Lj ← L′; revised← TRUE

end
return revised

end.

τ -arc-init stores all arcs implied in the elements of Constraints on Q. The function
vars() returns the variables contained in a set of constraints. Unary constraints are in-
cluded into the labels, such that during propagation only binary and ternary constraints
are encountered. Algorithm 3.2 illustrates this procedure. The keyword universal repre-
sents the constraint which does not restrict the values for the involved variable.

The revision function τ -arc-revise propagates the information contained in a certain
label to another label through all constraints which involve both labels. A label L is
refined if it contains values which are inconsistent with a constraint C and the labels of
the other variables involved in C. The function τ -arc-revise (Algorithm 3.3) attempts to
refine Lj with respect to any C ∈ Constraints and a recently changed label Li. It returns
TRUE on success and FALSE otherwise. The constraint C in τ -arc-revise is supposed
to be restricted by all implied labels.

∏
i C denotes the projection of constraint C on the

variable i, while ⊗ denotes the intersection of labels or constraints.

32 CHAPTER 3. IMPLEMENTING CDSS USING CONSTRAINT TECHNIQUES

Algorithm 3.4: Determine arcs to be revised after successful revision of (i, j).

function related-arcs(i, j, Constraints)
arcs← ∅
foreach C ∈ Constraints|j ∈ vars(C) do

arcs← arcs ∪ {(j, k)|k ∈ vars(C) ∧ k 6= i}
end
return arcs

end.

Whenever a label is successfully refined, any arc through which the refinement might
propagate is added to Q unless it already is in the queue and except for the arc which just
caused the change in Li. The algorithm which determines the arcs to be revised due to a
successful revision is given in Algorithm 3.4.

Compared to the arc-consistency algorithms proposed in [Gelle, 1998], our approach
is more robust due to the use of explicit spatial representation of constraints and labels,
and the corresponding robust set operators. Analytical problems related to intersection
of curves and surfaces are avoided. On the other hand the pruning of our method is
compromised by the limited precision of the explicit representations.

2-Consistency

The 2-consistency algorithm suggested here is inspired by the definition of local consistency
for ternary constraints given in [Faltings and Gelle, 1997]:

Definition 3.4 A 1st-order labelling L = {LV1 , . . . LVn} for a ternary CSP P = (V,D, C)
is 2-consistent when for all X, Y ∈ V and any x ∈ LX , there exists y ∈ LY such that for
every constraint CXY Z there exists also z ∈ LZ such that CXY Z is satisfied.

This notion of consistency is stronger than arc-consistency, because it considers inter-
sections of several constraints whenever these share two variables. τ -arc misses certain
opportunities of refinement, because if certain constraints share variables, the intersection
of their projections onto the shared variables is not always exploited. Consider two ternary
constraints C1 and C2. There are four cases to be distinguished:

1. C1 and C2 do not share variables: The two constraints are independent and
consistency algorithms need not consider intersections.

2. C1 and C2 share 1 variable v: The intersection of the projections of C1 and C2

onto v is exploited in v’s label, thus arc-consistency does not loose information.

3. C1 and C2 share 2 variables v and w: The intersection of the projections of C1

and C2 onto (v, w) is not exploited in arc-consistency, but may restrict the domains
of v and w.

3.1. CONSISTENCY ALGORITHMS FOR TERNARY CSPS 33

4. C1 and C2 share 3 variables: The two constraints are combined into one total
constraint before τ -arc is called, thus there is no loss of information.

In order to exploit the intersection of constraints which share two variables, it is enough
to adapt the revision step of the arc-consistency algorithm. Algorithm 3.5 replaces Al-
gorithm 3.3. In B the current total binary constraint for the arc under consideration is
computed. B is then used for constraint propagation. k is used to determine the third
variable involved in C. For binary constraints, it is supposed that k is empty and the
corresponding label Lk is universal.

The idea to exploit the intersection of overlapping constraints has been used earlier to
achieve pairwise consistency [Jansen et al., 1989]. However, pairwise consistency revises
the constraints while Algorithm 3.5 is used to revise domains.

Algorithm 3.5: Revision step for 2-consistency for ternary constraints.

function τ -2-revise(Constraints, i, j, L)
B ← universal constraint on i, j
foreach C ∈ Constraints|{i, j} ⊆ C do

if C is binary then B ← B ⊗ C ⊗ Li

else
{k} ← vars(C)− {i, j}
B ← B ⊗

∏
i,j (C ⊗ Li ⊗ Lk)

end
end
L′ ← Lj ⊗

∏
j B

if L′ 6= Lj then Lj ← L′; return TRUE
return revised

end.

Arc-Consistency versus Strong 2-Consistency

Arc- and strong 2-consistency as they are defined in this thesis are equivalent for bi-
nary CSPs. Moreover, they also yield the same results with ternary CSPs if no pairs of
ternary constraints share exactly two variables. In this case, the situation where strong
2-consistency exploits more information from the intersection of projections of constraints
does not occur. However, let us illustrate the potential additional refinement with the
following example with two constraints on four variables:

x + y < 1− a

x− y > b

where the domains of all variables are [0.0, 1.0]. The feasible region of these two ternary
constraints are illustrated on the lefthand side of Figure 3.1. These two constraints do share

34 CHAPTER 3. IMPLEMENTING CDSS USING CONSTRAINT TECHNIQUES

x and y, thus they may allow some additional refinement through strong 2-consistency.
When constraints are propagated individually through the arc (x, y) in this example,

no refinement is possible, since both projections of the individual constraints on (x, y)
cover the whole domains for x and y as shown in the centre of Figure 3.1. In contrast
to conventional arc-consistency, strong 2-consistency as defined above considers the in-
tersection of the projections of these constraints on (x, y) when revising the arc (x, y) as
illustrated on the righthand side of Figure 3.1, and thus discovers the possibility to refine
y’s label to [0.0, 0.5].

Figure 3.1: Improved refinement of strong 2-consistency compared to arc-consistency.

3-Consistency

The impact of the result generated by arc- and strong 2-consistency algorithms is limited
by the representation of their results through unary labels. The search space determined is
a collection of cubes or hypercubes each edge of which is parallel to some axis and perpen-
dicular to all other axes. More sophisticated shapes of search spaces can be determined by
using higher dimensional labels. Strong 3-consistency, also called path-consistency, uses
binary labels and makes all induced ternary constraints explicit [Freuder, 1982]. Adapta-
tion to 2k-trees of the algorithms suggested for discrete binary CSPs were first proposed
in [Sam-Haroud, 1995]. In contrast to 3-consistency algorithms suggested so far, the algo-
rithm developed within this thesis not only treats binary but also takes ternary constraints
into account. Let us add its formal definition here:

Definition 3.5 A 2nd-order labelling L = {LV1V2 , LV1V3 , . . . LVnVn} for a ternary CSP
P = (V,D, C) is 3-consistent when for any (x, y) ∈ LXY where X, Y ∈ V and any Z ∈ V,
there exists z ∈ DZ such that (x, z) ∈ LXZ , (y, z) ∈ LY Z and (x, y, z) satisfies CXY Z .

3.1. CONSISTENCY ALGORITHMS FOR TERNARY CSPS 35

Algorithm 3.6: 3-consistency algorithm similar to PC-2.

function τ -3-consistency(Constraints)
τ -3-init(Constraints, Q, L)
while Q 6= ∅ do

(i, k, j)← pop(Q)
if τ -3-revise(Constraints, i, k, j, L) then

Q← Q ∪ related-paths(i, j)
end

end
return L

end.

We propose a version of 3-consistency similar to PC-2 [Mackworth, 1977a]. Binary
labels are continually refined as long as changes occur. Refinement is performed by propa-
gating changed labels through ternary constraints. Similar to the arc- and 2-consistency al-
gorithms described before, the sequence of refinements in τ -3-consistency (Algorithm 3.6)
is controlled by a queue (Q) which contains all paths still to be revised. A path is a set
of consecutive arcs. In the context of 3-consistency, paths always have length 2, i.e., they
contain just two arcs which share at least one variable. Constraints contains the 2k-tree-
representations of the CSP’s total constraints. Algorithm 3.6 relies on three subroutines:

• Initialisation of labels, constraints and queue (Algorithm 3.7)

• Revision of a path taking ternary constraint into account (Algorithm 3.8) and

• Determination of paths to be revised after successful revision (Algorithm 3.9).

3-consistency analyses subproblems of size three during revision. The standard ver-
sion of strong 3-consistency, also called path-consistency, is defined for binary CSPs only
[Mackworth, 1977a, Freuder, 1978]. We propose a generalisation to ternary constraints.
In the revision step three variables are involved. In order to generalise the standard al-
gorithm it is enough to intersect the composition of the two input-labels with the total
constraint involving the three variables before projecting the result onto the output-label.

In order to make sure that apart from the labels only ternary constraints must be
treated during propagation, the initialisation described in Algorithm 3.7 compiles unary
and binary constraints into the labels. Moreover, Q is initialised to contain all possible
paths. Note that Lij is equal to Lji. In order to avoid computing too many labels, we
suppose the there exists an ordering relation among variables and only compute labels
with the lower index first.

In analogy to PC-2 [Mackworth, 1977a] for discrete CSPs, τ -3-revise (Algorithm 3.8)
revises the binary label Lij with respect to the path i − k − j and possibly the corre-
sponding total ternary constraint in Constraints. It returns TRUE if a refinement was

36 CHAPTER 3. IMPLEMENTING CDSS USING CONSTRAINT TECHNIQUES

Algorithm 3.7: Initialise queue and labels for strong 3-consistency.

procedure τ -3-init(Constraints, Q, L)
Input: Constraints
Output: Q,L
Q← {(i, k, j)|i, j ∈ vars(Constraints), i ≤ j,¬(i = k = j)}
Lij ← universal ∀i, j ∈ vars(Constraints), i ≤ j
foreach C ∈ Constraints do

if C is not ternary then
if C is unary then {i} ← vars(C);Lii ← C;
if C is binary then {i, j} ← vars(C);Lij ← C;
remove C from Constraints

end
end

end.

Algorithm 3.8: Revise L(i, j) for path-consistency through k and Constraints.

function τ -3-revise(Constraints, i, k, j, L)
Select C ∈ Constraints|{i, j, k} = vars(C)
L′ ← Lij ⊗

∏
i,j (Lik ⊗ Lkk ⊗ Lkj ⊗ C)

if L′ = Lij then return FALSE
else Lij ← L′; return TRUE

end.

achieved, FALSE otherwise. ⊗ denotes intersection in the extended sense mentioned in
Section 3.3.4, and therefore also represents the composition operator for 2k-trees.

∏
i,j C

denotes the projection of C on the variables i and j.
The function related-paths determines the paths to be revised when the label Lij is

successfully refined. Similar to [Mackworth, 1977a], all paths are generated, which involve
Lij when revised, i.e., all tuples of the form (i, j, k) or (k, i, j). The existence of a strict
order on the variables is supposed in order to generate paths without duplicates.

Correctness of τ-3-consistency

3-consistency ensures that when instantiating any pair of variables (i, j) within the label
Lij determined by a 3-consistency algorithm, there exists a value for any third variable
k such that all constraints of the CSP are satisfied. Algorithm 3.6 guarantees after exe-
cution that its revision step Lij ← Lij ⊗

∏
i,j (Lik ⊗ Lkk ⊗ Lkj ⊗ C), where C is the total

constraint which involves variables i, j and k, does no longer yield any refinement. There-
fore, no value combination contained in Lij can be incompatible with C, Lik, Lkk or Lkj ,

3.1. CONSISTENCY ALGORITHMS FOR TERNARY CSPS 37

Algorithm 3.9: Determine paths to be revised when label Lij changes.

function related-paths(i, j)
if i = j then

paths← {(m, i, n)|m,n ∈ vars(Constraints),m < n,¬(m = i = n)}
else

paths← {(i, j, m)|m ∈ vars(Constraints), i ≤ m,m 6= j}
∪ {(m, i, j)|m ∈ vars(Constraints),m ≤ j, m 6= i}
∪ {(j, i, m)|m ∈ vars(Constraints), j ≤ m}
∪ {(m, j, i)|m ∈ vars(Constraints),m ≤ i}

end
return paths

end.

otherwise this value would cause further refinement of Lij .
The projections of other ternary total constraints on one or two of the variables i, j

and k are taken into account through propagation. Lik, for example, only contains values
which are compatible with any constraint C with vars(C) = {i, k, l}, since otherwise the
revision of the path (i, l, k) would lead to a refinement. Thus τ -3-consistency as described
in Algorithm 3.6 with its initialisation (Algorithm 3.7), revision step (Algorithm 3.8) and
propagation (Algorithm 3.9) reliably computes strong 3-consistency for ternary CSPs.

(3,2)-relational Consistency

It can be shown that strong 3-consistency can achieve global consistency under certain
partial convexity restrictions for binary CSPs, thus allowing backtrack-free search for
solutions [Freuder, 1982]. A higher degree of consistency is needed to achieve global con-
sistency for ternary CSPs. Under partial convexity restrictions similar to those for binary
constraints, (3,2)-relational consistency can reach global consistency on ternary CSPs
[Sam-Haroud, 1995]. (3,2)-relational consistency analyses subproblems of size 5 during
revision. Its efficency in space has been improved in this research by not storing the in-
termediate 5-dimensional composition of labels during revision, without loosing efficiency
in computation. (3,2)-relational consistency can be defined as follows:

Definition 3.6 A 3rd-order labelling L = {LV1V2V3 , LV1V2V4 , . . . LVnVnVn} for a ternary
CSP P = (V,D, C) is (3,2)-relational consistent when for any (x, y, z) ∈ LXY Z where
X, Y, Z ∈ V and any U, V ∈ V, there exist u ∈ DU and v ∈ DV such that (x, u, v) ∈ LXUV ,
(y, u, v) ∈ LY UV and (z, u, v) ∈ LZUV .

We describe in more detail the (3,2)-relational consistency algorithms proposed in
[Sam-Haroud, 1995, Sam-Haroud and Faltings, 1996]. Ternary labels are continually re-
fined as long as changes occur. Refinement is performed by propagating changed labels

38 CHAPTER 3. IMPLEMENTING CDSS USING CONSTRAINT TECHNIQUES

Algorithm 3.10: Algorithm for (3,2)-relational consistency.

function τ -(3,2)-relational-consistency(Constraints)
τ -(3,2)-init(Constraints, Q, L)
while Q 6= ∅ do

(i, j, k, u, v)← pop(Q)
if τ -(3, 2)-revise(i, j, k, u, v, L) then

Q← Q ∪ related-5tuples|(i, j, k)
end

end
return L

end.

Algorithm 3.11: Compile all total constraints into the labels.

procedure τ -(3,2)-init(Constraints, Q, L)
Input: Constraints
Output: Q, L
Q← {(i, j, k, u, v)|i, j, k, u, v ∈ vars(Constraints), i ≤ j ≤ k, u ≤ v}
Lijk ← universal ∀i, j, k ∈ vars(Constraints), i ≤ j ≤ k
foreach C ∈ Constraints do

if C is unary then unary :{i} ← vars(C); Liii ← C
if C is binary then binary :(i, j)← vars(C); Liij ← C
if C is ternary then ternary : (i, j, k)← vars(C); Lijk ← C

end
end.

through the network of labels. Similar to the consistency algorithms presented so far, the
sequence of refinements in τ -(3, 2)-consistency (Algorithm 3.10) is controlled by a queue
(Q) which contains all 5-tuples still to be revised. Constraints contains the 2k-tree-
representations of the CSP’s total constraints. Algorithm 3.10 relies on three subroutines:

• Initialisation of queue and integration of constraints into the labels (Algorithm 3.11),

• Revision of 5-tuple (Algorithm 3.12) and

• Determination of 5-tuples to be revised after successful revision (Algorithm 3.13).

The initialisation procedure is illustrated in Algorithm 3.11. It ensures that all total
constraints are compiled into the labels. Since labels have the same dimension as the
maximal dimension of the constraints, these constraints need no longer be treated. Algo-
rithm 3.11 chooses one label for any constraint and intersects the label with the constraint,

3.1. CONSISTENCY ALGORITHMS FOR TERNARY CSPS 39

Algorithm 3.12: Revise Lijk for (3,2)-relational consistency, through u and v.

function τ -(3,2)-revise(i, j, k, u, v, L)
L′ ← Lijk ⊗

∏
i,j,k Liuv ⊗ Ljuv ⊗ Lkuv

if L′ = Lijk then return FALSE
else Lijk ← L′; return TRUE

end.

Algorithm 3.13: Determine 5-tuples to be revised after successful revision of Lijk.

function related-5tuples(i, j, k)
return {(i, u, v, j, k)|u, v ∈ vars(Constraints), i ≤ u ≤ v}∪

{(u, i, v, j, k)|u, v ∈ vars(Constraints), u ≤ i ≤ v}∪
{(u, v, i, j, k)|u, v ∈ vars(Constraints), u ≤ v ≤ i}∪
{(j, u, v, i, k)|u, v ∈ vars(Constraints), j ≤ u ≤ v}∪
{(u, j, v, i, k)|u, v ∈ vars(Constraints), u ≤ j ≤ v}∪
{(u, v, j, i, k)|u, v ∈ vars(Constraints), u ≤ v ≤ j}∪
{(k, u, v, i, j)|u, v ∈ vars(Constraints), k ≤ u ≤ v}∪
{(u, k, v, i, j)|u, v ∈ vars(Constraints), u ≤ k ≤ v}∪
{(u, v, k, i, j)|u, v ∈ vars(Constraints), u ≤ v ≤ k}

end.

thus preparing the labels for later propagation. Furthermore the queue of 5-tuples is such
that each ternary label is revised through all pairs of variables at least once.

The revision step shown in Algorithm 3.12 ensures that any partial solution chosen from
within one ternary label can be extended to two more variables. Therefore, (3,2)-relational
consistency is as strong as 5-consistency and has the same computational complexity
although its result is more compact than the result of 5-consistency. 5-consistency would
imply to store a quaternary label for every 4-tuple of variables, whereas (3,2)-relational
consistency stores its result in ternary labels, one per triplet of variables. Therefore,
5-consistency has space complexity O(n4), while (3,2)-relational consistency has space
complexity O(n3).

(i, j, k) given to related-5tuples represent a label Lijk, which has been successfully
revised and returns a set R of 5-tuples. R contains all 5-tuples, which cause (3, 2)-revise

to use Lijk as input. Algorithm 3.13 assumes that i ≤ j ≤ k. Any 5-tuples (i, j, k, u, v)
must satisfy the restrictions i ≤ j ≤ k and u ≤ v in order to benefit from the fact that
Lijk = Likj = Ljik = Ljki = Lkij = Lkji. However, the algorithm as described here leaves
some redundancy in the data, because it does not exploit the equivalence of binary labels
Liij and Lijj separately.

40 CHAPTER 3. IMPLEMENTING CDSS USING CONSTRAINT TECHNIQUES

A major drawback of τ -(3, 2)-relational-consistency is hidden in its revision step (Al-
gorithm 3.12). The expression L′ ← Lijk⊗

∏
i,j,k Liuv⊗Ljuv⊗Lkuv implies an intermediary

composition in 5 dimensions before projection onto (i, j, k). When implementing this re-
vision step using matrices to represent labels, it is obvious that this intermediate result
is not stored in 5-dimensional matrix before projecting it back onto a three dimensional
matrix. Instead, the 5-dimensional composition is just computed implicitly while each of
its elements is immediately projected onto the label to be modified. However, this proce-
dure is not trivial when computing with 2k-trees. In Section 3.3.4 we describe, how direct
revision of 3-dimensional labels for (3-2)-relational consistency can be implemented.

3.1.4 Degrees of Consistency and Solution Spaces

The reduced search space computed by consistency algorithms can also be interpreted
as overestimating approximation of solution spaces. Figure 3.2 illustrates the different
qualities of approximations provided by arc-, path- and (3,2)-relational consistency re-
spectively. It shows projections of the arc-, path- and (3,2)-relational consistent spaces
of an engineering problem onto the same three variables. The three variables chosen are
not related by any direct constraints, the consistency algorithms compute the restrictions
induced by other constraints. Since the representation of an arc-consistent space is a col-
lection of unary labels, its projection onto three variables is a cube or in general a set of
cubes (Figure 3.2a). The same projection of a path-consistent space is the intersection
of three prisms, since it is represented using two dimensional labels (Figure 3.2b). (3,2)-
relational consistency uses three dimensional labels and thus provides general forms in
3d-projections (Figure 3.2c).

Due to the simplicity of solution space approximations determined by arc- or 2-
consistency, these consistency algorithms do not reveal hidden relations between variables.
Nevertheless they are efficient tools for finding conflicts in project requirements. Even for
large examples these methods based on unary labels are able to detect conflicts within

(a) (b) (c)

Figure 3.2: Solution space approximations of different precision generated by arc-, path-
and (3,2)-relational consistency (from left to right).

3.2. REWRITING NUMERIC CONSTRAINT SATISFACTION PROBLEMS 41

seconds. (3,2)-relational consistency is able to make hidden relations between originally
unrelated variable explicit. In convex problems this method moreover allows for interactive
exploration of the shape of the solution space. However, on large examples (3,2)-relational
consistency cannot be computed due to its elevated computational complexity. Path- or 3-
consistency is a compromise between the two. Although, for ternary constraints it cannot
determine labels which allow backtrack-free search, path- or 3-consistency approximates
hidden relations and can detect in many cases. Moreover, its computational complexity
allows for the analysis of real-world size problems.

3.2 Rewriting Numeric Constraint Satisfaction Problems

Rewriting numeric CSPs is useful for two reasons. Firstly, rewriting a CSP can be used
to enforce a normalised form of the CSP as it is for instance needed by the consistency
algorithms described in Section 3.1. Secondly, algebraic reformulation can lead to impor-
tant simplifications and thus better performance for consistency algorithms [Lottaz, 1999a,
Lottaz, 1999b].

The arity of a constraint is the number of variables it involves. The arity of a CSP is
equal to the arity of the highest-arity constraint. Numeric CSPs are often reformulated
in lower arity before computing consistency because CSPs of lower arity are considerably
simpler to treat. Rewriting a numeric CSP in lower arity can be performed by introducing
auxiliary variables for sub-expressions of high-arity constraints as illustrated in Figure 3.3.
In fact, it has been shown that rewriting numeric CSPs in terms of ternary constraints
is possible as long as only unary and binary operators occur in the constraints. It is
intuitively clear that any mathematical expression built using unary and binary operators
can be rewritten in ternary form by introducing an auxiliary variable for each intermediary
result generated by a binary operator.

Figure 3.3: Rewriting a 5-ary constraint in terms of several ternary ones.

The condition that equalities and inequalities must be expressed using exclusively
unary and binary mathematical operators holds for many practical applications. There-
fore, consistency algorithms like 2-consistency as described in [Faltings and Gelle, 1997,
Gelle, 1998] only accept ternary constraints. 2B- as well as 3B-consistency [Lhomme, 1993]
are based on primitive constraints, which are also ternary in order to guarantee the robust-
ness of the used projection operators. (r, r− 1)-relational consistency [Sam-Haroud, 1995]

42 CHAPTER 3. IMPLEMENTING CDSS USING CONSTRAINT TECHNIQUES

has exponential complexity in with respect to constraint arity. Therefore low-arity CSPs
are treated much more efficiently by this algorithm.

The rudimentary method to rewrite a numeric CSP in ternary form by introducing aux-
iliary variables for all binary operators, of course, possibly generates many new variables.
Since the performance of all consistency algorithms mentioned above strongly depends on
the number of variables involved in the given CSP, algorithms which introduce a small
number of auxiliary variables are needed. So far, very few algorithms to perform the task
of reformulating numeric CSPs in ternary form automatically have been suggested, the
rewriting is often done by hand.

In order to keep the number of variables in the final CSP low, it is also desirable
to eliminate unnecessary variables from the original CSP. When formalising problems
engineers and designers often use constants and intermediary variables which make the
CSP more readable and reusable. However, in the context of computing consistency the
elimination of such variables may decrease the number of variables of the ternarised CSP.
Therefore, we suggest to apply elimination of unnecessary intermediary variables before
performing ternarisation. Figure 3.4 shows the chained elimination of variables. In fact,
the elimination of the constants QC , d1 and λ in the example extracted from a steel-
structure holding a crane, shows that in fact Qrmax and QTr have become unnecessary.

Figure 3.4: Elimination of constants makes intermediary variable unnecessary.

The algorithms suggested in this chapter are particularly suited for consistency algo-
rithms which treat ternary constraints without any restriction on the complexity of the con-
straints’ expressions. Examples of such algorithms are found in [Faltings and Gelle, 1997,
Gelle, 1998, Sam-Haroud, 1995, Sam-Haroud and Faltings, 1996]. We improve existing
suggestions, such as Algorithm 3.15, by removal of unnecessary intermediary variables
from the original CSP and by optimising the number of auxiliary variables introduced.

The next subsection contains theoretical considerations about the relation between
constraint arity and consistency algorithms. Thereafter, the description of our algorithms
for eliminating unnecessary variables of the original CSP and for rewriting numeric CSPs
in ternary form are provided.

3.2. REWRITING NUMERIC CONSTRAINT SATISFACTION PROBLEMS 43

3.2.1 Constraint Arity and Consistency Algorithms

Treating high-arity constraints in consistency algorithms directly is very complex. Algo-
rithms which enforce consistency on the symbolic level (e.g. [Gelle, 1998]), face important
analytical problems when finding extrema, intersections and the like. Algorithms which
use explicit spatial representations of the constraints (e.g. [Sam-Haroud, 1995]) spend
an excessive effort to store these. The following considerations give an intuition about
the benefits of computing (r, r − 1)-relational consistency on low arity CSPs instead of
high-arity ones.

In [Sam-Haroud, 1995] it has been shown that, for a CSP of arity r, given partial con-
vexity restrictions (r, r − 1)-relational consistency is equivalent to global consistency, i.e.,
all solutions can be found without backtracking. Enforcing (r, r−1)-relational consistency,
however, requires an algorithm with computational complexity O(n2r−1), where n is the
number of variables in the CSP. As long as the convexity restrictions needed for global
consistency remain satisfied in the CSP rewritten in lower arity, we can expect the results
to be equivalent. Since the algorithm’s complexity is exponential in r, rewriting a numeric
CSP in lower arity before computing (r, r − 1)-relational consistency has the potential to
accelerate the calculation considerably.

Numeric CSPs expressed as mathematical expressions using unary and binary opera-
tors can be rewritten with lower arity by introducing auxiliary variables. It is intuitively
clear that by introducing auxiliary variables for the intermediary results of all binary op-
erators in a constraint, the constraint’s arity can be reduced at the expense of increasing
the number of variables (the auxiliary variables) and constraints (the definitions of the
auxiliary variables).

A constraint which defines an auxiliary variable that actually helps to reduce the arity
of another constraint has at least arity three. Otherwise, the auxiliary variable would
replace an expression which depends only on one variable by a new variable and could
thus not reduce the arity of any constraint. Therefore, a numeric CSP rewritten in the
above manner has at least arity three. On the other hand, arity three can always be
reached by replacing every binary operator by auxiliary variables.

So, on one hand decreasing the arity of a CSP before computing (r, r − 1)-relational
consistency reduces the computational complexity. On the other hand, there is a tradeoff
between decreasing arity and increasing the number of variables of the CSP by introducing
auxiliary variables in order to achieve the lower arity. For deciding whether rewriting CSPs
in lower arity pays off, we estimate how many auxiliary variables are introduced. Since
(r, r − 1)-relational consistency is exponential in r, we only consider the case when the
arity is reduced as much as possible, i.e., to arity 3.

In the worst case, rewriting a numeric CSP of arity r > 3 in ternary form requires the
addition of m auxiliary variables, where m is the number of binary operators in the CSP.
In this case, the complexity O((n + m)5) for (3,2)-relational consistency on the rewritten
constraint set compares to the complexity O(n2r−1) for (r, r− 1)-relational consistency on
the original CSP. In practical problems, the exponential influence of r can be expected to

44 CHAPTER 3. IMPLEMENTING CDSS USING CONSTRAINT TECHNIQUES

outweigh by far the polynomial influence of m.

Moreover, several consistency algorithms for numeric CSPs are dedicated to ternary
CSPs [Faltings and Gelle, 1997, Gelle, 1998, Lhomme, 1993, Sam-Haroud, 1995], since any
numeric CSP expressed with closed mathematical expressions in unary and binary oper-
ators can be rewritten using ternary constraints exclusively. Nevertheless, few methods
have been proposed to actually perform this task automatically. Known methods typically
generate far too many auxiliary variables, such that subsequent computation of consistency
is inefficient. Therefore, CSPs are often rewritten by hand although this may take several
hours if not days for large examples.

3.2.2 Removing Unnecessary Intermediary Variables

In practice, engineers like to use constants and certain intermediary variables to make the
formulation of their problem readable and adaptable to other situations, such that it can
be reused later. This implies an extra cost in the number of variables. The efficiency
of the consistency algorithms described in Section 3.1 highly depends on the number of
variables in the CSP. Therefore, we suggest methods to detect and remove unnecessary
intermediary variables. An intermediary variable is unnecessary, if it is unambiguously
determined by an equality and if it does not contribute to keep the constraints ternary.
Such variables can be substituted by the expressions by which they are defined.

3.2. REWRITING NUMERIC CONSTRAINT SATISFACTION PROBLEMS 45

Algorithm 3.14: Eliminate constants and unnecessary intermediary variables.

procedure eliminate-unnecessary(constraints)
while changes occur do

foreach equality C ∈ constraints do
foreach variable a ∈ C do

if check-subs(a, C, constraints) then
remove C from constraints
substitute a in constraints
break

end
end

end
end

end.

function check-subs(a, C, constraints)
f ← solve C for a
if f is not functional then return false
foreach C ′ ∈ constraints do

if substituting a in C ′ by f augments arity(C ′) above 3 then return false
end
return true

end.

An intermediary variable a is defined in the CSP as the result of a functional expression
a = f(x1, . . . , xn). It can be removed from the CSP by eliminating its definition from the
CSP and by substituting a wherever it occurs in the remaining constraints of the CSP
by f(x1, . . . , xn). However, substituting a is only enough to keep the CSP equivalent,
when a is a constant. Otherwise, the information contained in the domain of a is lost
and thus the new CSP is less restrictive. Therefore, the constraints a > f(x1, . . . , xn) and
a< f(x1, . . . , xn) must be added where a and a are the lower and upper bound of the
domain of a.

Candidates for potentially unnecessary variables can be found in any equality. Solving
an equality for one of its variables a yields the definition f(x1, . . . , xn) for a. However, this
is only valid if f(x1, . . . , xn) is functional. Otherwise, for instance if the original equation
was quadratic in a, substitution of a by f(x1, . . . , xn) in the CSP is not equivalent to its
original. In the case of a quadratic expression, substitution of a by f(x1, . . . , xn) implies
the loss of one of the two possible solutions for a.

If a is a valid candidate for substitution, it should be substituted if its substitution
does not increase the arity of any constraint to more than three. Removing a variable
the substitution of which renders any constraint C non-ternary is unlikely to be useful
in the context of making CSPs ternary, because it would imply an additional subsequent

46 CHAPTER 3. IMPLEMENTING CDSS USING CONSTRAINT TECHNIQUES

generation of at least one auxiliary variable in order to rewrite C in ternary form. Our
algorithm implementing the elimination of unnecessary intermediary variables is shown
in Algorithms 3.14. For illustration consider the following small example, a simplified
problem from civil engineering:

u < (3.18e−5Hs + 0.0054)S

Hs > 137.7− 0.08633S + 5.511e−5S2 − 8.358e−9S3

p = u + 9.62 · 10−5(0.0417W)1.5161

Hb > 0.077(pW 2)0.3976

Hb > 0.0168(SW 3)0.2839

This system of constraints contains the intermediary variable p which is defined here
as p = u + 9.62 · 10−5(0.0417W)1.5161. The definition of p only involves the variables
u and W . The only occurrence of p is in Hb > 0.077(pW 2)0.3976. Substituting p in
this ternary constraint leaves it ternary because W is involved in both, the definition
of p and the constraint where p is to be substituted. Therefore, p is an unnecessary
intermediary variable and its elimination accelerates computing consistency. In order to
keep the information of p’s domain, which is [15..50], we have to add the constraints
15 ≤ u + 9.62 · 10−5(0.0417W)1.5161 ≤ 50.

Since the substitution of a constant or an intermediary variable as described above
may decrease the arity of a constraint, unnecessary variables are eliminated iteratively
until no more changes occur. Not only those variables which are explicitly introduced
by designers as intermediary variables match the definition of unnecessary intermediary
variable. Mainly when designers decide to fix certain variables to constants, it is possible
that any variable may be eliminated from the CSP. Sometimes this can lead to undesirable
results, since the system may decide to remove variables, which are important for decision-
making. Therefore, engineers can mark variables as crucial for decision-making. Such
variables are not selected for elimination by the elimination algorithm.

3.2.3 Making Constraint Satisfaction Problems Ternary

It has been shown earlier that all numeric constraint satisfaction problems expressed with
exclusively unary and binary variables can be rewritten in terms of ternary constraints.
An obvious algorithm to perform this task, is to introduce an auxiliary variable for each
binary operator. Each auxiliary variable represents the result of the binary operator it is
attributed to. This algorithm has been implemented in early constraint packages, but even
when regeneration of auxiliary variables for reoccuring expressions is avoided it introduces
by far too many auxiliary variables.

We suggest heuristics to find suitable expressions to define auxiliary variables such
that fewer auxiliary variables are introduced. Our algorithm is able to define auxiliary
variables using complex expressions while the standard algorithm only introduces auxiliary
variables defined by expressions using at most one binary operator.

3.2. REWRITING NUMERIC CONSTRAINT SATISFACTION PROBLEMS 47

Our algorithm has shown in tests on practical examples from civil engineering that
it introduces fewer variables than the standard algorithm (Algorithm 3.15) and performs
almost as good as a reformulation by hand. This is because the expressions occurring in
practical problems are often not particularly complex but frequently quite large, involving
many operators.

Introducing Auxiliary Variables

A simple algorithm to rewrite a given CSP in terms of ternary constraints is suggested in
[Gelle, 1998, Sam-Haroud, 1995]. It replaces any binary operator in a constraint by a new
auxiliary variable which represents its result. This step is iterated until all constraints have
arity three or less. (see Algorithm 3.15). Thereby the operands of the chosen operator
do not contain any additional binary operator in order to avoid introducing non-ternary
constraints when defining auxiliary variables.

Algorithm 3.15: Simple algorithm to make one constraint ternary.

procedure simple-ternarise(C)
while C is not ternary do

choose a subexpression e : xi ◦ xj of C
substitute e in C by new variable xn+1

add the constraint xn+1 = xi ◦ xj

end
end.

This algorithm shows that it is always possible to rewrite a numeric CSP expressed
using unary and binary constraints in ternary form but it generates far too many auxiliary
variables for the following reasons:

• It unnecessarily introduces binary constraints if xi or xj are constants, or both are
a function of the same variable,

• It does not allow the introduction of complex definitions for auxiliary variables, since
only one binary operator is allowed and

• It does not reuse auxiliary variables in other constraints or subexpressions.

Some implementations improve upon the last critique about not reusing auxiliary vari-
ables by avoiding duplicate definitions. This allows for some optimisation, however, cur-
rent algorithms do not try to provoke the reuse of auxiliary variables when choosing the
expressions to define these. Therefore, many opportunities for reusing auxiliary variables
are missed.

We suggest a more general algorithm to perform the task of rewriting numeric CSPs in
ternary form: In the first step, the constraints which already have ternary form are sorted

48 CHAPTER 3. IMPLEMENTING CDSS USING CONSTRAINT TECHNIQUES

out and are no longer manipulated. In the second step, the algorithm searches for an
expression in two variables which occurs in one of the n-ary constraints. The third step is
to substitute the expression found in step two in all non-ternary constraints. These three
steps must be repeated until the list of non-ternary constraints is empty. Algorithm 3.16
illustrates this procedure. In step two, subexpressions involving exactly two variables are
chosen because these expressions have the potential to decrease the arity of a constraint,
and at the same time they do not add non-ternary constraints to the system.

When a new auxiliary variable is added, its domain must be determined as well.
Interval-arithmetic provides utilities to find upper and lower bounds for the auxiliary
variables according to their definitions and the domains of the variables involved in their
definition. However, when variables occur several times in an expression which defines a
new auxiliary variable a, the domains of a may be overestimated. However this limitation
is not important for existing local consistency algorithms. These algorithms can therefore
be used to compute more precisely the domains of the auxiliary variables. On the other
hand interval arithmetic guarantees that no solutions to the original numeric CSP are lost
due to underestimation of domains.

Algorithm 3.16: Make numeric CSPs ternary.

function make-ternary(constraints)
ternaries = ∅; i← 1
while constraints 6= ∅ do

foreach C ∈ constraints do
if arity C ≤ 3 then move C from constraints to ternaries

end
Choose f(x, y) from ∪C∈constraintsfind-subexpressions(C)
add auxi = f(x, y) to ternaries
substitute f(x, y) by auxi in constraints
i = i + 1

end
return ternaries

end.

function find-subexpressions(expr)
if expr involves one or no variables then return (∅);
if expr involves 2 variables then return (expr);
subs← ∅
foreach subset S of expr’s operands do

e← expression with expr’s operator on S
subs← subs ∪ find-subexpressions(e)

end
return (subs)

end.

3.2. REWRITING NUMERIC CONSTRAINT SATISFACTION PROBLEMS 49

Defining Auxiliary Variables

In order to find expressions for defining auxiliary variables, we must find subexpressions
in two variables occurring in the CSP. This is performed by traversing the expression tree
defined by the CSP. Whenever the traversing algorithm visits subexpressions involving
exactly two variables, it stores them into a list instead of descending further into the
expression tree. Thus no subexpressions of expressions in two variables are considered.

What makes traversing an expression tree more complex than expected is that addition
and multiplication are commutative. When we encounter the expression a + b + c, we
have to consider a + b, a + c and b + c as possible subexpressions. In fact, computer
algebra systems such as Maple V treat addition and multiplication as n-ary operators.
Finding all subexpressions implies considering all subsets of an operator’s operands. find-
subexpressions in Algorithm 3.16 returns subexpressions in two variables occurring in an
expression. Thus it returns candidates for defining auxiliary variables.

As soon as the candidate expressions are determined we must decide, which is the best
expression to be used. Since we want to decrease the arity of all constraints below four, the
sum of the arities of all non-ternary constraints is a reasonable criterion for minimisation.
Therefore, we choose the candidate expression which decreases the arity of the most of
the non-ternary constraints, breaking ties in favour of the candidates which generate the
simplest constraints after substitution, i.e., the constraints with the fewest operands.

The minimisation suggested above implies that common subexpressions are more likely
to be chosen to define auxiliary variables. Therefore at first glance, factorisation seems
to be appropriate in order to determine the common expressions. Indeed, factorisation is
often helpful when common subexpressions are to be determined in one single expression.
However, when searching for common subexpressions in several expressions, factorisation
may actually hide opportunities. Consider the following example:

ab + xz = 1, cd + xy = 1, e + xy + xz = 1

Introduction of the auxiliary variables aux1 = xy and aux2 = xz makes all these 4-ary
constraints ternary. Had the third expression been factorised beforehand, it would look
like this: e + x(y + z) = 1. The common expressions xy and xz are difficult to find in this
situation. An automatic ternarisation algorithm is very likely to introduce three auxiliary
variables in order to rewrite the factorised CSP: aux1 = ab, aux2 = cd and aux3 = y + z.

3.2.4 Complexity Considerations

Algorithm 3.14 eliminates unnecessary variables from a CSP. The outermost loop of
eliminate-unnecessary is executed once for each constraint (c times), when all constraints
can be eliminated. The second loop is called for each remaining constraint and the in-
nermost loop is called r times in the worst case, where r is the CSP’s arity. Therefore,
check-subs is called O(rc2) times, and performs its task in O(c). Thus, the complexity of
Algorithm 3.14 is cubic in the number of constraints in the CSP and linear in its arity.

50 CHAPTER 3. IMPLEMENTING CDSS USING CONSTRAINT TECHNIQUES

The simple algorithm for making one constraint ternary (Algorithm 3.15) replaces all
but two binary operators by auxiliary variables, because a constraint involving three vari-
ables has at least two binary operators. Thereby we consider the constraints in normalised
form, i.e., with zero on the righthand side. The algorithm has to be launched for each
constraint in the CSP. Hence the overall complexity is O(mc) where m is the number of
binary operators and c is the number of constraints in the CSP.

In order to estimate the complexity of our suggestion to rewrite a CSP in ternary
form, we give the number of times the substitution of a candidate in the whole CSP is
performed. In the worst case Algorithm 3.16 also introduces m auxiliary variables. For
each of these, find-subexpressions, called on all constraints, finds O(c ·2RD) subexpressions
in the worst case, where R is the maximum arity of operands, and D is the maximum depth
of expressions. Given that R and D are bounded, this yields that substitution is called
O(mc) times. The complexity of the substitution itself is difficult to estimate, because we
use the symbolic algebra package Maple V to perform this task. However, our experimental
results show that Algorithm 3.16 can be used on problems of considerable size. Moreover,
the computation of consistency by far outweighs this symbolic pretreatment in time cost.

3.3 Discretised Constraints on Continuous Variables

Constraints on continuous variables generally arise as algebraic equalities and inequali-
ties involving several variables. Consistency algorithms which process constraints directly
in this form and therefore encounter analytical difficulties related to operations such as
intersecting surfaces and projecting volumes. In implementing consistency techniques
for CSPs on continuous domains, a key problem is presenting and reasoning about valid
combinations of variable values. Unlike valid value combinations for discrete CSPs, one
cannot exhaustively enumerate valid value combinations when using continuous domains.
For storing valid values for single continuous variables usually small sets of intervals are
suited, whereas representing and manipulating valid value combinations of several continu-
ous variables, as is necessary for computing higher degrees of consistency, is more involved
since they may represent complex geometric shapes. This partly explains why the most
prominent advances in numerical constraint satisfaction are related to 2-consistency, e.g.
[Faltings, 1994, Faltings and Gelle, 1997, Lhomme, 1993, van Hentenryck et al., 1998]. In
these approaches, labels to be determined are unary and thus can be represented easily.

We propose the use of discretised constraints in order to cope with this problem to
represent valid value combinations. Discretisation of constraints on continuous variables
is useful in the context of consistency computation for two reasons:

• Robust operations such intersection, composition and projection, and

• Generic description of regions with arbitrary shape.

The conversion of the algebraic representation of constraints into a spatial representation
of their corresponding feasible regions leads to a logical rather than analytical treatment

3.3. DISCRETISED CONSTRAINTS ON CONTINUOUS VARIABLES 51

of feasible regions and solution spaces, thereby avoiding problems with singularities and
other analytical problems. Robust algorithms for intersection and composition can be
used in order to improve the reliability of consistency algorithms.

The advantage of robustness is compromised by limited precision and bounded do-
mains. Since an exact explicit representation of feasible regions using spatial data struc-
tures is in general not possible, a discretisation of the continuous space is needed and
the feasible region must be approximated accordingly. Both restrictions are acceptable
for approximation of solution spaces in many engineering applications. Nevertheless, an
efficient data structure for storing and manipulating feasible regions has to be found. This
section gives a comparison of some candidate spatial data structures and describes the use
of 2k-trees for consistency computation.

3.3.1 Spatial Data Structures to Represent Feasible Regions

In [Sam-Haroud, 1995] it was first suggested to represent constraints and labels as dis-
cretised regions of feasible value combinations. Linear 2k-trees were used as the spatial
data structure [Samet, 1990a, Samet, 1990b]. In spite of the ability of 2k-trees to aggre-
gate homogenous regions into single nodes, it has been observed that these trees can grow
in memory in a prohibitive manner. Therefore, an investigation about alternative data
structures has been performed within this thesis.

Extensive research on efficient data structures for representing regions has been under-
taken in domains such as computer vision and geographic databases. These efforts lead
to sophisticated solutions for compact representation of complex data. In the following
we describe some of the results in the light consistency algorithms, i.e., with strong em-
phasis on efficient implementation of set operations such as intersection, composition and
projection.

Rectilinear Structures for Point-Data

Much work on multidimensional data structures is done in the domain of multidimensional
databases. Most of these approaches treat the problem to store point-data in an adequate
way for efficient retrieval, and therefore usually use some hierarchical decomposition of
the domain of the point-data. Such a decomposition might also be used to determine an
efficient decomposition to represent regions as it is needed for representing constraints.
However, no work for set operators such as intersection or projection is available and
therefore major extensions would be needed to use such data structures in consistency
algorithms.

The k-D-tree [Samet, 1990b] stores point-data in a binary tree. At each interior node
the space for the corresponding subtree is partitioned orthogonal to one of the axes into
two sections. Several variants, where to store data (leaf nodes or interior nodes) and how
to choose the exact place and direction of decomposition exist. The structure is very
adaptable and therefore allows for very efficient search and storage, when all points to be
stored are known beforehand.

52 CHAPTER 3. IMPLEMENTING CDSS USING CONSTRAINT TECHNIQUES

The MD-tree suggested in [Nakamura et al., 1993] improves the k-D-tree when points
are not known beforehand but must be added one by one. In this case k-D-trees can
become very unbalanced. Moreover, 50% of the nodes in the tree do not carry data. Each
interior node in MD-trees has two or three children and only the leaf-nodes contain data.
Algorithms for insertion and deletion of data elements which keep the tree balanced are
described in [Nakamura et al., 1993].

In the database community there is much concern to this problem of dynamically
inserting and deleting data while this is less important in our case, since during consistency
algorithms feasible regions are not modified by single pieces of data but by set operations.

Rectilinear Structures for Regions

A hierarchical data structure commonly used in computer vision is the 2k-tree, called
quadtree or octree in the two and three dimensional case. Space is bisected parallel to all
axes at each step of decomposition. An efficient encoding of region quadtrees and octrees,
linear quad-/octrees [Gargantini, 1982], are also used in [Sam-Haroud, 1995]. Neverthe-
less, more sophisticated coding and adaptable decomposition or storage of boundaries
instead of regions can still improve compactness of data.

The S-tree, as described in [De Jonge et al., 1994], is a very compact encoding of bin-
trees, quadtrees or octrees. The idea is to emit a bit-stream during a pre-order traversal
of the underlying tree that reflects the structure of the tree in a very compact linear repre-
sentation, which still allows quite efficient search. However, even though a modified S-tree
[Chung and Wu, 1995] speeds up the search in such trees, logarithmic complexity, as it is
possible for the original tree-structure, cannot be achieved. The S+-tree, a variant of this
structure, addresses the problem of pagination with very large images.

The R-tree [Guttman, 1984] is closely related to the k-D-tree but adapted to storing
rectangles instead of points. Each node is associated to a rectangular area. While leaf
nodes contain the actual data-rectangles, interior nodes represent the smallest rectangle
which encloses all rectangles associated to its subtree. Interior nodes have a limited but
varying number of children. One of the advantages of this representation is, that it does
not waste effort on “dead” space, i.e., empty regions.

Although R-trees are height-balanced, the efficiency of search can decrease because
overlapping of rectangles on the same levels is allowed and therefore several paths have to
be searched in some cases. This problem is addressed by the R+-tree [Sellis et al., 1987].
By allowing data-rectangles to be split it is no more necessary to overlap rectangles on
any levels. Search is thus accelerated at the cost of splitting rectangles. Furthermore a
packing algorithm exists to improve the compactness of an R+-tree.

Rechman et al. describe more work on insertion, deletion and search for R-trees
in [Rechmann et al., 1990] (R*-trees) and [Kamel and Faloutsos, 1994] (Hilbert-R-trees).
R*-trees were developed to improve R-trees when used on secondary storage systems,
coping with problems such as page-faults. The Hilbert-R-tree in addition modifies the
split-policy. The algorithms described split 2 leaf-nodes into 3 instead of 1 into 2. The

3.3. DISCRETISED CONSTRAINTS ON CONTINUOUS VARIABLES 53

Hilbert curve is used to establish a one-dimensional ordering of the rectangles which is
needed for such splits. However, little work on spatial joins like intersection or union exists
and no projection and composition algorithms have been developed so far.

Non-Rectilinear Structures for Regions

Decomposition of space using non-orthogonal hyper-planes leads to d-dimensional polyhe-
dra. Such a representation to approximate constraints can be very compact and still more
exact than a decomposition into cubes. Moreover, deficiencies concerning convex or con-
nected regions as described in [Sam-Haroud, 1995] do not occur, since convex regions are
always approximated using convex shapes. On the other hand a significant computational
complexity for set operators, mainly the composition and projection is expected.

A method similar to quadtrees is mentioned in [Samet and Webber, 1988]. It uses
triangles instead of rectangles. The decomposition of these triangles results in a binary
tree-structure. This structure might solve problems concerning deficiencies when inter-
secting convex regions as they are observed for quadtrees. However, no generalisation to
three or even five dimensions is suggested so far, set operators as they are needed for
consistency algorithms (composition and projection) do not exist.

In [Gunther, 1988], some set operations and search algorithms on polyhedral chains
are described. Polyhedral chains are sums of convex polygons. Convex polygons are repre-
sented as intersection of half-spaces and a union of such polygons makes up general polyhe-
dra. Efficient manipulations on a vector representation of such polyhedral chains together
with a tree organisation, the cell-tree, promise good performance on union, intersection
and search. However, serious computational effort has to be expected for composition
and projection. Moreover, detecting redundant half-spaces is very difficult and therefore
combinatorial explosion is expected for iterative application of set operators.

Binary space partitioning trees (BSP-trees) [Fuchs et al., 1980] are similar to k-D-trees
but allow to use general hyper-planes to decompose the space instead of hyper-planes
perpendicular to an axis. In addition, they are more intended to represent regions and
not point data. BSP-trees are a subject of interest for the computer graphics commu-
nity and were suggested to solve the problem to determine hidden lines. Some issues
about how to generate good BSP-trees are outlined in [Naylor, 1992b, Naylor, 1993] and
[Paterson and Yao, 1989] describes algorithms with complexity considerations to construct
BSP-trees from boundary representations. Set operations for intersection and union are
described in [Naylor et al., 1990, Naylor, 1992a], however, no algorithms for composition
and projection are provided.

The problem to polygonise a surface must be solved to find representations of con-
straints as polyhedra. This problem in three dimensional space is also encountered in
computer vision. Some approaches are outlined in [De Figueiredo et al., 1992].

In conclusion of this comparison of data structures, it has been found, that several
alternatives for more compact and more precise representations of feasible regions exist.
However, 2k-trees offer by far the most efficient implementation of the set operations

54 CHAPTER 3. IMPLEMENTING CDSS USING CONSTRAINT TECHNIQUES

needed. Mainly projection poses serious problems for more complex data structures. In
the context of consistency algorithms, it turned out that the computational complexity of
set operators is more important for overall performance than the compactness of the data
structure, since modern computers have enough memory to prevent page-faults. Therefore,
we continue to use 2k-trees to represent discretised continuous constraints.

3.3.2 2k-trees for Constraint Satisfaction Techniques

2k-trees were originally developed in computer vision for concise representation of geomet-
rical shapes [Samet, 1990a] and were later proposed for constraint satisfaction techniques
in [Sam-Haroud, 1995, Sam-Haroud and Faltings, 1996]. Relations can be approximated
through a hierarchical decomposition of its feasible space into quadtrees for binary rela-
tions and octrees for ternary ones. Figure 3.5 illustrates a binary constraint approximated
using a quadtree. In two dimensions, this means that rectangles that are not completely
feasible are subdivided into four smaller rectangles of equal size, each of which is re-tested
recursively until the desired precision is obtained. Every square in Figure 3.5 corresponds
to a leaf node in the quadtree and non-leaf nodes contain one child for each quadrant of
the region they represent.

Figure 3.5: Quadtree for the constraint y ≥ arctan(1
x−2).

This hierarchical data structure is well adapted to the representation of feasible regions
because they aggregate homogenous regions in order to represent them in a compact way.
Continuous constraints very often contain large homogenous regions and therefore good
aggregation can be expected.

Although very space-efficient codings for 2k-trees such as S-trees [De Jonge et al., 1994]

3.3. DISCRETISED CONSTRAINTS ON CONTINUOUS VARIABLES 55

are known, we adhere to the basic pointer-based implementation. We found that in the
context of consistency algorithms computational complexity predominates spatial effi-
ciency when consistency algorithms are implemented avoiding large intermediary data
structures. This is also due to our treatment of leaf-nodes. We allocate one white, one
grey and one unknown leaf-node. Inner nodes which point to leaf-nodes contain pointers
to one of these three instances according to the feasibility of the represented regions, thus
avoiding allocation of additional memory for leaf-nodes.

Constraints involving the same set of variables are stored in one total constraint. The
original discretised constraint regions are intersected to form one single constraint, thereby
simplifying the CSP and allowing for more pruning in many cases. An example for a total
constraint is shown in Figure 3.6. The total constraint of variables a, c and t is the
intersection of all constraints which involve a subset of these variables. In this figure a)
and b) are spaces defined by individual constraints which form the space defined by the
total constraint c).

3.3.3 Generation of Feasible Regions

Usually constraints of numeric CSPs are given in algebraic form, as equalities and inequal-
ities. In order to generate explicit spatial representations of such constraints a discretisa-
tion is needed. It is supposed in this section that a constraint is given as a conjunction of
equalities and inequalities, which involve at most three variables. Moreover, each variable
has as initial domain one closed interval in <.

Hierarchical Decomposition

In order to determine the 2k-trees corresponding to the given constraint, the domain of the
involved variables are recursively bisected until the user-defined maximal decomposition-
depth needed for the approximation of the constraint is reached or a cube or rectangle is
entirely feasible or infeasible. For each visited node of the 2k-tree feasibility is determined
and nodes are aggregated whenever all children of a certain node are either feasible, par-

a): a = ct b): 4.5t ≤ c ≤ 8.5t c): total constraint

Figure 3.6: Illustration of a total constraint.

56 CHAPTER 3. IMPLEMENTING CDSS USING CONSTRAINT TECHNIQUES

tially feasible or infeasible. Variants of this algorithm are available for constraints involving
up to three variables. Algorithm 3.17 shows the variant for binary constraints.

Algorithm 3.17: Generation of quadtrees for binary constraints.

function construct(xmin, xmax, ymin, ymax, depth)
if current rectangle is feasible then return feasible leaf-node
if current rectangle is infeasible then return infeasible leaf-node
if depth = depthmax then return leaf-node with unknown feasibility
children[0] ← construct(xmin, xmid, ymin, ymid, depth + 1)
children[1] ← construct(xmid, xmax, ymin, ymid, depth + 1)
children[2] ← construct(xmin, xmid, ymid, ymax, depth + 1)
children[3] ← construct(xmid, xmax, ymid, ymax, depth + 1)
return new-node(children)

end.

The procedure new-node used in Algorithm 3.17 returns an interior node of the 2k-tree
when some of the children determined are non-leaf-nodes or if not all nodes in children

have the same feasibility. Otherwise the children are aggregated and new-node returns a
single leaf-node reflecting the feasibility of the children.

Determining Feasibility

During hierarchical decomposition (Algorithm 3.17) the generation of the quad/octree
representation of feasible regions according to the algebraic representation of constraints
relies on a method to detect whether a constraint within a rectangle or a cube is entirely
feasible, partially feasible or entirely infeasible. For this purpose interval arithmetic is
very efficient in many cases and avoids symbolic solving of equations as it is necessary for
the methods suggested in [Sam-Haroud, 1995].

Whenever variables of the expression to be analysed do not occur more than once,
interval arithmetic provides reliable results for minima and maxima of the expression.
Given that the constraint to be analysed is available in standard form as f(x1, x2, x3) ≥ 0,
the interval evaluation of f(x1, x2, x3) in the current cube of interest answers the question
for feasibility of the constraint: if the interval is entirely below zero, the constraint is
infeasible, if it is entirely above zero it is feasible and if it contains zero it is partially
feasible. For expressions of the form f(x1, x2, x3) = 0 partial feasibility is discovered
when the computed interval contains zero, otherwise the constraint is infeasible. When
variables do not reoccur in expressions, the recursive hierarchical decomposition can be
stopped before reaching the maximum decomposition depth whenever a larger feasible or
infeasible region is found. Thus constraints are converted very quickly.

However, when variables reoccur in an expression, interval arithmetic overestimates
the range value for the expression and is therefore not reliable. In this case interior nodes

3.3. DISCRETISED CONSTRAINTS ON CONTINUOUS VARIABLES 57

can be treated the same as if no variables reoccured, but the overestimation will imply
unnecessary splitting of domains. For leaf-nodes, however, a gridding is necessary where
the reoccuring variables are substituted with several values in order to sample the space
and thus determine a reliable result for the leaf-node’s feasibility. The variable which
occur only once in the expression can still be treated with interval arithmetic.

In [Sam-Haroud, 1995] total constraints are generated by generating the components
of a total constraint and then intersecting these into one total constraint. We suggest to
generate total constraints in one go by modifying the method to determine feasibility such
that it takes into account a conjunction of constraints on the same set of variables. This
avoids generation of regions which are occluded by other components of a total constraint
and thus accelerates the generation of total constraints.

Robustness of Generation

The generation methods suggested in [Sam-Haroud, 1995] search intersections of the con-
straint surface with the current cube. In order to detect such intersections, symbolic
algebra is used. If an intersection is detected, the cube at hand is decomposed, otherwise
its feasibility is determined. Not only is the algebraic manipulation very difficult in the
general case, moreover, this method has difficulty to detect closed curves.

In contrast to the methods given in [Sam-Haroud, 1995], the implementation presented
here does not rely on any kind of numerical or symbolic solver. The only basis used to
determine the feasible region for a constraint is the interval evaluation of the expression
in the normalised form of the constraint. Therefore, this generation of feasible regions is
robust against most analytical problems such as closed curves and singularities. Figure 3.7
shows an algebraically simple binary constraint, which generates a complex solution space.
The detection of this example’s several disconnected feasible regions would not be possible
using the methods suggested in [Sam-Haroud, 1995].

The method we suggest is very fast and reliable in the case where variables do not
reoccur in expressions. If some variables occur several times in a constraint’s definition,
a gridding is necessary on the reoccuring variables. Features of the feasible regions which
are smaller than this gridding are not detected reliably in this case.

Efficiency in Time and Space

Table 3.1 gives a few examples where the speed of generation was studied. The first
column shows the algebraic expression computed, the second column gives the run-time
of the method proposed in [Sam-Haroud, 1995], and the third column contains the results
obtained with the new implementation based on interval arithmetic. All numbers were
determined for trees with depth 5 on a Sun UltraSparc 60 with 512MB of memory.

As illustrated in Table 3.1, the new method using interval arithmetic is often one or
two orders of magnitude faster than the LISP implementation used in [Sam-Haroud, 1995].
The factor of improvement drops, if variables reoccur in the expression to be treated, as
it is the case in the second example of Table 3.1. The results are also compromised by

58 CHAPTER 3. IMPLEMENTING CDSS USING CONSTRAINT TECHNIQUES

Figure 3.7: A simple constraint with a complex feasible region: sin(x2)+sin(y2) < −0.25.

[Sam-Haroud, 1995] new method
u = S(3.18E − 5Hs + 0.0054) 8.79s 0.05s
Hs + aṠ − bṠ2 + cṠ3 > 137.7 0.08s 0.02s
p = u + 9.62E − 5(0.0417W)1.5161 11.73s 0.10s
Hb > ((S ·W 3)0.2839 ∗ 0.0168) 125.67s 0.15s
wp = sin(φ2 − φ4) 98.50s 0.19s
u = (x2 − x4)2 58.13s 0.13s
d > r1 + r3 85.75s 0.06s
x4 = r4cos(φ4) 58.56s 0.10s

a = 0.08633, b = 5.511E − 5, c = 8.36E − 9

Table 3.1: Compare new generation methods with those proposed in [Sam-Haroud, 1995].

the fact that in our new implementation, C-source code is generated and compiled before
generation of spatial data structures can take place. This preprocessing takes about 6
seconds and performing it once per CSP is enough, it is thus not very time-consuming.
Moreover, in the case when we want to regenerate feasible regions for constraints, on
refined domains for instance, no recompilation is necessary.

Table 3.2 compares the memory needs of some spatial data structures for the examples
already shown in Table 3.1. The structures compared are: a full pointer-based 2k-trees
representation, which avoids storing leaf-nodes in the second column, a pointer-based
representation which stores only feasible and partially feasible nodes in the third column,
a pointer-less linear octree in the fourth column and finally an S-tree representation in the
last column. The numbers give the amount of memory used in bytes for a tree depth of 5.

Surprisingly, the full representation which just avoids storing leaf-nodes turns out
to be somewhat more efficient than the data structure which avoids storing infeasible

3.3. DISCRETISED CONSTRAINTS ON CONTINUOUS VARIABLES 59

full no black linear S-tree
u = s(3.18E − 5hs + 0.0054) 19,392 28,508 10,752 562
hs + aṡ− bṡ2 + cṡ3 > 137.7 1,096 1,788 608 36
p = u + 9.62E − 5(0.0417w)1.5161 25,904 37,820 14,224 742
hb > ((sw3)0.2839 ∗ 0.0168) 27,312 59,596 24,856 1,246
wp = sin(phi2− phi4) 32,724 49,036 18,592 967
u = (x2− x4)2 24,716 36,940 14,000 729
d > r1 + r3 29,644 65,052 27,160 1,360
x4 = r4cos(phi4) 35,716 52,860 19,960 1,040

a = 0.08633, b = 5.511E − 5, c = 8.36E − 9

Table 3.2: Compare space efficiency of spatial data structures. Numbers in bytes.

nodes. Even more compact is the linear octree representation and the S-tree is clearly
the most memory efficient data structure we studied. Since implementation of efficient
set operators for S-trees is expected to be difficult and implementations of these on linear
2k-trees are expected to be less efficient, 2k-trees are chosen for the further implementation
of consistency algorithms.

3.3.4 Set Operators for Consistency Algorithms

For the implementation of consistency algorithms the operators presented in this section
are most important. Intersection and projection are needed to implement the propagation
of constraints and will be executed frequently by consistency algorithms. The composition
as it is described in [Sam-Haroud, 1995] is realized by an extended interpretation of the
intersection.

Projection

The projection method implemented projects several variables at once. Its first step
determines an array which calculates for each quadrant-number of the original on which
quadrant in the result it will be projected. For instance, in order to project the constraint
C, which contains the variables x, y and z onto (x, y), the translation array is computed by
calling project quadrants([x, y, z], [x, y]) (Algorithm 3.18). In the second step, the original
2k-tree in C is traversed and the projected tree is generated by calling project(C.root, P, [])
(Algorithm 3.19), where C.root is the root of the 2k-tree representing the feasible region
of C and P is initialised to contain the projection’s variables and empty 2k-tree.

Algorithm 3.18 executes the outermost loop for each quadrant in the original constraint,
i contains the number of the quadrant currently to be projected. The inner loop scans
through the variable in the original constraint. If the variable is to be projected, the
corresponding bit in the number of the quadrant we project must be skipped, otherwise it
is put at the appropriate position in the translate entry which corresponds to the projected
quadrant, k always points to the current write position. The method bit we attribute to

60 CHAPTER 3. IMPLEMENTING CDSS USING CONSTRAINT TECHNIQUES

Algorithm 3.18: Determine the projection-array for quadrants.

procedure project quadrants(original variables, variables to project)
for i = 0 to 2|original variables| − 1 do

translate[i]← 0, k ← 0
for j = 0 to |original variables| − 1 do

if original variables[j] 6∈ variables to project then
translate[i].bit(k)← i.bit(j)
k ← k + 1

end
end

end
end.

integers reads at or writes in the bit indicated by its argument. The result of this operation
for the projection from [x, y, z] to [x, y] is illustrated in Figure 3.8.

Figure 3.8: Translation array for projection from [x, y, z] to [y].

Algorithm 3.19 recursively traverses the original 2k-tree. It expects as parameters to
receive a node from the original as well as the root from the future projection. It traverses
the tree to be projected and adds the projected leaf-nodes to the projection. Thereby
nodes are aggregated when possible.

Extended Intersection

In computer graphics, intersection is usually interpreted as binary operators between re-
gions defined over the same set of variables [Samet, 1990a]. In constraint satisfaction,
however, intersection has more sense if interpreted as logical operator. That is, the in-
tersection of region a representing constraint A and region b representing constraint B

contains exactly the value combinations for which A and B hold.
The described interpretation for intersection yields a reasonable interpretation of an

3.3. DISCRETISED CONSTRAINTS ON CONTINUOUS VARIABLES 61

Algorithm 3.19: Project a tree of dimension d.

procedure project(original, projection, path)
if original is infeasible then return
if original is leaf then

add leaf to projection at path with feasibility of original
return

end

for i = 0 to 2d − 1 do
append translate[i] to path
project(projection, original.child[i], path)

end
end.

intersection for arguments which contain different sets of variables. Geometrically this is
equivalent to first extend both arguments to cylinders which include the union of both sets
of variables and then perform the usual Intersection. For the use in constraint satisfaction
problems the extended intersection is equivalent to the composition operator given in
[Sam-Haroud, 1995]. The extended intersection is illustrated in Figure 3.9.

Our extended intersection algorithm first determines the set of variables involved in
the result, which is the union of both variable sets. Then translation-arrays similar to
those used for projection are determined. During intersection, however, two such arrays
are needed. They translate the quadrant numbers of the result into the quadrant numbers
of the arguments as if the result was projected on the first and the second argument
respectively.

Algorithm 3.20 actually performs the intersection by recursively traversing the resulting
2k-tree. It takes as parameters the subtrees to be intersected. The method is first called
with the roots of both arguments. This algorithm has complexity O(N) where N is the
number of nodes in the result of the intersection, including the infeasible nodes.

Space Efficient Revision for (3,2)-relational Consistency

A major drawback of τ -(3, 2)-relational-consistency of Algorithm 3.10 as it is described
in Section 3.1.3 is hidden in its revision step τ -(3,2)-revise (Algorithm 3.12), where com-
position of labels in the 5-dimensional space is computed explicitly before immediately
projecting back into three dimensional space. Algorithm 3.21 shows a direct implemen-
tation of this revision step by implicitly traversing the 5-dimensional structure without
storing the intermediate result.

τ -(3,2)-direct-revise as described in Algorithm 3.21 is called with the root nodes
of the labels to be revised and an empty path. It is called instead of the expression
L′ ← lijk⊗

∏
i,j,k (Liuv ⊗ Ljuv ⊗ Lkuv) in Algorithm 3.12. The translation arrays are com-

62 CHAPTER 3. IMPLEMENTING CDSS USING CONSTRAINT TECHNIQUES

Figure 3.9: Extended intersection is equivalent to composition.

puted similarly to those used in projection and extended intersection described in the
Section 3.3.4. The recursive function implicitly traverses the 5-dimensional composition
Liuv ⊗Ljuv ⊗Lkuv (for-loop). When for some label L a leaf node is encountered although
others still decompose the current cube, this leaf node represents the feasibility of L for
the whole cube and is therefore passed on in recursive calls to τ -(3,2)-direct-revise. The
recursion is stopped as soon as only leaf nodes are received in the arguments. In this case,
the feasibility of the leaf node to be added to L′ is determined and the leaf node is added
according to path. The argument path is used to store the position where the currently
analysed cubes have to be projected.

Although τ -(3,2)-direct-revise does not improve the complexity of the (3,2)-relational
consistency algorithm (O(n3) in space and O(n5) in time, where n is the number of vari-
ables), substantial improvements in space efficiency are achieved. While the implementa-
tion which stores the intermediate structures generates processes of 50MB size even for a
small problem, the direct implementation of revision uses 20 times less memory with the
same problem.

3.4 Interactive Search for Single Solutions

Consistency techniques as described in Section 3.1 are suited to approximate solution
spaces and can reveal previously hidden relations between variables. However, the deter-
mination of point solutions is needed for two reasons. On one hand they are required in
the final phase when partners decide about parameter values. On the other hand, project
partners and clients also need point solutions as an illustration of the current state of
affairs, even while working with solution spaces. Therefore, we propose augmenting point

3.4. INTERACTIVE SEARCH FOR SINGLE SOLUTIONS 63

Algorithm 3.20: Extended intersection, a and b together contain d variables.

function intersect(a, b)
if a or b is infeasible then return infeasible leaf-node
if a and b are feasible then return feasible leaf-node
if a and b are leaf-nodes then return partially feasible leaf-node

for i = 0 to 2d − 1 do
if a is leaf then next a← a else next a← a.child[translate a[i]]
if b is leaf then next b← b else next b← b.child[translate b[i]]
new.child[i]← intersect(next a, next b)

end
return aggregate(new)

end.

solutions with solution spaces instead of entirely replacing them. CSP techniques are still
needed to determine point solutions.

One important reason to determine solution spaces instead of automatically searching
for solutions right from the start, is that in our view it is impossible to entirely represent
all aspect of a project in a formal way. Therefore, the final decision for parameters must be
taken by designers and not by computers. In this sense the computer assisted interactive
search presented in this section provides the facility to fill the gap between consistency
algorithms and the final solution.

Interactive search has to be supported by search algorithms, since backtracking cannot
be avoided and performing a backtrack search by hand is impossible in real-world situa-
tions. However, a search algorithm must avoid overwriting the user’s changes wherever
possible. This section describes, how known search algorithms can be modified to sat-
isfy this condition and how consistent spaces can be used to help users understand the
multidimensional shape of the solution space.

3.4.1 Searching with Minimal Change

During interactive search, the algorithm which tries to find a solution should take the user’s
preferences into account. Current values of parameters, which are possibly manipulated
by users, express the users’ preferences. Therefore, an important property of a search
algorithm used in the context of interactive determination of solutions is parsimony of
changes. This paradigm has been recognised useful in the following context:

• Intelligent, interactive CAD: when changes of the user are inconsistent the search
algorithm must try to find consistent values in the neighbourhood, while user con-
sistent preferences have to be remembered [Lottaz et al., 1998].

• Adaptation of cases in case-based design (CBD): In CBD cases are supposed to be

64 CHAPTER 3. IMPLEMENTING CDSS USING CONSTRAINT TECHNIQUES

Algorithm 3.21: Direct revision for (3,2)-relational consistency.

function τ -(3,2)-direct-revise(L′, Lijk, Liuv, Ljun, Lkuv, path)
if Lijk, Liuv, Ljuv and Lkuv are leaves then

if all leaves are feasible then add feasible leaf at path to L′

if there is no infeasible leaf then add partially feasible leaf at path to L′

return
end

for q = 0 to 25 − 1 do
append translateijk[q] to path
if Lijk is leaf then Nijk ← Lijk else Nijk ← Lijk.child[translateijk[q]]
if Liuv is leaf then Niuv ← Liuv else Niuv ← Liuv.child[translateiuv[q]]
if Ljuv is leaf then Njuv ← Ljuv else Njuv ← Ljuv.child[translatejuv[q]]
if Lkuv is leaf then Nkuv ← Lkuv else Nkuv ← Lkuv.child[translatekuv[q]]
τ -(3,2)-direct-revise(L′, Nijk, Niuv, Njuv, Nkuv, path)

end
end.

good solutions for a subproblem. When composing cases, they must often be adapted
but radical changes should be avoided wherever possible.

• Control: Changes in the control settings, for instance of urban traffic control sys-
tems have been shown to be very expensive. Therefore, solutions which modify few
parameters are desirable [Sauthier, 1996].

Minimal change is often interpreted as minimising the number of parameters changed.
However, since values of parameters in engineering usually have an ordering, minimal
change also means that parameters are changed as little as possible. Minimal change search
algorithms are well suited to interactive design, because a user can give an exemplary
combination of values in the neighbourhood of which the algorithm searches for a solution.
Through moving certain parameters before reapplying the search algorithm, the search
process can be guided interactively.

Minimal Change in a Linear CSP

Interactive exploration of solution spaces described by linear CSPs is possible without
backtracking. We have proposed an appropriate computational method based on Gauss-
Jordan and Fourier-Motzkin elimination [Fourier, 1970, Schrijver, 1986] in IDIOM, an in-
teractive case-based design system for floor plan layout of apartments [Lottaz et al., 1998].
Prior to interactive adaptation, the system proposes an initial solution. Since objects are
based on cases of good partial solutions this new solution should involve the least changes
with respect to the original case. In addition, any changes the designer has introduced
before is maintained wherever possible.

3.4. INTERACTIVE SEARCH FOR SINGLE SOLUTIONS 65

In a first step Gauss-Jordan elimination is used to divide the variables in free ones and
bound ones. For every free variable xi, Fourier-Motzkin elimination provides inequalities
which compute bounds for xi as follows:

max
j=n′

i+1...n′′
i

(
n∑

k=i+1

ak,jxk − bj) ≤ xi ≤ min
j=1...n′

i

(bj −
n∑

k=i+1

ak,jxk)

where n is the number of free variables. These inequalities allow us to calculate an interval
of feasible values for variable xi the bounds of which depend only on xi+1 . . . xn, where the
interval for xn is given by constants. To find a solution, we start by choosing a value for xn.
If this value is chosen within the interval for xn the Fourier-Motzkin elimination guarantees
that, for xn−1, a non-empty interval of feasible values can also be found. Therefore, we
can recursively determine values for all variables without backtracking.

Using intervals of feasible values, it is easy to find a solution which is as near to the
current solution as possible. We choose a value for a variable by checking its interval of fea-
sible values. If the current value of the variable is within the interval, the variable remains
unchanged. If the current value is outside, it is set to the nearest interval boundary. When
all values for free variables are determined in this way, the results of the Gauss-Jordan
elimination are used to find values for the dependent variables.

This method is able to determine solutions without backtracking and during the inter-
active adaptation of one variable all necessary changes can be tracked without recomputing
Gauss-Jordan or Fourier-Motzkin elimination. The elimination order of the variable is im-
portant for the behaviour of the adaptation. The current values of variables which are
eliminated later are more likely to be maintained, because they are instantiated earlier.

Backtrack Search

Searching for solutions of non-linear CSPs while keeping changes minimal is more difficult.
Backtracking algorithms are the classical way to find solutions to such constraint satis-
faction problems. They are typically used to determine single solutions for CSPs without
any restriction on the character of the solution, the only criterion for their evaluation is
usually efficiency in time and space. Therefore, many heuristics for ordering values and
variables have been developed in order to make these search algorithms efficient.

Variable ordering heuristics try to improve efficiency of backtracking algorithms by
provoking dead-ends as early as possible. The intuition is, that variables which are difficult
to instantiate should be instantiated early in order to avoid searching through large parts
of the search space which is in fact infeasible due to the same conflict in the part which
is difficult to instantiate but considered too late in the search. Several heuristics to guess
which variables are difficult to instantiate are suggested. One of these heuristics chooses
to instantiate variables with few feasible values left early. The most important of these
heuristics are described and compared in [Bacchus and van Run, 1995, Gent et al., 1996,
Haralick and Elliott, 1980, Sadeh and Fox, 1996, Smith and Grant, 1998].

In the case of interactive search, where we consider important that our search algorithm
does not overwrite user preferences, variables should be ordered differently. The variables

66 CHAPTER 3. IMPLEMENTING CDSS USING CONSTRAINT TECHNIQUES

which have been manipulated by the user should be instantiated early with the user’s
preference in order to augment the probability that a solution with this preference is
found. Moreover, certain preferences may be more important than others, in which case
the most important preference should be instantiated first.

Classical approaches to value ordering are based on the opposite intention and intuition
as variable ordering. Value which are expected to cause few conflicts on future variables
are instantiated first such that solutions are more likely to be found early when they exist
[Frost and Dechter, 1995, Sadeh and Fox, 1996]. For interactive search, values should be
ordered such that the search algorithm searches near the current value. Given that values
of a variable are ordered, values close to the current value are chosen first. In engineering
problems, variable values often have an ordering.

3.4.2 Feasible Ranges

As additional information for designers, approximations of feasible ranges for design pa-
rameters can be computed during interactive search. Whenever a parameter’s value is
changed, besides the search for a new solution with the new value, these ranges are up-
dated accordingly. The feasible range of a variable identifies all its feasible values according
to the chosen solution space approximation given that all other variables keep their current
value. Thereby, consistency is not reinforced in order to allow quick response time.

By moving through the consistent space and observing the changes in the feasible
regions, designers can gain better understanding of the shape of the solution space. The
size and position of these ranges provide an illustration of multidimensional relations
between parameters.

In the case when only linear constraints are implied, am exact method can be provided
similar to the method for interactive search mentioned above. This is done by changing
the variable ordering in Fourier-Motzkin elimination. As mentioned before, this algorithm
provides an interval of feasible values for every variable xi which depends in variables
xi+1 . . . xn only and the interval for the last variable eliminated is given by constants.
Prior to adaptation of parameter p, Fourier-Motzkin elimination is performed once for
each parameter q such that q is eliminated second last and p is eliminated last. Each of
these elimination orders provides an exact feasible interval for q depending on p.

3.4.3 Illustration of Interactive Solution Adaptation

Let us illustrate interactive adaptation of solutions using IDIOM, the case-based design
system above. Only linear constraints are involved and Fourier-Motzkin elimination pro-
vides the needed information for interactive adaptation. In IDIOM designers can modify
solutions proposed by the system through interactively adapting parameters. Adaptable
parameters are positions of walls and elements. Adaptation consists of the following steps:

1. The designer chooses a parameter to adapt by clicking on a wall or an element.

3.4. INTERACTIVE SEARCH FOR SINGLE SOLUTIONS 67

2. IDIOM calculates the current range of valid values for the parameter and shows this
range to the designer, if requested.

3. The designer adapts the parameter by moving the mouse while IDIOM keeps track
of all necessary changes in the design and continuously shows the adapted solution.

Figure 3.10 shows an example of an adaptation. In the left figure the user clicks on the
left wall, which is shared by a double room and the living/dining room. An arrow appears
to indicate the range of feasible values for the chosen parameter. The user then moves the
mouse to the right to obtain the configuration by the right hand figure. The apartment
contains minimum area constraints on both the double room and the living/dining room
to the lower left, and this is why parts of the apartment move towards the north during
adaptation.

Figure 3.10: Interactive adaptation of a floor plan.

During adaptation, IDIOM repeatedly calculates and shows solutions according to the
parameter that was chosen to be adapted and the position of the mouse-pointer. The
solutions are chosen such that minimal changes are necessary to follow the movements of
the mouse. All other variables are chosen to be as near as possible to the design prior to
adaptation. As a result, IDIOM’s behaviour during adaptation is analogous to pulling a
wall or a piece of furniture in an elastic model of the design. When the user resumes the
position where the adaptation started, the original situation is recovered.

68 CHAPTER 3. IMPLEMENTING CDSS USING CONSTRAINT TECHNIQUES

3.5 Summary

Techniques to implement collaborative design using solution spaces are suggested in this
chapter. Besides giving a selection of standard techniques which are suitable to implement
CDSS, several extensions and improvements are proposed.

A method for algebraic reformulation of numeric constraint satisfaction problems for
consistency algorithms has been described. This method is able to treat CSPs given
by mathematical relations, equalities and inequalities, expressed using unary and binary
operators. It covers the following two issues:

• Elimination of unnecessary intermediary variables and

• Rewriting numeric CSPs exclusively in terms of ternary constraints.

For better readability and reusability, designers and engineers are likely to use vari-
ables which are not needed to keep the arity of the CSP low. We suggest a method to
eliminate such unnecessary variables automatically in order to accelerate subsequent com-
puting of consistency. Although the elimination of constants and unnecessary variables
depending on one variable is always useful, it turns out that the substitution of complex
unnecessary variables may cause problems, because the subsequent rewriting in terms of
ternary constraints may fail to recognise and reuse the more complex expressions.

CSPs are used in ternary form for efficient representation and handling of constraints
by consistency algorithms. Certain consistency algorithms focus on numeric CSPs in
ternary form, because the treatment of n-ary constraints is analytically difficult and their
explicit representation is too costly. Moreover, it has been shown that all such CSP
expressed using only unary and binary mathematical operators can be transformed into
ternary form. In fact, reformulating numeric CSPs in ternary form is simple as long as the
introduction of an arbitrary number of auxiliary variables is acceptable. However, in the
case where the result should be minimal in the number of variables, the task is difficult. We
suggest a heuristic to determine good candidate expressions to define auxiliary variables.
Our tests show that the automatic rewriting introduces fewer auxiliary variables than the
straightforward manner in acceptable running times.

An efficient and robust conversion of algebraic constraints into an explicit spatial rep-
resentation of the according feasible region has been proposed. A comparison of several
spatial data structure did not lead to an obvious best choice. We continue to work with
2k-trees for their ability to aggregate homogenous regions in spite of a rather simple
implementation. While 2k-trees have been used before to represent feasible regions, the
employment of interval arithmetic provides important improvement in performance during
generation, mainly when variables do not reoccur in constraints. Moreover, the suggested
methods are more robust against special cases such as closed curves. This is achieved
by avoiding algebraic resolution of equalities and by replacing detection of intersection of
constraint surface with a cube by direct interval evaluation of constraint expressions.

Based on the work presented in [Sam-Haroud, 1995], several local consistency algo-
rithms are proposed for approximation of solution spaces and the different types of so-

3.5. SUMMARY 69

lution space approximations that can be reached using such consistency techniques are
presented. We propose a new algorithm to enforce 2-consistency for ternary constraints
according to the definition of local consistency in [Faltings and Gelle, 1997]. This algo-
rithm, when propagating through arcs, considers all constraints involving the arc revised
at the same time. An example illustrates the additional pruning which can be achieved
compared to conventional arc-consistency. Moreover, an extension of PC-2 to reach strong
3-consistency for ternary constraints is suggested and the space efficiency of the revision
step of (3,2)-relational consistency using 2k-trees has been improved by avoiding storage
of the 5-dimensional composition of the input labels.

Finally, an interactive method for search has been suggested, in order to allow users
to take the final decisions instead of some optimisation or automatic search tools. This
is important from our point of view, because it is not feasible to entirely model a design
project in a formal mathematical way. Interactive adaptation was furthermore illustrated
within a case-based design system which concentrates on constraint solving for linear
CSPs.

70 CHAPTER 3. IMPLEMENTING CDSS USING CONSTRAINT TECHNIQUES

Chapter 4

Porting CDSS onto the Internet

These days collaboration takes more and more frequently place in environments where
collaborators are no longer geographically in the same location. Therefore, efficient com-
munication platforms are needed. Given the growing success of the Internet, it is straight-
forward to use this medium to carry the information between the collaborating peers.
Hence, we suggest a constraint-based communication platform on the Internet to imple-
ment collaborative design using solution spaces. A prototype called SpaceSolver1 suggests
to divide the treatment of a collaboration project into the following phases:

• Specify parameters and constraints

• Perform algebraic reformulation

• Convert algebraic constraints into a spatial representation

• Compute consistency to approximate solution spaces

• Visualise and explore approximations of solution spaces

The techniques described in Chapter 3 are used to implement these steps.
SpaceSolver’s specialisation on communication using the strict semantics attached to

constraints and variables of a CSP, limits its usefulness for communicating explanations or
for discussing problems, but at the same time enables the possibility to provide advanced
decision support through the methods explained in Chapter 3. The limitation to informa-
tion with strict CSP-related semantics is remedied by providing a link to a general purpose
information management system, which is particularly suited to the storage, organisation
and sharing of documents in any format used on the Worldwide Web.

4.1 SpaceSolver’s System Architecture

SpaceSolver is developed as an Internet application in order to make consistency tech-
niques on continuous variables available worldwide. The system architecture retains most

1SpaceSolver is accessible at http://liawww.epfl.ch/~lottaz/SpaceSolver/

71

72 CHAPTER 4. PORTING CDSS ONTO THE INTERNET

modules on the server, in order to make the solver more independent of the user’s machine
and configuration. Moreover, this approach avoids transferring explicit representations
of solution spaces. On one hand, constraints are transmitted in concise algebraic form
from the user to the central server. On the other hand, not the whole solution space is
transferred back to the user but only the projections the user asks for are generated and
transmitted on the fly. The disadvantage of this approach is that the server can become
overloaded when several projects are being treated at same time.

SpaceSolver relies on the Common Gateway Interface (CGI). This protocol provides
all facilities needed to implement a client-server application through the Worldwide Web.
The server-side of such an application is implemented using a WWW-server and a number
of programs which provide the desired services. The client-side is implemented using
any WWW-browsers, which accesses documents on the WWW-server. These documents
contain forms, which are filled out by a user and call one of the application’s services when
submitted.

SpaceSolver’s system architecture is illustrated in Figure 4.1. Any WWW browser
can be used on the client-side, while on the server-side a dedicated WWW server han-
dles data-management tasks and permanently communicates with various SpaceSolver-
modules. These modules include the following:

Symbolic Manipulator: This module performs the reformulation of the constraints in
symbolic format, i.e., brings the constraints in ternary form and eliminates unnec-
essary intermediary variables. It is written using Maple V’s script language.

Constraint Converter: Generates the spatial representation of the feasible regions for
constraints. According to the constraints to be generated, C++-code is written and
compiled automatically before the native code is executed.

Consistency Solver: Implements several consistency algorithms which achieve various
degrees of consistency. For efficiency reasons this module as well is written in C++.

VRML Generator: Generates VRML models (Virtual Reality Markup Language) for
feasible regions of constraints and projections of solution space approximations, thus
providing the facility to interactively view and analyse the shape of feasible regions,
also written in C++.

The various scripts which link the clients’ WWW browsers to the SpaceSolver server
are written in Perl and provide the user interface. On the client-side users need a VRML-
plug-in in order to be able to analyse the 3d-models of constraints and solution spaces.

4.2 User Interface to the Worldwide Web

SpaceSolver provides facilities to communicate among project partners using information
about constraints and variables. The communication platform is accessible throughout

4.2. USER INTERFACE TO THE WORLDWIDE WEB 73

Figure 4.1: SpaceSolver’s system architecture.

the world by any JavaScript enabled WWW browser for the Worldwide Web. Through a
simple user interface using standard Internet-techniques such as forms, project partners
can communicate in an intuitive way.

4.2.1 Specifying Design Parameters and Constraints

Let us first describe SpaceSolver’s features when used by a single user. SpaceSolver pro-
vides the following facilities in order to allow for intuitive specification of projects:

User authentication: When collaborators connect to the SpaceSolver URL, they are
prompted for a user name and a password. This user authentication allows us to
maintain separation of data and control of access to collaboration projects.

Specify constraints: Upon selecting an existing project or creating a new one, users are
presented a page similar to Figure 4.2. On this page, project partners specify their
project restrictions in the form of mathematical relations, equalities and inequalities,
using unary and binary mathematical operators. Thereby, the ASCII-text format
employed in the symbolic algebra package Maple V is used.

Specify variables: After engineers specify their constraints, SpaceSolver automatically
determines the variables found in the user’s constraints and generates a table similar
to the one shown in the lower part of Figure 4.2. Project partners provide minima,
maxima, default values and short descriptions for variables in this table. These short
descriptions for parameters are the only possibility for free-text explanation within
SpaceSolver.

Algebraic reformulation and submission of projects: Upon completion, the user
needs to submit the specifications to the SpaceSolver server. When a CSP is submit-
ted, an algebraic reformulation is performed. The most important task of this refor-
mulation is to express the CSP exclusively in terms of ternary constraints. However,

74 CHAPTER 4. PORTING CDSS ONTO THE INTERNET

Figure 4.2: SpaceSolver’s Internet-based user interface for specifying CSPs.

before adding auxiliary variables, SpaceSolver can be asked to remove intermediary
variables in order to keep the number of variables in the reformulated CSP low. The
methods provided eliminate constants or intermediary variables, which depend on
up to three variables. Variables are only eliminated if the CSP rewritten in ternary
form can be expected to contain fewer variables through the elimination. The user
can specify, which kinds of intermediary variables should be removed, only constants,
or constants and intermediary variables depending on up to one, two or three other
variables.

After the reformulation, a summary of the project is presented in the Work Frame.
This summary includes the reformulated constraints from all collaborators, the remaining
variables, the removed intermediary variables, and the added auxiliary variables with their
automatically computed domains and definitions.

4.2. USER INTERFACE TO THE WORLDWIDE WEB 75

4.2.2 Management of Collaboration Projects

SpaceSolver facilitates collaboration on engineering projects because several collaborators
are allowed to participate in collaboration projects. Although collaborators in this case
maintain their own file of constraints, they may share variables, i.e., a variable can be
involved in constraints by different collaborators. The creator of a project specifies who
is allowed to contribute to a project (see Figure 4.3). Collaborators can be added and
removed at any time.

Figure 4.3: SpaceSolver’s collaboration extension.

The constraints and variables submitted by other collaborators can be investigated
through links generated by SpaceSolver. For every collaborator, a link is provided that
brings up a page displaying all constraints posted by the corresponding user. Since certain
variables will be shared, collaborators must also be able to determine, which variables
are already defined. SpaceSolver provides a summary of all variables defined with their
minimum, maximum, and default value, as well as a short description.

Whenever a collaboration project is solved constraints and variables that are defined
in this way are collected into one constraint satisfaction problem. The conjunction of
all constraint sets by all partners is converted into a spatial representation and solved
according to the chosen consistency algorithm. The analysis of the results can then lead
to collaborative decisions and bring the project closer to realization.

4.2.3 Visualisation of Constraints and Solution Spaces

Visualisation of constraints and approximations of solution spaces helps obtain an un-
derstanding of characteristics of the problem and this supports decision-making. For any
three dimensional projection of a consistent space a VRML model can be generated. Using
a standard viewer for VRML, project partners can analyse the form of these projection
interactively. Figure 4.4 shows the three dimensional projection of a path consistent space.

76 CHAPTER 4. PORTING CDSS ONTO THE INTERNET

Consistency algorithms have the ability to render hidden relations between parameters
explicit. Visualisation further helps understanding such relations and thus helps making
decisions.

Suppose, for instance, that an engineering task has three (partial) optimisation criteria.
Through visualising the projection of the solution space on these criteria, tradeoffs may
be illustrated and possible alternatives can thus be examined. In order to provide a
visualisation, VRML-scenes representing constraints and solution spaces are generated
dynamically.

VRML is a 3D modelling language for the Internet. Several plug-ins to WWW browser
and standalone VRML-browsers allow Internet-users to examine scenes specified as VRML.
Projections of the solution space on any triplet of variables can be generated and visualised
in SpaceSolver as illustrated in Figure 4.4.

4.2.4 Interactive Exploration of Solution Spaces

Often relations involve more than three variables. Here we describe a design study of
a user interface for an interactive search tool, which would provide facilities to discover
and analyse such relations by exploring solution space approximations. During interactive
search, users manipulate values of parameters, while search algorithms as described in
Section 3.4 modify other parameters such that the current current combination of values
is within the analysed solution space approximation. Thereby, values should be maintained
close to the current value in order to avoid jumps during the interaction.

In order to discover and analyse multidimensional relationships, ranges of feasible
values for all parameters are provided during interactive search for solutions. These ranges
contain all feasible values for the corresponding variable, given that other variables do not
change. The computation of these ranges is based on the approximation of solution space
determined by consistency algorithms and is thus an overestimation. However, it can still
give a good approximation of the relation.

The study for a user interface to an interactive exploration facility within SpaceSolver’s
is illustrated in Figure 4.5. For each variable of the CSP a slider is provided. The positions
of these sliders represents values for their attributed variable, thus all sliders together
represent one point in the search space. The coloured regions besides the sliders show which
values the corresponding variable can take given that other variables are not changed.
Dark regions represent values which are outside the solution space approximation, bright
regions are within.

By interactively exploring the solution space approximation through manipulation of
sliders, users observe complex multidimensional relations in an intuitive way. As a result,
the impact of potential decisions on other design parameters can be anticipated, thereby
improving decision-making.

4.2. USER INTERFACE TO THE WORLDWIDE WEB 77

Figure 4.4: Three dimensional projection of a path consistent space.

Figure 4.5: Interactive exploration of solution space approximation.

78 CHAPTER 4. PORTING CDSS ONTO THE INTERNET

4.3 Linking to an Information Management System

Communication using constraints and information about domains and default values of
parameters exclusively is insufficient in every day collaboration. The necessity of explana-
tions, comments and discussions is inherent to collaboration and SpaceSolver is inadequate
to this kind of information exchange. Therefore, a link to an information management
tool developed at the Computer Aided Architectural Design laboratory (CAAD) of ETH
Zurich has been established. This section provides information about the information
management system SpaceSolver is linked to, as well as a description of the additional
functionalities available through the link of the two systems.

4.3.1 The ICC Collaboration Environment

This description of the ICC environment is based on parts of [Lottaz et al., 2000] written
by Rudi Stouffs. The collaborative information management platform developed within
a project on information, communication and collaboration for the Swiss architecture,
engineering and construction (AEC) industry concentrates on organising free-format doc-
uments in a collaborative manner. Internet-based access on an Oracle database is the heart
of this prototype which provides several additional agents to facilitate decision processes
and data management in a collaborative environment.

Working with AEC industry partners in the scope of the project ”A tool set for the
virtual AEC industry” [Schmitt et al., 1999] has demonstrated the need for electronic tools
that enable these and other companies to interact and exchange information with several
partners without the need for time consuming physical meetings, complemented by the
wish to have up-to-date, secure and consistent information on project characteristics. At
the same time, many firms do not consider the AEC community in general to be ready
to embrace such technologies on a large scale. These firms are particularly worried that if
all except one partner in a team have access to and experience with new technology, the
one without it may slow and possibly break the information flow. When such a firm is
crucial to a design team for other reasons, efficient and reliable implementation of modern
communication techniques is not possible.

The ICC system employs an Internet-based environment to share and manage infor-
mation in the context of a collaborative building project [Stouffs et al., 1998]. It serves as
a framework for the development and dissemination of tools that can serve both a single
partner and the entire team. Of particular interest is the development of tools to sup-
port collaborative processes and the visualisation of information structures that are built
during collaboration. Use of these tools lead to a better understanding of collaborative
activities.

A few information aspects are indispensable for defining, building, and visualising in-
formation structures. These are information entities that provide the resources for all
activities, a project organisation that assists in managing these entities, authoring in-
formation that attributes credits and assigns responsibilities, and links that embed the

4.3. LINKING TO AN INFORMATION MANAGEMENT SYSTEM 79

collaborative structure. In the ICC information management system information entities
can be any kind of document or a Internet pointer (URL) to a document relevant to a
certain project.

Figure 4.6: View of the ICC prototype interface.

Figure 4.6 shows a view of the prototype interface. The top frame enables the search
and retrieval of information entities through access to the project organisation. Entity
sets are presented in the left frame.The presentation hierarchy is derived from user pro-
vided links between documents. Detailed information of an entity, including authoring
information, is shown in the right frame. The frame below the two main frames contains
an alternative presentation of the same entity set. Finally, the bottom-left frame provides
iconised access to environment plug-ins.

Information Entities

A document modelling approach, where the information entities in the collaborative struc-
ture are defined by the documents submitted by the participants, allows for maximal flex-
ibility in specifying the information space. Each entity corresponds to a single document
(or text) and its related information, including authoring information, a categorisation

80 CHAPTER 4. PORTING CDSS ONTO THE INTERNET

with labels, and user-defined attributes. The formats for these documents are defined
by the tools and applications that the participants adopt. Their exact formats do not
necessarily have to be known to the environment; additional support for different formats
may be provided by browser plug-ins or environment extensions.

One such extension constitutes the connection to SpaceSolver. Through this connec-
tion, the ICC environment provides for the management of design constraints and vari-
ables with related information. Thereby, SpaceSolver generates one document in the ICC
database for each constraint and each variable. These documents contain the constraints
and variable definitions in textual form. All facilities of the ICC environment can therefore
be sued to further comment and explain these constraints and variable definitions.

Organisation

An appropriate organisation of the information entities assists participants when searching,
browsing, and managing project information. The ICC system uses a classification of the
information entities within a project according to three dimensions, similar to the ZIP cube
[von Arb et al., 1997]. Whereas the indices of the ZIP cube are exactly defined (according
to established practices in the Swiss AEC industry) the specification of these dimensions in
this environment is left to the project team in order to reflect on the specifics of the project
and the anticipated processes. Documents can be submitted, selected, and visualised by
project and with respect to this three-dimensional structure.

A VRML visualisation of this organisational structure provides a navigable overview
of the project organisation (Figure 4.7). Each of the cubes Figure 4.7 corresponds to a
combination classification according to all three dimensions mentioned above. For each
cube a hierarchy as shown in the left main frame of Figure 4.6 is established. Component
cubes are sized with respect to entity count, and highlighted in the structure according
to selected criteria, e.g., whether there are new documents or entities waiting attention.
Upon selecting a cube, an overview of relevant entities is presented.

Authoring Information

For a collaboration to be effective, it is important that the participants are known and
recognised for their part in the collaborative process and resulting information space, both
in terms of credit and responsibility. Registered project partners are authenticated by the
environment. Authoring information, including date and time, is automatically recorded
and assigned to a document, and collaborative authors can be ascribed to individual
documents. Authoring information credits individual contributions and affords feedback
on the role of a participant in the collaborative process. Ascribing collaborative authors
to a document assigns both access rights and responsibilities.

4.3. LINKING TO AN INFORMATION MANAGEMENT SYSTEM 81

Figure 4.7: A 3-dimensional visualisation of a project’s information structure.

Links between Entities

The information structure resulting from a collaborative process is visualised from the
information entities and the corresponding links between these entities, as created by the
participants in the process. Links allow the user to express relationships, browse the data
space, and can assist in interpreting the information space. A measure of density, as
expressed by the number of links that connect to an entity, especially in combination with
time information, can also lead to the recognition of activity centres.

Some types of links are self-evident and are maintained by the environment. These
allow one to group entities, e.g., a set of images with the documents these appear in, specify
threads of messages or attach messages or comments to other information entities, and
specify versioning sequences in collaborative work. Other links are left to the discretion
of the users, or are additionally supported by extensions to the environment.

Prototype Framework and Implementation

The environment’s multi-tier architecture (Figure 4.8) includes a service-based application
server, a JDBC bridge to the database, an object-oriented middleware (implemented in
Java), and dynamically linked software components to extend the environment’s function-
ality. On the client-side, the prototype interface is developed in HTML and JavaScript,
supporting an easy adaptation of the interface to particular needs or preferences.

The database does not serve as a central repository for documents, instead it supports

82 CHAPTER 4. PORTING CDSS ONTO THE INTERNET

Figure 4.8: Overview of the ICC architecture.

an information management system with the purpose of making project information ac-
cessible to all partners. Documents can either be referenced as URLs or uploaded to an
HTTP-accessible directory. Security is provided through passwords for user authentication
and digital signatures for the authentication of individual software components.

In order to alleviate the bottleneck of the Web, the basic configuration can be extended
with an additional tier in the form of a webtop server [Gupta et al., 1887] that supports
data-caching in memory and duplicates most of the services on the application server,
except for those that require database access. Ideally, such a webtop server can be installed
at every partner firm. Push-technology, in the form of events and event-handlers, ensures
that all environment components are informed of changes in the project database.

4.3.2 Linking the ICC Communication Environment to SpaceSolver

Since the combination of strict- and free-format communication is desirable, a link be-
tween the ICC environment and SpaceSolver has been established. Thereby SpaceSolver
generates data entities in the ICC environment according to the CSPs defined by the col-
laborators. The ICC environment provides facilities to attach further information to these
entities and SpaceSolver can navigate through the ICC environment’s information space.

Integration Architecture

When SpaceSolver is started for concurrent use with the ICC communication environment,
both clients are started at the same time, each in its own browser-window. A third client,
without user-interface and contained in the SpaceSolver browser window, incorporates the
extension to the ICC environment and enables the synchronisation of the other clients

4.3. LINKING TO AN INFORMATION MANAGEMENT SYSTEM 83

(and their servers) during the concurrent session. This extension searches for the interface
client on the ICC network that is opened by the same user, and forwards all instructions
from the SpaceSolver client running in the same browser to this interface. In this way,
the two software packages can work together smoothly, even though the ICC application
server and the SpaceSolver server are located in different geographical areas and do not
communicate directly between each other as illustrated in Figure 4.9.

Figure 4.9: A SpaceSolver client can communicate and synchronise with an ICC client.

Data Structures

SpaceSolver can automatically store and update data structures corresponding to a con-
straint satisfaction problem in the project database of the ICC environment. The resulting
information space contains an entity for each constraint and each variable in the CSP. In
the ICC environment a CSP is represented as bipartite graph. Each constraint entity is
linked to all entities of variables it is defined over while each variable entity has relation-
ships to all constraints it is involved in.

Data about CSPs is enriched using all features of the ICC environment. New and

84 CHAPTER 4. PORTING CDSS ONTO THE INTERNET

existing documents or entities can be linked to provide definitions and explanations to
constraint and variable entities created by SpaceSolver. These entities themselves can be
modified with new attribute information and, as long as such changes do not overwrite
information provided by SpaceSolver, the ICC environment will maintain them even when
SpaceSolver updates the constraint and variable entities.

Navigation

Two interesting additional methods to navigate through the information space correspond-
ing to the CSP are provided when SpaceSolver is linked to the ICC environment.

• SpaceSolver generates hyperlinks for variables and constraints in the CSP, that jump
to the corresponding information entity in the ICC environment

• The user can explore the CSP by following the links between the information entities
corresponding to variables and constraints.

In Figure 4.10 the user just clicked on SpaceSolver’s hyperlink for the variable ha.
This navigates the ICC environment to the corresponding data entity and makes all data
directly related to this variable available in the ICC client’s window (at the right in Fig-
ure 4.10).

In the lower part of the ICC client’s window we can see the relations contained in
the entity for variable ha. The relations contains indicate that a collaborator added
an explaining or commenting document to this entity. The relations has-constraint are
introduced by SpaceSolver and lead to the constraints ha is involved in. All these relations
provide hyperlinks which navigate to the corresponding data entity.

4.4 Summary

With SpaceSolver a prototype for collaborative design using solution spaces has been pro-
vided. It contains facilities to specify project restrictions using constraints as mathematical
expressions in terms of equalities and inequalities using unary and binary mathematical op-
erators. Moreover, SpaceSolver provides the necessary facilities to manage several projects
and allow different partners to work on the same project simultaneously.

Furthermore, SpaceSolver gives access to state-of-the-art constraint satisfaction tech-
niques through the Internet. These techniques allow the approximation of solution spaces
with tractable complexity. In order to analyse the results of these algorithms, interactive
visualisation of any projection of solution space approximations can be generated and an
interactive method to explore solution spaces is proposed. However, the lack of free-format
communication has been recognised.

The ICC system implements an environment for the management and presentation
of distributed information spaces, generated and shared in the context of collaborative
building projects. It aims to augment the partners’ current computing environments with

4.4. SUMMARY 85

Figure 4.10: SpaceSolver (top) navigates in the ICC environment (bottom).

86 CHAPTER 4. PORTING CDSS ONTO THE INTERNET

support for information sharing and collaboration, in support of existing work processes
and concurrent to existing applications. The ICC environment has been extended with
tools to manage decision-making and visualise the information structures which are built
in a collaborative effort.

Integrating both environments provides additional benefits for both approaches. Syn-
ergies have been achieved during the collaborative specification of CSPs through providing
free-format documents to precisely define design parameters and explain constraints. Also
when searching for conflicts the use of relations within the information space, that corre-
spond to the dependencies of constraints and variables have the potential to facilitate the
use of constraint satisfaction problems in design.

Chapter 5

Evaluating CDSS
in the Construction Industry

The construction industry is a typical example of collaborative design and concurrent
engineering, since during the planning, design and erection of a building many different
experts from various domains and possibly several enterprises are involved. Construction
projects are an interesting field of application for the concepts presented so far, since the
necessity of collaboration involving partners with different backgrounds and attitudes is
inherent to this domain.

Within an applied research project of the Swiss National Science Foundation dedicated
to the analysis of collaboration aspects of the construction industry the following projects
were investigated in detail:

• A steal-framed computer building in Geneva (Switzerland),

• A building with two stacked triple gyms in Biel/Bienne (Switzerland) and

• A stocking hall with a 50-tons crane in Gösgen (Switzerland).

All these buildings have actually been constructed between 1996 and 1999. The industrial
partners involved in this research projects allowed us to follow the planning and erection
of these buildings and thus provided us with valuable information for the evaluation of
our suggestions in practical situations.

5.1 Example 1: A Steel-framed Computer Building

5.1.1 Project Description

This example is inspired by an existing computer building in Geneva (Switzerland), its
construction site is illustrated in Figure 5.1. Poor collaboration during planning resulted
in higher than necessary construction costs. In this and other buildings that house various
types of servers and other large computers, ventilation requirements are important design
criteria. Good ventilation maintains satisfactory operating temperatures and this leads

87

88 CHAPTER 5. EVALUATING CDSS IN THE CONSTRUCTION INDUSTRY

to greater equipment reliability. Therefore, space has to be reserved for ventilation ducts.
Often this is done by adding additional space between storeys, however, increasing the
building height has a strong impact on construction and operating costs.

Figure 5.1: Construction site of the steel-framed computer building example. Holes in
beams hold ventilation ducts.

The adoption of beams with holes allows for the placement of ventilation ducts where
beam material is not used efficiently, thereby providing effective solutions at reasonable
costs. The choice of the number of holes and ducts, spacing of the beams, beam height,
hole diameter, and other geometric parameters is, however, not easily established. This
issue generated much discussion and negotiation between the collaborators involved in this
building project.

The project partners that are most concerned with such an issue are architects, civil
engineers, steel fabricators and ventilation subcontractors. Architects aim for an aestheti-
cally pleasing distribution of holes and good proportions of hole size with respect to other
dimensions. Civil engineers typically require few small diameter holes such that beam
strength is not compromised. The steel fabricator prefers high values for hole spacing and
no hole proximity to connections in order to avoid effects of stress concentrations caused
by the holes. Finally, ventilation subcontractors want large, closely spaced holes every-
where so that they can accommodate later changes more easily. Such conflicting goals
are common in every construction project and negotiation without any formal knowledge
about the partners’ requirements may be difficult.

Negotiation in traditional manner as described in Section 2.1 lasted so long that in
order to keep up with the construction schedule the steel constructor had to start pro-
duction of beams before the discussions were finished, assuming parameters which seemed
probable to be accepted by all partners. However, eventually the beams were refused,
causing important delays and extra cost.

5.1.2 Describing the Problem using Constraints

When collaborators want to benefit from solution spaces as suggested in Chapter 2, they
must express the requirements they impose as constraints. Documentation through draw-

5.1. EXAMPLE 1: A STEEL-FRAMED COMPUTER BUILDING 89

ings and tables helps to describe variables and avoid confusion between disciplines which
have different definitions for variables. For example, the variable A is used to symbolise
area : engineers use it for chord area; ventilation subcontractors use A for duct area; and
architects employ A for floor area. Maintaining non conflicting terminology is an essential
and continuous task.

The parameters involved in the equalities and inequalities must be defined precisely
and the shared parameters in constraints of several collaborators need agreement upon
their exact definition including units. In order to define variables without ambiguity,
collaborators most likely refer to drawings similar to Figure 5.2. Other non-geometric
parameters such as cV , the coefficient of air renewal, need some textual definition such as
“which part of the air of the whole room is exchanged in one second”. Variables associated
with this example are given in Table 5.1.

Figure 5.2: Parameter definitions for holes in beams to hold ventilation ducts.

Given that the definitions of parameters are clarified, partners introduce their con-
straints, constants and ranges of acceptable values for parameters. Constraints associated
with this example are listed in Table 5.2. Constraints are placed in categories according
to their functional requirements:

• Geometry constraints declare the shape and configuration of the elements in-
volved.

• Manufacturing constraints must be met to avoid problems during manufacturing
of the beams.

• Ventilation constraints guarantee reliable functioning of the equipment to be
installed in the building.

• Strength constraints preserve the building’s structural integrity.

The strength constraints are most complicated. Some of the constraints are taken from
Swiss building codes [SIA160, 1989, SIA161, 1990] while others were fixed by the owner
of the building and some reflect physical principles.

90 CHAPTER 5. EVALUATING CDSS IN THE CONSTRUCTION INDUSTRY

2c flange width Lsc short term live load
a chord height above the hole Mfh clear floor height
an lever arm of N1 M bending moment
A1 chord area above the hole nd number of ducts
A1w web area above the hole N1 force in the chord
b intermediary value N1pl strength of the chord

Bv floor volume nh number of holes
bs beam spacing Qsc short term linear load
cv coefficient of air renewal Qr load
cn chord centre of gravity S static moment
do duct thickness with isolation t flange thickness
dv ventilation ducts’ diameter tfs ceiling thickness
d hole diameter ts floor surface thickness
e centre-to-centre hole spacing tw web thickness
E Young’s modulus τd shear stress
Fr maximal air speed in ducts Vf air flow in the duct
Fh total floor height V1 shear force
fy elastic strength Vpl1 shear strength
q linear total load V2 shear force

Gr resistance factor Vpl2 shear strength
Gq load factor wa allowable deflection
Gm self weight wl beam deflection, short term load
h total beam height x distance from support to first hole
Iy moment of inertia y1 coordinate of the first hole
L beam span y2 coordinate of the second hole

Z1 plastic modulus

Table 5.1: Definition of parameters for the steel framed building.

The steel fabricator, for instance, introduces a variable x that represents the distance
between the first hole and the column which supports the beam. For manufacturing the
beams, this value should be greater than 1.5 times the hole size. Moreover, this distance
must be larger than 250 mm to prevent damage of the beam when drilling the hole. Other
values, domains and constraints related to manufacturing, assemblage and transport are
also introduced.

The ventilation subcontractor expresses the hole diameter (d) needed in terms of the
number of ducts (nd), considering insulation features (do) and the comfort (air renewal
(cV) required by the owner. The maximum air speed (Fr) can be set in order to specify
appropriate ventilation engines and avoid excessive energy consumption.

The constraints given by the civil engineer are mostly related to strength and service-
ability. Verification of shear and bending moment at several cross-sections is required in
order to guarantee the structural integrity of the steel frame.

While the project partners are working on the specification of their respective require-
ments, these definitions must be available and up to date. Therefore, an information

5.1. EXAMPLE 1: A STEEL-FRAMED COMPUTER BUILDING 91

Geometry

L = 2 x + nh d + (nh − 1) e

FH = MFH + h + ts + tfs
BV = FH Ab

h = 2 a + d

h = b + t

nd ≤ nh

3 ≤ nh

Manufacturing

1.5 d < x

2.5 d < e

d < 0.75 h

Ventilation Constraints

dv + do < d

cV Bv < Vf

Vf = nd Fr π dv
2/4

Strength Constraints

N1 < N1pl/Gr

N1 = M/aN

M = qL2/8
q = (1.3Gm + Gq Qr) bs

aN = S/A1

S = 2 ctb + tw (a− t) (b− a)

N1

A1
<

√
fy2 − 3 τd

2

Gr
− V1 d

4Z1

N1pl = fy A1

Strength Constraints (cont.)

A1 = 2 ct + tw (a− t)
τd = V1/A1w

A1w = (a− t/2) tw

V1 =
qL

4
− q

2

(
x +

d

2

)
V1 < V1pl/Gr

V2 < V2pl/Gr

V2 =
q

(
y2

2 − y1
2 + Le

)
2 aN

y1 = x + d/2
y2 = y1 + e

V1pl = fy A1w

√
3/3

V2pl = fy A2

√
3/3

A2 = (e− d) tw

11 <
a− t/2

tw
wa > 1.2wl

wl =
5

384
qsc L4

EIy
qsc = Lsc bs

Iy = ctb2 +
tw (a− t) (b− a)2

2

wa =
1

350
L

2 ct < tw (a− t)

cn =
A1

2tw

Z1 =
cn

2tw
2

+
(a− cn − t)2 tw

2

+ 2
(

a− cn −
t

2

)
ct

Table 5.2: Constraints in the above table provide an example of requirements for using
castellated beams in a steel-framed computer-building.

92 CHAPTER 5. EVALUATING CDSS IN THE CONSTRUCTION INDUSTRY

management system must ensure that crucial definitions for shared parameters are avail-
able to all project partners. SpaceSolver, our prototype for CDSS, provides a short textual
description for each variable.

However, when combined with the ICC environment as described in Section 4.3, each
variable has a corresponding information entity in the project database of the ICC envi-
ronment and SpaceSolver provides a link to display this entity in the ICC interface. Using
the information management facilities provided by the ICC environment, collaborators
can attach clarifying documents such as drawings and full-test descriptions to the variable
entity, thus simplifying the specification of project parameters and requirements using
constraints.

5.1.3 Collaboration Structure

In this project an architect, a civil engineer, a steel constructor and a ventilation sub-
contractor are working together to accomplish the task. Formalisation of the problem
leads to a constraint satisfaction problem with complex structure and considerable size.
Although it seems natural that collaborators would split the task such that they solve
rather independent subproblems, it turns out that the subproblems are highly interdepen-
dent. However, certain subproblems are more closely related than others. Closely related
problems share many variables while weakly related ones just share one or two parameters.

Examples of interdependencies between partners along with associated variables are
given in Figure 5.3. The nodes in the shown graph represent the collaborators. Two
nodes are linked if the corresponding project partners influence common variables. Links
are labelled with these shared variables. Although no two partners are independent in
the computer building project, some links are stronger than others. For example, there
are many shared variables between the civil engineer and the architect. Therefore, many
possibilities for conflicting assignments for values of variables exist. Conversely, there is a
weak link between the ventilation sub-contractor and the steel fabricator who share only
one variable and therefore need not negotiate about any other issues of the project.

A difficult and often observed problem are cyclic dependencies. These augment the
complexity of the distributed solving of the tasks [Dechter and Pearl, 1989, Freuder, 1982,
Gyssens et al., 1994]. A series of at least 3 dependencies d1, . . . dn between subproblems
build a cycle when di and di+1, i = 1 . . . n − 1 as well as dn and d1 share exactly one
subproblem. Cycles are difficult to treat because decisions in one subproblem influence
the next subproblem in the cycle, and may eventually propagate onto the first problem
again, possibly causing oscillation.

During the work with industry partners, we also observed that in many cases there
was one subproblem which predominated the whole task. In this example the civil en-
gineer’s task represents three quarters of the whole task in terms of design parameters
and is therefore by far the most complex part of the problem to solve. Intuitively, solving
subproblems of partners in a distributed fashion should augment efficiency of the whole
solving process. However, cyclic interdependence and unbalanced subproblem size imply

5.1. EXAMPLE 1: A STEEL-FRAMED COMPUTER BUILDING 93

Figure 5.3: Dependencies between partners through shared variables (Example 1).

that this intuition does not hold. Project partners do not divide their problems in order
to avoid dependencies but by aspect, thereby often treating many shared variables.

5.1.4 Ternarisation of the numeric CSP

This complex and large example illustrates how difficult it can be to bring CSPs into
ternary form. Manual reformulation of a numeric CSP in ternary form takes several hours
and has a large risk for errors. When a symbolic algebra package such as Maple V is used,
the risk of errors is substantially reduced and the task can be performed within one hour
or so, given the engineer has sufficient expertise in using the symbolic algebra package.

The CSP shown in Table 5.1 and Table 5.2 contains 52 variables. 13 constants can be
easily removed. Another 15 intermediary variables are considered unnecessary according to
Section 3.2.2. Our automatic ternarisation algorithm takes 2 minutes on a SUN UltraSparc
60 to determine the 37 auxiliary variables needed and to transform the original CSP into
ternary form. Only four extra variables are introduced by the algorithm for ternarisation
compared to careful ternarisation by hand for two reasons:

• The ternarisation algorithm successfully provokes the reuse of auxiliary variables.

• Complex definitions for those auxiliary variables are employed.

8 of the auxiliary variables suggested are reused. For instance Algorithm 3.16 finds that
the expression −c · t can be substituted in five places and the expression (t− a)/2 can be
reused four times. On the other hand definitions of auxiliary variables like the following
are used:

aux12 = −10
11
· 108

√√√√5.5225(1− V1
2

V1pl
2

The naive implementation of ternarisation as shown in Algorithm 3.15, which replaces
all binary operators by auxiliary variable, leads to 81 auxiliary variables. The addition of

94 CHAPTER 5. EVALUATING CDSS IN THE CONSTRUCTION INDUSTRY

more than twice as many auxiliary variables compared to the optimised method implies
an substantial loss in performance during computation of consistency.

The good results of the automatic ternarisation is unexpected, since algebraic manip-
ulations are known to be particularly tricky in many situations. The encouraging results
we obtain can partially be explained by the sophisticated methods used to choose aux-
iliary variables but is also caused by the nature of the problems considered. Practical
examples of numeric CSPs taken from engineering are often quite large but rarely contain
very complex expressions. Therefore, an automatic approach to ternarisation can perform
acceptably well, while saving much time and effort to the engineers involved.

5.1.5 Finding Real Conflicts

Tradeoffs between several design goals are often necessary in collaboration projects. In
such cases, consistency algorithms can determine whether a conflict exists. Conflicts be-
tween design goals expressed as constraints result in empty solution spaces of the corre-
sponding constraint satisfaction problems. Low degrees of consistency prove to be useful to
detect many conflicts quickly, even when conflicts occur between requirements of different
project partners. The fact, that collaborators are obliged to formalise their requirements
makes it easy to detect conflicts between project restrictions and can thus trigger impor-
tant negotiation about design goals at an early stage of the process.

In our computer-building example, one of the important goals is to guarantee appropri-
ate ventilation. This can be measured by cV , the air renewal coefficient. At first, a value
of 0.001 was suggested, signifying that the air in any room is completely exchanged in 1000
seconds. Arc-consistency at this point yields intervals for all parameters. Augmenting the
value for cV to 0.0012 leads to a narrowing of these intervals but remains feasible. When
more than 0.0013 is imposed for cV , arc-consistency detects a conflict meaning that such
an air renewal rate cannot be achieved given the other constraints, which include a limited
number of ventilation ducts to minimise cost and limit the speed of the air in the ducts
for comfort.

Arc-consistency does not guarantee that a solution exists. Therefore, in the situation
mentioned, we cannot be sure, whether the goal to reach cV = 0.0012 can be reached.
Nevertheless, when arc-consistency is no longer able to determine feasible intervals for
parameters, it guarantees that no solution exists, since these intervals are always overes-
timations of the actual solution space. Moreover, low degrees of consistency are suitable
to the task of detecting conflicts in early stages of a project, since they are efficient in
time and space. The computation of arc-consistency for the computer-building exam-
ple takes just a few seconds. Within SpaceSolver this time is usually dominated by the
communication time through the Internet.

5.1.6 Planning Negotiations

In the absence of requirements on the order of instantiating values to variables, it is
advantageous to develop a negotiation plan where variable values influencing the work of

5.1. EXAMPLE 1: A STEEL-FRAMED COMPUTER BUILDING 95

many collaborators, are fixed first. When parameters, which influence the work of many
collaborators are fixed first, fewer conflicts and less backtracking occurs during negotiation.
Decisions upon variables involved in the tasks of many partners make subsequent variable
assignments more independent and therefore opportunities to perform negotiation efforts
in parallel become possible.

Figure 5.4: Negotiation plan for Example 1.

Figure 5.4 illustrates such a negotiation plan for the computer building example. The
plan is organised according to how many partners are involved in a decision. Decisions at
the top of the figure are taken first and the arrows indicate a partial order on the decisions.

Another approach to schedule decisions in a project when using CSP techniques is
the use of partial convexity. When after ensuring (3,2)-relational consistency a variable
ordering can be found which guarantees backtrack-free search [Sam-Haroud, 1995], this
order should be followed whenever possible.

A further help for negotiation, a projection of the solution space approximation onto
three variables, is given in Figure 5.5. Here possibly allowable values of beam spacing,
beam depth and air renewal quality are given. If any value combination is chosen for these
three variables outside the space shown, there exist no acceptable values for all other vari-
ables. Further negotiation is therefore useless. In order to simplify this example and
maintain a reasonable execution time, several variables (for example, load and resistance
factors, loading, yield stress, ultimate strengths and Young’s modulus) were assigned con-
stant values. The resulting CSP had 17 variables that were not taken to be constant.
Computing (3,2)-relational consistency for this simplified example took 150 minutes on a
Sun UltraSparc 60.

96 CHAPTER 5. EVALUATING CDSS IN THE CONSTRUCTION INDUSTRY

Figure 5.5: Solution space approximation by (3,2)-relational consistency for beam spac-
ing, beam depth and the quality of air renewal for Example 1.

5.2 Example 2: Stacked Gymnastic Halls

5.2.1 Project Description

The second example used for evaluation is a building for two triple gymnastic halls in
Biel/Bienne, Switzerland (see Figure 5.6). The halls were built near the city centre. Due
to limited space, one gym was placed on top of the other. This led to special constraints
related to vibrations of the upper gym’s floor beams. In addition, the owners had special
requirements related to the position of these beams since these are used to fix equipment

Figure 5.6: Two triple gymnastic halls, one placed on top of the other.

5.2. EXAMPLE 2: STACKED GYMNASTIC HALLS 97

that is used in the lower gym. Local building laws include a building height restriction for
this zone, and in addition, the building is situated on a near-surface aquifer. If foundations
were placed below the water table, pumping and waterproofing costs would have been
unacceptable. Therefore, a solution for placing two gyms between the building height limit
and the water table, while avoiding vibration problems and meeting owner requirements,
had to be found.

Figure 5.7 includes a drawing of the building cross section and a section showing the
floor beams. It also shows the geometric parameters of the problem, additional parameters
such as security factors and resonance frequency are given in Table 5.3 and constraints are
shown in Table 5.4. The particular shape of the steel beams which hold the upper floor was
suggested during a detailed resonance study of these beams [Schwendimann et al., 1998].
Numerical and analytical considerations lead to the conclusion, that a shape with greater
height in the middle of the beam and comparably smaller height at both ends was most
efficient in

• Providing a high resonance frequency,

• Low profile to avoid augmenting building height and

• Economy of steel.

Nevertheless, more than twice the steel was necessary to accommodate the dynamic restric-
tions in this building compared to the pure static restrictions. The constraints determined
in are included in the constraints in Table 5.4.

Figure 5.7: Plans for stacked gymnastic halls example.

5.2.2 Collaboration Structure

Although the formalisation of this example is done on a higher level of abstraction and is
therefore smaller than the first application example, there are many dependencies between

98 CHAPTER 5. EVALUATING CDSS IN THE CONSTRUCTION INDUSTRY

2c flange width Lz height restriction

d web thickness P footing depth

E beam spacing q∗ self weight of concrete slab

ha beam height Rf dynamic factor

Hs1 lower gymnastic room height S safety coefficient

Hs2 upper gymnastic room height t flange thickness

ht upper beam minimal height ωn eigenfrequency

m∗ modal mass

k∗ modal stiffness

Table 5.3: Definition of parameters for the stacked gyms building.

Dynamics Constraints:

qconcrete = 200 · E0.6

m∗ = qconcrete · E ·
L

2

k∗ =
Esteel

106 · L3
· (3.37 · h3

a · d

+ 42.84 · h2
a · tc)

ωn =
k∗

m∗

ωn ≥ 8 · 2π

Additional Constraints:

ha · d
500

≥
√

3
235
· L · E1.6 ·Rf · S

tc · ha

500
≥ 250

235
· L · E1.6 ·Rf · S

Lz + P ≥ Hs1 + Hs2 + ha + ht

4.5 · t ≤ c ≤ 8.5 · t
Hs1 ≥ 5.5,Hs2 ≥ 5.5

P ≤ 5, E ≥ 2.5

Table 5.4: Constraints related to dynamic and static aspects of the stacked gyms building.

partners as shown in Figure 5.8. However, most dependencies are only due to one single
shared variable, but the structure remains complex, since even though fixing ha and E

removes five links on Figure 5.8, there remains a cycle involving the civil engineer, the
steel fabricator and the vibration expert. All of them consider the same variable in their
restrictions and are therefore obliged to negotiate about important parts of the project.

The fact that several variables are shared by many collaborators is also reflected in the
negotiation plan given in Figure 5.9. This plan again suggests an ordering which schedules
discussions involving many partners early. Negotiation about most of the variables involves
half or more of the project partners.

5.2. EXAMPLE 2: STACKED GYMNASTIC HALLS 99

Figure 5.8: Dependencies between partners through shared variables (Example 2).

Figure 5.9: Negotiation plan for Example 2.

100 CHAPTER 5. EVALUATING CDSS IN THE CONSTRUCTION INDUSTRY

5.2.3 Finding Causes of Conflicts

As shown in the previous section, SpaceSolver helps to find a conflict but it is difficult to
determine the cause of a conflict automatically. In fact, it has been shown that in general
this is an intractable task. However, when a conflict occurs the CSP’s structure can help
to find the cause. Given that after the addition of a certain constraint a conflict occurs,
the conflict is likely to be caused by this new constraint and another constraint which
shares parameters with the new constraint.

The link to the ICC information environment can be used to explore the CSP accord-
ing to its structure. Entities which represent constraints provide links to all parameters
involved in the constraints and parameters provide links to all constraints they are in-
volved in. Starting from the entity which represents the constraint causing the conflict, a
user can therefore move to parameters and constraints which are closely related. While
walking through the CSP in this manner, the explanations attached to the entities help
to identify with whom to negotiate about conflicting design goals. The combination of
SpaceSolver with the ICC environment provides support for designers to search for the
cause of a conflict and negotiate with partners involved to resolve it.

Figure 5.10: Short walk through the information space corresponding to a CSP.

Suppose that in the stacked gym example a conflict arises when the civil engineer intro-
duces an additional constraint on E (the spacing of the floor beams). When SpaceSolver
is launched in combination with the ICC environment, it provides a link for E to display
the corresponding entity in the ICC interface. This view includes a list of all constraints in
which E is involved. Among these constraints the engineer finds E > 2.5. This constraint
seems very arbitrary to the engineer and might be the cause of the conflict. Following the

5.2. EXAMPLE 2: STACKED GYMNASTIC HALLS 101

corresponding link brings up the constraint’s information entity and reveals two justifica-
tions for this constraint: the architect needs the space for hanging lamps and the client
asks for it in order to mount sports equipment such as rings and basketball baskets. This
walk through the information space corresponding to the numeric CSP of the stacked gym
example is illustrated in Figure 5.10.

Figure 5.11: Longer walk through the information space corresponding to a CSP.

The engineer thinks that this constraint is probably not negotiable and therefore backs
up to the SpaceSolver interface. He finds the link that shows the information about the
constraint last added, the one, which caused the conflict, in the ICC interface. From
the relationships to all variables involved in that constraint, the engineer follows the link
to ha (the beam height), because this parameter is most influenced from outside the
engineer’s own constraints. From the information for ha, the engineer finds the constraint

102 CHAPTER 5. EVALUATING CDSS IN THE CONSTRUCTION INDUSTRY

Hs1+Hs2+ha+ht < Lz +p, which seems critical for its high number of variables involved.
The engineer then follows the relationship to p (the footing depth), because this parameter
was not yet examined. The engineer finds the definition as well as the justification for
its upper limit from the geologist. This second walk through the information space is
illustrated in Figure 5.11.

After this exploration of the information space, including the screening of the defini-
tions of the variables and the explanations of the constraints, and including the exploitation
of the relationships between constraints and variables, the engineer starts to negotiate with
the client about the height of the gyms (Hs1 and Hs2). Finally, the conflict is resolved by
accepting a slightly smaller height for the upper gymnastic hall.

5.2.4 Approximations of Solution Spaces

Using the stacked gym example, we can also demonstrate the varying quality of solu-
tion space approximation provided by the various consistency algorithms described in
Section 3.1. Examples of solution space approximations for this problem are given in Fig-
ure 5.12 projected on beam height (ha), modal stiffness (k) and flange width (c). These
variables are not directly related by constraints, the restrictions found through consistency
algorithms are induced by constraints on other variables. The different characteristics of
the results determined are illustrated in the different parts of Figure 5.12.

• Arc- and 2-consistency provide a set of hypercubes as a result, this is in general a
very rough approximation (see part a in Figure 5.12).

• Path-consistency provides an intersection of prisms which have a two dimensional
base. Large parts of the search space can be cut away compared to arc- and 2-
consistency (see part b in Figure 5.12). This does not mean that the projection of the
path-consistent space onto single variables necessarily further restricts the possible
values for variables. However, the path-consistent result gives some impression of
the shape of the solution space.

• Finally (3,2)-relational consistency approximates the solution space using three di-
mensional labels and therefore projections on three variables can have arbitrary
shape (see part c in Figure 5.12). Therefore, an even more precise image of the
shape of the solution space is generated.

In this figure, parts a) and b) took only a few seconds to calculate, whereas the space
in part c) required approximately two hours on a SUN UltraSparc 60. The effort needed
to enforce (3,2)-relational consistency is not always justified, since substantial further
pruning of the search space compared to weaker degrees of consistency is not always
reached. However, (3,2)-relational consistency, provides backtrack-free search in some
cases. In these situations the solution space can be explored easily.

5.3. EXAMPLE 3: A STORAGE HALL WITH 50T CRANE 103

a) b) c)

Figure 5.12: Approximation of solution spaces for Example 1 generated by a) arc-, b)
path- and c) (3,2)-relational consistency. Projections on c, ha and k.

5.3 Example 3: A Storage Hall with 50t Crane

5.3.1 Project Description

The third example is a storage hall for heavy generators. It contains a 50-tons-crane to
move pieces within the hall. The example is inspired by a real construction site for a
nuclear power plant in Gösgen, Switzerland (see Figure 5.13).

Figure 5.13: Storage hall with 50-tons crane and important security restrictions.

The following project partners participated in tasks to plan, design and construct this
storage hall: client, civil engineer, steel fabricator, wind expert and crane supplier. These
partners worked together to define the main structural elements of the building. Each of
them had specific constraints, and in current practice the civil engineer is alone responsible
to guarantee consistency of proposals for the steel frame structure. During the design of
the project, the above mentioned project partners take responsibilities for the following
tasks:

• The client specifies requirements related to the function of the building. This includes
the volume of the hall, its placement and the width of openings.

104 CHAPTER 5. EVALUATING CDSS IN THE CONSTRUCTION INDUSTRY

• The civil engineers designs the steel frame structure considering building codes, crane
loads and standard hazard scenarios.

• The steel fabricator provides all information related to sections of steel elements and
material properties.

• The wind expert determines the effect of the wind on the structure including the
particular hazard scenario caused by the influence of the nuclear power plant’s nearby
cooling tower.

• The crane supplier configures the crane and provides information about its proper-
ties.

Only structural safety criteria excluding serviceability have been modelled for this
example. Relevant parameters are given in Table 5.5 and illustrated in Figures 5.14 and
5.15. The most important constraints are shown in Table 5.6.

Figure 5.14: Parameters of storage hall example.

Figure 5.15: Loads (left) and maximum crane load hazard scenario (right) for Example
3.

5.3. EXAMPLE 3: A STORAGE HALL WITH 50T CRANE 105

Geometric parameters

wC flange width of column qw2 west roof wind pressure

wB flange width of beam qw3 east roof wind pressure

L length of the building qw4 east façade wind pressure

w width of the building gC self weight of the crane

h1 clear height from floor to the crane QC crane load

h2 height from crane to the roof Qrmax max. load on crane supporting rail

htot total height of the building QTr braking load of the crane

s spacing between frames λ coeff. for crane’s horizontal strength∗

d1 minimum distance between the crane φ dynamic amplific. factor [SIA 160]

load and its supporting rail ξ lifting coefficient∗

sC span of the crane

d2 distance from column axis to the rail
supporting the crane

Structural analysis

Materials property features β effective length coefficient for buckling

EpB plastic modulus of the beam k frame’s relative stiffness coefficient

MBB moment causing buckling for beam MdC design moment in the column footing

MBC moment causing buckling for column MdB design moment in the frame joint

IBx moment of Inertia of the beam VdC shear force in the column footing

ICxx moment of Inertia of the column γr resistance factor

AC area of column cross section Mpl plastic moment of the beam

AB area of beam cross section γBR factor for cross section strength

rCxx radius of gyration of the column γBB factor for cross section buckling

fy elastic limit Ncry critical elastic buckling load

E Young’s modulus Nky ultimate buckling load

D steel density σk ultimate buckling stress

lkC effective length of the column

Loads λk slenderness ratio

g dead load of the roof f2nd second order factor

qs snow load γC column security factor

qw1 west façade wind pressure qsteel quantity of steel

Table 5.5: Definitions of parameters for storage hall example (excerpt, ∗ : according to
SIA160 [SIA160, 1989])

106 CHAPTER 5. EVALUATING CDSS IN THE CONSTRUCTION INDUSTRY

Constraints by client

h = 12
L = 41
w = 20.8

QC = 500
s ≥ 5

Constraints by crane supplier

d1 = 1
sC = 19.5
h2 = 3.7
gC = 2.55 · sC

d2 = 0.65

Constraints by wind expert

qw1 = 0.96 · s
qw2 = 0.6 · s
qw3 = 0.36 · s
qw4 = 0.36 · s

Constraints by steel fabricator

EpB = −1065250 + 6310 · wB + 7.795 · w2
B

(∗)

MBB = −298.9 + 1.71 · wB + 0.00136 · w2
B

(∗)

MBC = −298.9 + 1.71 · wC + 0.00136 · w2
C

(∗)

IBxx = 855− 4.66 · wB + 0.00948 · w2
B

(∗)

ICxx = 855− 4.66 · wC + 0.00948 · w2
C

(∗)

AB = 4247 + 31.08 · wB
(∗)

AC = 4247 + 31.08 · wC
(∗)

rCxx = 20.8 + 0.385 · wC
(∗)

fy = 235
E = 210
E = 7850

(∗): defined by regression
(∗∗): simplification: β independent of k

Constraints by civil engineer

htot = h1 + h2

s = 5.8
g = 1.7 · s + 1.7

qs = 0.8 · s

Qrmax =
QC · (sC − d1)

sC

QTr = 0.5 · λ ·Qrmax · φ
λ = 0.1

φ = 1 + ξ · QC

Qrmax

ξ = 0.15

β =
20
htot

(∗∗)

lkC = β · htot

k =
IBxx · htot

ICxx

γr = 1.1
Mpl = 10−6 · fy · EpB

γBR =
Mpl

γr ·MdB

γBR ≥ 1

γBB =
MBB

γr ·MdB

γBB ≥ 1

Ncry =
π2 · E · ICxx

l2kC

Nky = 10−3 · σk ·AC

σk = 271.5− 1.392 · λk

λk = 1000
lkC

rCxx

f2ndO =
1

1− VdC

Ncry

1
γC

=
VdC · γr

Nky
+ f2ndO ·

MdC · γr

MBC

γC ≥ 1

qsteel =
(L + s) ·D

106 · s
· (wAB + 2htotAC)

MdB , MdC and VdC depend on k, h1, h2 and
QC , crane with load is most critical scenario.

Table 5.6: Constraints for the storage hall example (excerpt).

5.3. EXAMPLE 3: A STORAGE HALL WITH 50T CRANE 107

5.3.2 Making a CSP Treatable by Reformulation

The CSP associated with the storage hall example is of considerable size. It involves
more than 100 variables. A detailed analysis using complex consistency algorithms of high
degree is not possible for a CSP of this size. However, in our example the elimination of
unnecessary intermediary variables proves to be very useful.

The collaborators employed many constants in order to keep the constraints adaptable
and thus facilitate what-if analyses. SpaceSolver eliminates most of the variables leaving
just 8 original variables in the system for consistency analysis and adds only 1 auxiliary
variable during ternarisation. This dramatic simplification of the problem is due to the
chained substitution of variables as illustrated in Figure 5.16. Constants are substituted

Figure 5.16: Chained elimination of unnecessary intermediary variables.

in constraints which imply other variable to become fixed. Substitution of constants and
unnecessary intermediary variables recursively induces many other such substitutions until
the system is almost ternary and involves no more than 8 variables. This transformation
is performed within a few seconds.

Chained removal of many unnecessary variables leads to complex expressions as shown
in Figure 5.17. This illustrates the necessity of allowing complex definitions of auxiliary
variables. Rudimentary algorithms for ternarisation such Algorithm 3.15 are unable to
transform expressions as shown in Figure 5.17 efficiently into ternary form, while our
generalised algorithm for ternarisation (Algorithm 3.16) only adds one auxiliary variable.

108 CHAPTER 5. EVALUATING CDSS IN THE CONSTRUCTION INDUSTRY

Figure 5.17: Two constraints after elimination of unnecessary intermediary variables.

5.3.3 Tradeoff Analysis

In multi-criteria decision problems solution spaces can help to illustrate the tradeoffs
to be considered and thus provide support for more informed decision-making. When
the formalisation of the design problem includes optimisation criteria, three dimensional
projections of solution space approximations can illustrate optimal solutions with respect
to a selected criterion as well as tradeoffs between several optimisation criteria.

• Projections of the solution space approximation onto one design criterion and one or
two input variables illustrates optimal solutions with respect to the selected criterion.

• Selecting several design criteria to project on illustrates the tradeoff between these
criteria.

Both kinds of analysis help to take good decisions be revealing information which is not
explicitely stated in the problem but implied by the CSP developed during negotiation.

In the storage hall example, the civil engineer wants to know what are the best com-
binations of flange width of the column (wC) and the beam (wB). The criteria involved
in this decision are cost and security factors. The cost is in this example directly linked
to the amount of steel needed and should be minimised, while solutions higher security
factors are preferred over solutions with security factors close to their lower acceptable
limit of 1. Thereby one security factor is considered for each of the elements, i.e., for
columns and for beams.

Figure 5.18 illustrates which value combinations for the flange width of columns and
beams are optimal with respect to different design criteria.

• Part a) of Figure 5.18 contains the projection on wC , wB and γC . The best solutions

5.3. EXAMPLE 3: A STORAGE HALL WITH 50T CRANE 109

with respect to the columns’ security factor have high values for column and beam
flange width.

• Part b) of Figure 5.18 contains the projection on wC , wB and γBB. The best
solutions with respect to the beams’ security factor have low values for the column
flange width and high ones for the beam flange width.

• Part c) of Figure 5.18 contains the projection on wC , wB and qsteel. The best
solutions with respect to cost or quantity of steel used have low values for column
and beam flange width.

The solution space approximation used for all these projections are determined by
(3,2)-relational consistency and thus provide a tight approximation of the actual solution
space.

These results demonstrate that the best combination of values for one criterion is often
not the best combination for other criteria. In fact, cost and security criteria have an
opposite nature and therefore, it is no surprise that optimising one or the other does lead
to contradictory results. When comparing pairs of criteria as suggested by the different
parts of Figure 5.19, the following conclusions are of interest:

• Part a) of Figure 5.19 compares qsteel and γC . Using high quantities of steel provides
a high factor of security for the column, γC can only be high for solutions which use
high quantities of steel.

• Part b) of Figure 5.19 compares γBB and γC : Enforcing a very high factor of security
for the beam leads to a low security factor for the column. Thus, the factor on the
column is more critical than the factor on the beam.

• Part c) of Figure 5.19 compares qsteel and γBB: Solutions which use large quantities
of steel do not provide the best security factor for the beam.

Finally, if all criteria are placed in a three dimensional graph (Figure 5.20), an overall
view is obtained. The points which correspond to the best compromises in the two di-
mensional considerations appear as extrema of the three dimensional feasible region. This
three dimensional volume illustrates the necessity of compromises in such multi-criteria
decision tasks, since best points in the two dimensional consideration actually represent
bad solutions for the third criterion.

For instance, the best compromise for γBB and γC optimises γBB. Figure 5.20 shows
that this compromise involves very large amounts of steel. The best compromise between
the security factor of the column and the quantity of steel guarantees optimal security for
the column and does not employ enormous amounts of steel. However, the 3-dimensional
tradeoff shows that it implies very weak security on the beam.

110 CHAPTER 5. EVALUATING CDSS IN THE CONSTRUCTION INDUSTRY

a) b) c)

Figure 5.18: Various optimisation criteria (z-axis), depend on column/beam flange width.

a) b) c)

Figure 5.19: Pairwise tradeoffs for storage hall example.

Figure 5.20: Overall tradeoff for storage hall example.

5.4. SUMMARY 111

5.3.4 Exploring Solution Spaces

Visualisation of tradeoffs as illustrated above supports understanding of relations of up to
three dimensions. More complex multidimensional relations cannot be visualised as easily.
Interactive exploration of solution spaces is an attempt to provide intuitive support for
understanding multidimensional relationships.

Multidimensional relations can be investigated in SpaceSolver using its interactive
search utility. Walking through the solution space approximations while analysing the
border of the feasible region gives a feeling of the multidimensional shape of the approxi-
mation of the solution space. For decision-making the interactive exploration of solution
space approximation is useful because it allows the project partner to anticipate the impact
of a decision about one design parameter on other parameters.

Figure 5.21 shows SpaceSolver’s solution space explorer for the storage hall example.
All sliders are within the bright regions. This indicates that the value combination repre-
sented by all sliders together is a possible solution for the problem. Since many parameters
closely related in this problem, i.e., determined by equalities, the ranges of feasibility for
the variables are very tight.

Interactively exploring the solution space helps to understand multidimensional rela-
tions. Moving the slider controlling wB for instance, shows that this variable is linked to
several other variables. It augments both factors γC and γBB while augmenting qsteel as
well. All these relations are shown simultaneously, while moving the slider. Figure 5.21
shows the start-point of the mentioned move and Figure 5.22 its end-point. On the other
hand, this application reveals that there is no direct or indirect link to wC .

Civil engineers are most often the project partners who have been overloaded in the
past when too many changes to projects occurred and when there was no efficient compu-
tational support for managing dependencies between variables. Apart from anticipating
the impact of decisions on other variables, change management is the second task where
this tool may be helpful, since it keeps track of all relations between variables when a
change occurs to a particular parameter. However, its usefulness is compromised by the
fact that global consistency and therefore exact approximation of solution space can only
be reached in certain cases.

5.4 Summary

Civil engineering has been established as an appropriate field for evaluating collabora-
tion methods. Due to the need of collaboration between several project partners from
different domains and different firms inherent to the construction industry, sophisticated
techniques for communication, information exchange and collaboration become more and
more important. With the success of the Internet, practitioners start to accept electronic
tools for data exchange and transfer as their standard techniques. However, new tools for
actually supporting collaboration in more than just communication are not yet employed
in practice.

112 CHAPTER 5. EVALUATING CDSS IN THE CONSTRUCTION INDUSTRY

Figure 5.21: SpaceSolver’s interactive solution space explorer shows one solution of the
storage hall example.

5.4. SUMMARY 113

Figure 5.22: Moved wB using the corresponding slider of SpaceSolver’s interactive solution
space explorer.

114 CHAPTER 5. EVALUATING CDSS IN THE CONSTRUCTION INDUSTRY

Three example projects have been chosen to evaluate the techniques we suggest in a
practical context. All projects are taken from real building sites and close collaboration
with the partners involved in the planning, design and erection of these projects has been
established. With the help of practitioners we formalised selected aspects of the chosen
buildings and analysed the usefulness of solution space approximations according to the
implementation suggested in Chapters 3 and 4.

The task to formalise project restrictions is difficult and needs coordination. Certain
project partners such as civil engineers are expected to be at ease with the use of formal
specification for their requirements, since they are used to work with these already. Other
partners may not easily accept to work in such an abstract way. Clients, for instance, may
insist in permanently having a point solution at hand, which illustrates the current state
of affairs. Thus, solution spaces alone cannot guarantee smooth collaboration.

The structure of the CSP generated by the different collaborators did not adhere to
our expectations. The example project revealed that in construction industry collabora-
tors do not necessarily decompose their tasks such that they only share few parameters.
In fact, partners often share many parameters but treat different aspects which require
the corresponding expertise. Therefore, all collaborators usually collaborate with many
other in a project, which makes the use of common methods to treat decomposed CSPs
unapplicable. Moreover, it was also observed that the size of the sub-CSPs defined be the
different partners are not balanced. Often one sub problem is much more difficult to solve
than all the others and therefore also makes decomposition inefficient.

In our examples, we were able to show that the algebraic reformulation can fulfil
two tasks. On one hand in can render a CSP treatable by eliminating the unnecessary
intermediary variables. On the other hand it does perform well for bringing a CSP, which
corresponds to a practical problem, in ternary form. Compared with ternarisation by hand
it introduces few extra variables while performing its task in few minutes even for large
examples. In contrast, the reformulation of large practical CSPs by hand may easily take
several hours, even when experts are using symbolic algebra packages.

The detection of conflicts was possible also for large projects since many conflicts can
be detected suing low degrees of consistency. Applying low degrees of consistency in early
stages of a project can save substantial effort in negotiation about point solution while
actually no solution exists. In the case when a conflict is detected, the link to the ICC
information and collaboration environment proves to be particularly useful in order to
interactively search for the cause of the conflict. Once the conflict’s cause is determined,
the involved project partners are easily found in this system as well. Negotiation about
design goals instead of parameter values with these project partner can thus be initiated.

It has also been shown that solution spaces are not only useful to avoid artificial
conflicts but that they can also be an aid during decision-making. When optimisation
criteria are formalised in the CSP an analysis of tradeoffs can provide valuable information
for project partners during negotiation.

Interactive exploration of solution space approximations has been suggested for two

5.4. SUMMARY 115

reasons. On one hand it allows to find and better understand multidimensional dependen-
cies between variables. On the other hand, the exploration of the solution space can give
valuable information about the impact of a decision about one parameter on all other pa-
rameters, as well as improve change management by keeping track of all relations between
parameters when changes occur.

116 CHAPTER 5. EVALUATING CDSS IN THE CONSTRUCTION INDUSTRY

Chapter 6

Related Work

The need for collaboration for complex design tasks is widely recognised in research and in-
dustry [Ellis and Gibbs, 1991]. Moreover, the increasing availability of high-performance
computer networks on local and global levels provides obvious opportunities for computer-
based support in collaboration tasks. Recently, substantial efforts in industry and research
produced many collaboration environments. [Finger et al., 1995] contains a general char-
acterisation of the needs in collaborative design and in [Cutkosky and Tennenbaum, 1991]
the following major characteristics of concurrent engineering have been identified:

• Collaboration takes place over time and space,

• Design evolve slowly with many small changes, and

• Redesign and reuse of previous designs is common.

From these characteristics Cutkosky and Tennenbaum deduce opportunities for computa-
tional support including change notification, encapsulation of knowledge, modular archi-
tectures with standardised interfaces and change propagation through explicit dependen-
cies. In addition, the need for conflict management and negotiation in collaboration has
for instance been recognised in [Sycara and Lewis, 1991].

This chapter gives a review of selected research projects on collaboration in design. In
order to accomplish their goals, the collaboration approaches and environments discussed
draw from several research fields:

• Computer-Supported Cooperative Work (CSCW) including document management
and Internet technology,

• Multi-agent systems research including communication and negotiation techniques,

• Concurrent engineering and collaborative design including process analysis, product
modelling and human computer interaction, and

• Artificial intelligence including constraint satisfaction, semantic nets and logic pro-
gramming.

117

118 CHAPTER 6. RELATED WORK

Only the smooth integration of these domains yields efficient tools for collaboration, which
can provide useful support for information management, conflict mitigation, cooperative
negotiation and collaborative decision-making.

6.1 Communication and Information Management

The collaboration environments mentioned in this section provide sophisticated data-
structures, facilities for document organisation or support for version control, in order to
improve communication, change management and formalisation of requirements. In con-
trast, a simple approach based on a central data repository for strict-format information
related to design parameters and constraints is adopted in this thesis. Nevertheless, our
work can provide valuable support for issues like change management and formalisation
of project requirements.

6.1.1 Shared Project/Product Models

Substantial efforts have been made to develop shared project models. Kept in a commonly
accessible repository, these can mediate between project partners and help coordinate
communication. In [Fischer and Froese, 1996] characteristics of such project models are
derived from case-studies. These necessary characteristics include extensibility, abstraction
and support for integration mechanisms.

More specifically, in the context of the AEC industry, Froese develops a core model
for process information. In [Froese, 1996] he identifies common issues from several process
models used in computer integrated construction (CIC) research projects and deduces
requirements for a standard model accepted in the AEC industry. The proposed core
model includes aspects such as inputs, outputs, controls, actors, methods and costs.

The centrepiece of the multidisciplinary collaboration platform ICM [Fruchter, 1996] is
a shared 3D-product model. Collaborators work simultaneously while the system supports
critiquing, explanation and change notification. Connections to domain-specific tools are
provided. Although ICM was originally designed for collaborative building design, it has
proven to be useful as a general framework for multidisciplinary collaborative teamwork
during several workshops involving many representatives from industry.

Standardisation of product models helps to simplify the implementation of collabora-
tive design environments. When a central standardised format for representation of the
shared model is accepted, translation from and into this representation for each perspective
is enough for communication among all project partners in a collaboration environment.
In contrast, Olsen et al. argue that such communication needs evolve too quickly to be ac-
commodated by a static standardised data-exchange format [Olsen et al., 1995]. Therefore
they propose the usage of knowledge sharing agreements between collaborating designers,
which are established “just in time”, i.e., only when they are needed.

6.1. COMMUNICATION AND INFORMATION MANAGEMENT 119

6.1.2 Heterogeneous Agent Systems for Concurrent Engineering

Ndumu and Tah review the literature on agents research and development, and de-
duce the potential contributions of the agent-based approach to the AEC industry in
[Ndumu and Tah, 1998]. They argue that the approach facilitates inter-operability be-
tween the many diverse and heterogeneous decision-support systems currently in use in the
construction industry. Using examples from construction supply chain provisioning and
collaborative building design, they explore the potential benefits of the approach as well as
the challenges posed to the design community. According to Ndumu and Tah these chal-
lenges include domain-independent conflict management, distributed truth maintenance
and the definition of ontologies. It is concluded that the agent metaphor is natural to the
AEC industry and provides a natural framework for collaborative design research.

A collaboration among several research groups from Stanford University and Lock-
heed concentrated on a heterogeneous multi-agent architecture for concurrent engineering
[Cutkosky et al., 1993]. The central hypothesis in this work is that collaborating designers
want to keep the specialised tools which best support their task but are not compatible
with corresponding tools from other domains. Moreover, a central database to hold data
about a common project model is avoided, since such a database would be a bottleneck
in large-scale applications. Therefore, this research concentrates on common knowledge
exchange languages.

Madefast [Cutkosky et al., 1996] is a collaborative design exercise, which involved de-
signers from several research groups in academy and industry from all over the USA.
Madefast tested and evaluated a set of specialised heterogenous agents designed to ease
the distributed documentation of a design project on the Internet. Within six months, an
optical seeker to find a hand-held laser beam on a wall was developed in a collaborative
effort mainly using off-shelf components. Various communication means such as e-mail
and video conferencing were widely used and all engineering information was collected to a
dynamic distributed WWW-site. Every group of designers used their own analysis and de-
sign tools, while several authoring tools for the Worldwide Web as well as tools for version
control and maintaining the organisation of the WWW-site supported the development of
the documentation.

Although the task of building a prototype optical seeker was accomplished, the research
groups identified a series of problems. Despite the fact that the group was committed to
using Internet techniques, a lot of travelling was still necessary. The services provided on
Internet were not always sufficiently user-friendly forcing engineers regularly to fallback on
their usual methods. Retrieving documents also caused problems and substantial effort
was needed for the division of responsibilities among the groups. Positive effects were
observed during reengineering. Negotiations were largely simplified by the large amount
of information about design decisions and rationale available on the Internet.

A further conclusion of Madefast was that engineers are often not open to new manufac-
turing processes such as solid free-form fabrication. This manufacturing method removes
many restrictions on shape of artefacts by producing the pieces layer by layer. Neverthe-

120 CHAPTER 6. RELATED WORK

less, engineers did not trust this technique at first, because they didn’t know, how pieces
produced in this way would behave [Cutkosky, 1996]. Cutkosky recognises the need for for-
mal information about properties of artifacts produced by new manufacturing processes.
Such information, like constraints or rules, should integrate seamlessly into the engineer’s
CAD and analysis tools, enforcing the needed restrictions to be employed with the new
production method.

A successful implementation of an agent-based environment for concurrent engineering
is First-Link [Park et al., 1994]. This system treats the domain of cable harness design.
The domain is modelled using four types of agents and a set of communication agents in the
centre. One of the system’s goals is to encourage human designers to explore alternatives.
Agents are semi-autonomous, not replacing but supporting human designers.

Prasad et al. [Prasad et al., 1997] present a flexible and general multi-agent system
implementing a computer-supported cooperative environment for concurrent engineering.
The proposed architecture is based on communication facilities and a common product
model. Constraint management is presented as important issue in conflict resolution,
where constraints are classified into intra- and inter-constraints according to whether
they imply only one or several product design teams. Global constraints management
involving inter-constraints is needed for efficient cooperation. Knowledge-based systems
are proposed as support for negotiation. Finally, planning and scheduling is used for
workflow-management.

Smirrnov et al. recognise that constraints are involved in many phases in design
projects [Smirrnov et al., 1995]. They propose a cooperative configuration design environ-
ment, based on object-oriented catalogues using inheritance and an agent-based architec-
ture. The interfaces between the components of an artifact are defined using constraints.
The authors of [Smirrnov et al., 1995] argue, that the use of constraints makes the knowl-
edge base more maintainable and makes it easier to provide support for collaborative
decision-making.

6.1.3 Internet-Based Collaboration Environments

Kim et al. [Kim et al., 1998] propose the use of the Internet and the Worldwide Web
(WWW) as a communication medium for concurrent engineering. They suggest the use
of standard formats wherever possible to efficiently communicate between geographically
dispersed collaborators in an efficient way. A central object-oriented database holds data
in STEP format (STandard for Exchange of Product model data). Such data is translated
into 3-D VRML models for interactive dynamic visualisation using standard browser for
the Worldwide Web. Communication between project partners is further supported by
allowing the collaborators to markup comments with the concerned objects.

In [Roy et al., 1997] another extensive collaboration system based on the Internet is
proposed. The concurrent product design system provides a series of services which
support all phases of product design, including concept generation, 3D-modelling, de-
tailed specification and evaluation. These services exclusively communicate through the

6.1. COMMUNICATION AND INFORMATION MANAGEMENT 121

WWW, use appropriate data-formats such as HTML or VRML, and a central database
support information exchange. Besides communication, however, the system presented
in [Roy et al., 1997] provides little support for collaboration. In fact, designers perform
entire design phases on their own before passing the result on to the next designer for
subsequent treatment.

Three experiments during modelling courses for architects have shown, that communi-
cation technology more and more successfully supports collaborative architectural design
of artifacts by means of the Internet [Schmitt, 1998]. Student teams dispersed throughout
the world participated in design projects which were split into different phases. In one
experiment students from Hong Kong, Zurich and Seattle worked together so that, given
the different time zones these cities are located in, projects were continually under devel-
opment during one week. Projects were handed over from city to city. Several alternatives
were developed concurrently and eventually within a video conference the best project was
chosen.

Within another experiment students developed different design steps of projects in
different phases. At each phase, students were to choose another project they liked, not
their own, to continue. This resulted in a Darwinism with weaker projects dying and
strong projects being developed in several directions.

The collaboration environments used for these experiments base on a central database
accessed through the Internet and Sculptor, a 3D-modeller which was extended for syn-
chronous collaboration. In a third project, however, it was found that the tools used for
collaboration were of minor importance. A similar collaboration scheme has been realised
using AutoCAD as a modeller, but yielded basically the same results.

These experiments support Schmitt’s hypothesis that communication technology has
reached a stage where it can be useful not only to academy and large enterprises, but also
for small and medium sized enterprises, where several firms must team up smoothly in
order to perform a complex design project.

6.1.4 Management of Changes

Mokhtar et al. [Mokhtar et al., 1998] identify the management of changes as an essential
task during construction projects. Management of changes is difficult because in large
projects changes occur very frequently. Currently, designers either regularly check the
design at hand for changes or all participants are actively informed about any changes
performed. In both cases, designers are likely to be overwhelmed by the volume of infor-
mation they are presented with. In addition, most of these notifications are irrelevant to
their own work area.

The information model proposed in [Mokhtar et al., 1998] is based on a central repos-
itory of project data including information about components used in the project. During
an initial configuration phase, components needed in the design are determined before
collaborators actually perform the detailed design of the artifact. Components are made
active in the sense that they are provided with linking information specifying which disci-

122 CHAPTER 6. RELATED WORK

pline is concerned with which changes. When a component is changed, it sends a message
describing the change to all interested designers according to linking knowledge expressed
using rules which link changes to designers.

Krishnamurthy and Law also present a data management model which particularly
focuses on change management in [Krishnmamurthy and Law, 1995]. Sophisticated pos-
sibilities for declaration of version, definition assemblies per discipline and specification
of constraints between assemblies needed to form configurations. Configurations repre-
sent complete descriptions of products. Some support is provided for tracking changes
across collaborating disciplines. A prototype is implemented in a centralised fashion using
AutoCAD/AutoLISP.

6.1.5 Management of Project Requirements

Requirements management is another essential aspect of the design processes and many
in-house solutions to ensure product quality are well established. Requirement manage-
ment has been recognised to be particularly important in concurrent engineering because
efficient design in collaboration is only possible if the collaborating designers are aware
of all requirements related to their task and if conflicts between requirements of different
project partners are discovered early [Fiksel and Hayes-Roth, 1993].

Analysis, assessment, tracking and verification of requirements is needed in design
processes. Requirements are currently often represented in natural language. Fiksel and
Hayes-Roth identify the need for formal specification and better organisation of infor-
mation about requirements in order to provide automatic support for verification and
tracking of requirements. Their requirement management prototype focuses on the infor-
mation organisation aspects of requirement management, relying on a central database,
and providing for relationships between requirement for later tracking. Only little support
for automatic verification is given.

Constraint programming languages provide a formal framework for specifying quanti-
tative requirements. Verification of constraints is a simple task and certain relationships
between constraints revealing their interdependence can be found automatically. There-
fore, constraint programming languages are recognised as useful frameworks for specifica-
tion and verification of project requirements [Fiksel and Hayes-Roth, 1993]. An ontology
for formal capture of requirements using first order logic is suggested in [Lin et al., 1996].
The approach allows for hierarchies of parts, features, requirements and constraints. Using
this model, questions about requirement traceability and satisfiability can be answered by
theorem provers.

In [Hashemian and Gu, 1995] the use of constraints to model product requirements is
suggested. The collaboration environment described allows for interactive instantiation
of variables and uses constraint propagation to refine the domains of variables at each
instantiation of a variable. When all values are eliminated from a domain, meaning that
a constraint violation has taken place, the designer must backtrack manually, while the
system just keeps track of the instantiation history. Although the implementation does

6.2. CONFLICT MANAGEMENT 123

not yet include collaboration facilities, the authors point out the usefulness of requirement
management through constraint propagation.

6.1.6 Information Management in CDSS

In contrast to most of these existing collaboration environments, we adopt a very simple
data model. Users define their knowledge exclusively in terms of constraints and design
parameters (Section 5.1.1). This description language is unambiguous and allows for sub-
sequent computational support during negotiation and decision-making. We recognise the
limited expressiveness of mathematical expressions, and therefore provide a link to a gen-
eral information management system as a help for discussion and explanation (Section 4.3).
Similar to most of the current collaboration systems, we also adopt the Internet as the
communication medium of choice (Section 4.2). However, our environment is conceived
as client-server application instead of a distributed multi-agent system.

Although CDSS does not provide sophisticated support for version control or capturing
design rationale, it improves change management in two ways: changes are less frequent
when reasoning about constraints instead of values and the responsibility for conflicting
changes can be attributed to the initiator of such a change (Section 2.2.1). Moreover,
formalisation of requirements and their management is inherent to our approach based on
constraints (Section 2.3).

6.2 Conflict Management

Conflict management is widely recognised as a key issue in collaboration. Our main
contribution to this is that by using solution spaces instead of single solutions we can
avoid artificial conflicts due to premature decisions. Several complementary approaches
for detecting conflicts and issue notifications accordingly are proposed in the literature.

6.2.1 Avoiding Conflicts using Zones

Interference conflicts occur when two designers plan to locate two different elements like
pipes are wires in the same place. Such conflicts are common when subsystems of buildings
are designed by different contractors. In [Gross, 1994] the use of zones is proposed in order
to avoid such conflicts. Om this approach designers first agree on a set of zones, which
are reserved to the implementation of specific subsystem like water supply, electricity or
heating. In a second phase, the subsystems are implemented in a concurrent fashion,
while no interference conflicts in large regions of the design occur. In the third phase,
unavoidable conflicts in the intersections of the zones are resolved automatically in most
cases.

In order to support such a concurrent engineering procedure, knowledge-based CAD
editors are suggested. Such editors provide a catalogue according to the subsystem to be
designed and provide constraint-based support using grids for placement and assembly
rules. Placement rules are mainly needed in order to keep the subsystem design within

124 CHAPTER 6. RELATED WORK

its reserved zone. These rules must be programmed for every project. Assembly rules
capture the knowledge about how components fit together, they belong to the permanent
knowledge base of knowledge-based CAD editors. For the treatment of conflicts within
intersections of zones, Gross suggests the use of replacement rules. The hypothesis here is
that such rules can be precomputed for all conflicts possible in the intersections of regions.

Although avoiding conflicts is promising as such, the suggested approach has some
inconvenient aspects. Firstly, the determination of the zones in the first step such that all
requirements can be met, is a very difficult task. No mechanism is given for the situation
that in a later phase a subsystem does not fit into its reserved zone. Secondly, the use
of rectilinear grids is not a conceptual restriction but implies serious restrictions for the
shapes of buildings which can be represented. Thirdly, the resolution of unavoidable
conflicts is restricted to the case where only two components interfere, and the suggested
fixes are only local. Finally, the use of reserved zones is wasteful in space. This may
not be a strong restriction in ordinary building design but restricts the usefulness of the
approach in other domains.

6.2.2 Design Rationale for Conflict Mitigation

In many design projects the rationale behind design decisions is not documented prop-
erly. At best a scattered collection of paper documents reflects the applied reasoning but
is very difficult to recollect and therefore often of little use. In concurrent engineering
this problem is increased by the fact that experts work in geographically dispersed lo-
cations. Researchers have recognised that within the concurrent engineering context a
formal assessment of design rationale is needed [Klein, 1993, Kott and Peasant, 1995].

In [Klein, 1993] a Design Rationale Capturing System (DRCS) is presented which sup-
ports concurrent manipulation of project information using a blackboard architecture.
The description language used to specify information about design rationale has an ex-
plicit semantics. Project partners provide information in terms of components and tasks,
specifying temporal and geometrical relations between these using a constraint program-
ming language. The formal nature of project description improves possibilities to provide
computational support for detecting conflicts, finding similarities to other projects and
retrieving controversial decisions within a project.

Paña-Mora’s work on design rationale [Peña-Mora et al., 1995] emphasises the capture
of evolution of design intent and the evolution of the artifact to be designed. A model
to represent design rationale and intent (DRIM) is designed by the authors and used in
SHARED-DRIMS, a total design environment consisting of several modules supporting
collaborative design. Conflict mitigation is supported by detection of conflicts whenever
a design agent proposes a change to an object which conflicts with a previous suggestion.
In such cases, all interested parties are informed and information about the underlying
rational and intents are provided in order to allow for efficient negotiation.

6.2. CONFLICT MANAGEMENT 125

6.2.3 Conflict Mitigation using Formal Domain Models

Active Design Documents (ADD) have been proposed to ease documenting design projects
[Garcia et al., 1994]. It has been observed that major problems in design projects are
linked to poor documentation. Designer often do not have the time to keep documentation
complete and consistent. Therefore, information about decisions is lost regularly. These
observations have been confirmed by in-depth field studies in the context of heating,
ventilation and air conditioning systems.

The ADD approach supports the documentation of design project in well structured
routine engineering domains, where parametric domain models can be developed. Such
domain models contain dependencies between parameters and can generate expectations
for parameter values depending on input values for the design task to be accomplished.
Active Design Documents suggest these expected values to designers and provide standard
justifications as long as designers follow these proposals. When a designer chooses a
different value, the Active Design Document asks for the corresponding rationale. In this
way the documentation of the rationale for a design is automatically kept complete and
up to date.

When a project is to be performed in collaboration of several designers, Garcia et
al. suggest the sue of several Active Design Documents (MultiADD) in order to ease
conflict mitigation [Garcia and Vivacqua, 1996]. Every designer receives a personal ADD,
which records the rationale for all decisions the collaborating designer makes. In a multi-
agent system all involved ADDs and a controlling agent exchange rationales whenever
conflicts are detected. Conflicts are communicated to designers involved according to
domain models as well as general conflict mitigation knowledge.

In the centre of the MultiADD agent network a controller agent coordinates conflict
resolution and related communication. Conflicts are detected whenever designers provide
different values for a shared parameter. When this happens, the controller-agent decides
when and whom to notify about the conflict according aspects such as the importance of
the parameter, the hierarchy of the designers and the action which causes the conflict. For
instance, when designers A and B of equal hierarchical level suggest conflicting values on
a shared parameter P , while A does not accept P ’s value as it is expected by the Active
Design Document and B does assign this value to P , MultiADD first notifies A about the
conflict in order to resolve it.

The MultiADD system is restricted to engineering domains, where parametric models
for the entire domain can be generated. It does not provide a general mechanism for col-
laboration but elaboration of knowledge about parameter characteristics and dependencies
is needed. Moreover, MultiADD relies on point-to-point design such that many conflicts
must be expected. Its advantage is that it can determine precisely when conflicts must
be treated and who is involved in the conflict and most likely to be able to resolve the
problem, thus avoiding unnecessary communication.

126 CHAPTER 6. RELATED WORK

6.2.4 Understanding and Classifying Conflicts

In [Berker and Brown, 1996] the use of single function agents in agent-based design sys-
tems is suggested. Such agents act only on one design parameter, their target, and fulfil
only one function, such as picking, estimating, praising or criticising values for their target.
The simplicity of these agents allows the domain independent classification of conflicts into
a fine-grained hierarchy and the encoding of domain independent knowledge about conflict
mitigation. Conflicts are detected by agents which initiate a change and according to the
class of conflict encountered, negotiation strategies are chosen by both involved agents.

The single function agent approach has been evaluated within a wine glass design
system. The problem of wine glass design is small though complex enough to illustrate
the usefulness of such simple agents. However, while agent systems based on single func-
tion agents are suitable to illustrate and understand conflicts in multi-agent systems, the
simplicity of these agents is likely to compromise efficiency in large-scale design systems.

6.2.5 Constraint Checking for Conflict Detection

Klein extended DRCS, his work on design rationale [Klein, 1993], to provide more specific
support for requirements management. The C-ReCS system [Klein, 1997] collects informa-
tion about requirements in a central database as a semantic net similar to DRCS. Within
continuous interaction with the user, information on the project is gathered. The system
uses graph matching, constraint checking and case-based reasoning in order to determine
exceptions. These exception are then classified as consistency, completeness or correctness
problems. By inspecting the database as well as by user dialogs, a diagnosis is determined
for each exception. For each diagnosis, generic templates for conflict resolution are in-
stantiated according to information extracted from the data and additional information
provided by the user, eventually forming specific suggestions to resolve the conflict.

Tiwari and Franklin propose a concurrent engineering system based on constraints
to capture dependencies between multiple disciplines [Tiwari and Franklin, 1994]. The
system has a distributed architecture, stores all information about the design at hand in
a database, which is available to all participants simultaneously. The database also holds
information about constraints. Participants formalise their requirements using constraints.
Authorship and responsibilities about constraints are also stored in the database.

Tiwari and Franklin suggest constraint checking to detect violations of constraints.
The data about the constraint’s source, other project partners involved in the constraint
and the person responsible for the constraint is used to notify all project partners implied
in the newly discovered design inconsistency. The system uses single solutions and does
not try to resolve conflicts.

6.2.6 Weak Commitment by Management of Inconsistencies

Easterbrook et al. [Easterbrook et al., 1994] recognise the need for freedom during de-
sign. Designers should not be restricted by premature commitments. Therefore, they

6.2. CONFLICT MANAGEMENT 127

suggest to accept temporary inconsistencies in collaboration. In their view, systems which
strictly enforce consistency at any time, often require compliance with preliminary parts
of the design, parts which are very likely to change. Moreover, the strict maintenance
of consistency prevents proper distribution of the design process, because consistency re-
lations closely link parts of the problem. The suggested approach also avoids a central
repository, because providing all project partners with access to such a repository leads
to communication bottlenecks in large projects.

Easterbrook’s system consists of collaborating autonomous agents called ViewPoints,
each of which represent the perspective of one designer. These agents are very independent
from each other, in order to minimise early commitment to decisions by other ViewPoints.
The different perspectives are linked through consistency rules which capture requirements
needed for the successful integration of the each ViewPoint’s results. These rules only
provide for consistency checking on demand by the user of a certain ViewPoint. When
a constraint check is successful, there is no guarantee that the rule will remain satisfied
later in the design. When a consistency check fails, some guidance to resolve the conflict
is given according to the violated consistency rule. The system is illustrated in software
engineering.

The accumulation of consistency violations is recognised as a danger of the described
framework. Incremental resolution of conflicts is suggested when two ViewPoints have
many violated consistency rules. However, no consideration about propagation of conflicts
is given and no automated techniques to enforce consistency are suggested. The method
aims for weak commitment but is still point solution oriented. Therefore, there is no
protection against very complex conflict situations where many ViewPoints are involved
in many inconsistencies.

6.2.7 Conflict Management in CDSS

While the use of preallocated zones [Gross, 1994] avoids conflicts by making decisions
about these very early, CDSS achieves the same effect by postponing decisions (Sec-
tion 2.2.1). Furthermore, CDSS focuses on computational support for conflict mitiga-
tion. Unlike approaches focusing on communication and coordination such as [Klein, 1993,
Garcia and Vivacqua, 1996, Peña-Mora et al., 1995] it does not provide sophisticated fa-
cilities to notify project partners about conflicts.

CDSS provides advantages when it comes to computational support for conflict detec-
tion. While systems such as [Klein, 1997, Robinson, 1994, Tiwari and Franklin, 1994] are
limited to constraint checking in order to find conflicts, CDSS uses consistency techniques
to detect conflicts (Section 3.1 and Section 5.1.5). This implies that a conflict detected by
CDSS actually is a conflict between contradictory requirements, whereas an inconsistency
detected by constraint checking only shows that the current solution does not satisfy all
restrictions.

128 CHAPTER 6. RELATED WORK

6.3 Conflict Resolution

Providing computational support for resolving conflicts is a very difficult task in collab-
orative design. Modifying a current variable instantiation which contains a conflict such
that design consistency is maintained, may involve complex circular dependencies between
variable and lead to difficult search problems. We present some approaches to this problem
here.

6.3.1 Combining Agent Technology and Constraint Satisfaction

An agent architecture using CLP(R) for constraint solving is proposed for collaborative
parametric design in [Kuokka and Livezey, 1994]. Agents called ParMan allow users to
declare parameters and constraints in an intuitive way. The other participating agents are
informed about parameter creations and may define constraints involving local and shared
parameters. Constraints are propagated among agents using CLP(R) and solutions are
searched for using backtracking techniques. When no solutions can be found conflicts are
classified as local (within one agent) or global (between agents). Violated constraints are
coloured accordingly.

ParMan agents are applied in conjunction with human designers. During evaluation,
designers who used ParMan as an interface to the other designers were pleased by the
intuitive way of specifying requirements. The announcement of conflicts using colours was
appreciated and the automatic detection of solutions when no conflicts where found makes
these agents particularly useful. ParMan does not adopt solution spaces but sticks with
single solutions. It may be difficult to influence the solution automatically determined
within a solution space. Nevertheless, its search algorithms maintain consistency of the
design at any time.

In addition to the constraint propagation, Sycara and Lewis propose the use of case-
based reasoning during negotiation [Sycara and Lewis, 1991]. They recognise that in order
to help automating negotiation tasks such as finding compromises, sophisticated means to
store, communicate and use knowledge are needed. Case-based reasoning stores knowledge
in the form of previous cases, thereby memorising both, failing and succeeding attempts.
Therefore, the system can on one hand warn when current solution are similar to previ-
ously failed attempts, and on the other hand suggest alternatives according to previously
successful attempts when a compromise is needed due to a detected conflict.

6.3.2 Conflict Resolution by Human Analysts

The collaboration environment Oz provides a model of requirements negotiation, which
compromises between automatic and manual conflict resolution [Robinson, 1994]. The
system suggests iterative requirement specification, conflict detection, conflict characteri-
sation, generation of resolution alternatives and resolution alternative choice for the nego-
tiation process. Thereby all phases but the choice of the resolution method are automatic.

6.3. CONFLICT RESOLUTION 129

Requirements are specified using constraints and preferences. The requirements spec-
ified by the project partners are integrated to form a single specification. A planner finds
values for all object attributes and in this phase conflicts are detected. Conflicts are either
due to conflicting assignments to object attributes or due to interference of several ob-
jects. According to the conflict, Oz proposes several resolution alternatives using methods
such as compromising by linear programming with multiple objectives, or reformulation
by breaking up requirements in several specialised requirements.

Robinson does not specify how backtracking can be performed or avoided when cer-
tain conflicts cannot be resolved. The specification of requirements using constraints and
preferences avoids premature decisions during the specification of these requirements. Us-
ing a planner to find conflicts, and resolving these by interactive search compromises this
advantage.

SchemeBuilder is a design environment for concurrent engineering on mechatronic
problems [Oh and Sharpe, 1995]. The system integrates a variety of software tools includ-
ing MetaCard (a hypermedia system), KEE (a Knowledge Engineering Environment),
Simulink (a commercial simulation package) and AutoCAD. The environment focuses on
supporting human designers rather than performing design tasks automatically. No com-
munication facilities are provided.

[Oh and Sharpe, 1995] concentrates on considerations related to support for conflict
resolution provided by SchemeBuilder. Conflicts are characterised according to the reasons
by which they are caused. Such reasons include different viewpoints of designers from
different areas or inconsistency in the data or language. The conflict resolution strategies
supported by SchemeBuilder include avoiding conflicts by supporting designers in gaining
a more interdisciplinary view. This is, for instance, supported by knowledge browsing.
Another suggestion is to use multi-criteria decision-making methods in order to obtain
information about tradeoffs. In certain standard cases, SchemeBuilder provides rules to
resolve conflicts and finally, in negotiations designers can decide to relax soft constraints.

SchemeBuilder is able to integrate a wide range of common design activities through
its flexible integration of popular design systems. Its usefulness is limited by the lack of
communication facilities and little computational support for conflict mitigation.

6.3.3 Rule-Based Conflict Resolution versus Genetic Algorithms

The authors of [Quadrel and Myers, 1995] compare two fundamentally different conflict
handling approaches: centralised conflict resolution using domain knowledge, what they
call strong methods for conflict resolution, and concurrent development of opposed drafts,
called weak methods for conflict resolution. The first approach is implemented in a pro-
totype called ICADS, while Anarchy exploits the latter. Both prototypes focus on archi-
tectural design.

ICADS is an intelligent CAD system which is connected through a geometry inter-
preter to a multi-agent reasoning system. Domain specific agents focused on issues like
lighting or heating are grouped around a central coordination agent. Domain specific

130 CHAPTER 6. RELATED WORK

agents encapsulate rule-based domain knowledge, while the central coordination agent
contains domain knowledge about resolving conflicts. When domain specific agents sug-
gest different values for a common parameter, the central coordination agent arbitrates
for one value according to knowledge about preferences or priorities. Because the central
node makes complex interdisciplinary decisions, its knowledge is very difficult to maintain.
In turn, it is able to treat anticipated conflicts very efficiently. Non-anticipated conflicts,
however, cannot be treated at all and are passed on to the user.

Anarchy also consists of a number of cooperating agents, each of which encapsulates
domain knowledge. Generator agents produce design drafts, evaluators determine building
performance and modifiers propose modifications to these drafts according to specific
design aspects. Although modifications suggested by different agents may lead to opposed
drafts, Anarchy considers all suggestions for further improvement. Therefore, the search
for good solutions is carried out in a genetic algorithms like manner. Since conflicts are
not really resolved, this system is rather inefficient. On the other hand, the maintenance
of the knowledge bases is easier, since it is strictly encapsulated in domain specific agents.

Quadrel and Myers anticipate that the strengths of both approaches, strong and weak
methods for conflict resolutions, could be merged into one hybrid system, which would
apply centralised conflict resolution wherever appropriate knowledge is available, and weak
conflict resolution to unanticipated conflicts. Such a system would keep most of the
flexibility of weak conflict resolution but gain substantially in performance. However, the
central conflict resolution agent may become a bottleneck in such a hybrid system. The
authors of [Quadrel and Myers, 1995] did not test this approach in implementation.

6.3.4 Conflict Resolution in CDSS

Two different kinds of conflicts may be considered. On one hand, there may be conflicts
within constraints of a project including requirements and compatibility constraints. On
the other hand, designers may prefer different values for shared design parameters (Sec-
tion 2.2.1). CDSS provides support for detecting the first kind, while it avoids the latter
in many cases by the use of solution spaces.

When conflicts within constraints occur, CDSS can find which project partners are
involved (Section 5.1.3). Support to find causes of conflicts is provided through mapping
of the constraint satisfaction problem into on information space, where it is enriched with
explanations and discussions (Section 5.2.3). When conflicts during the assignment of
parameter values occur, constraint based search for solutions may provide valuable hints
for reasonable choices (Section 3.4 and Section 5.3.4). However, in our view it is natural
that real conflict on important design decisions cannot always be resolved automatically.

6.4 Negotiation Methodologies

Given that conflicts are common in collaboration, negotiation is an essential aspect in
construction projects. Mainly when conflicts involve important design characteristics and

6.4. NEGOTIATION METHODOLOGIES 131

designers follow divergent design goals, collaborative decisions must be negotiated. This
section presents a few proposals for negotiation support.

6.4.1 Negotiation Support through Design Advice Tools

A design advice tool is suggested by Bowen and Bahler to support collaboration. Perspec-
tives are introduced to allow collaborators to communicate their specific view of a certain
problem to a common communication platform such that information is stored in a central
place but the system can keep different points of view apart [Bowen and Bahler, 1991,
Bowen and Bahler, 1993]. Constraints are suggested to express information related to
project restrictions in a formal way using the Galileo constraint logic programming lan-
guage. Dependencies between the different perspectives can be detected using the links in
the constraint network. Constraint propagation methods allow the detection of conflicts
and corresponding notification of the involved project partners. Thereby, the system does
not suggest compromises, the possible actions to be considered are always suggested by
the human clients of the systems.

In order to perform the constraint propagation, Galileo uses plans. Such plans only
influence the value of one parameter. When a plan causes a conflict the collaborators
involved have the opportunity to suggest plans to resolve the conflict during a predefined
period of time. In [Bahler et al., 1994a, Bahler et al., 1994b, Bahler et al., 1995] an elab-
orate scheme for evaluation of compromises is developed. Utility functions specified by
all clients are used to determine the plan which constitutes the best compromise. While
choosing this best plan the system does not necessarily opt for the best overall score but
mainly tries to avoid strong dissatisfaction of any collaborator. In this sense and in the
sense that all project partners’ suggestions are treated equally this negotiation protocol is
considered fair.

The design advice tool presented in these publications is evaluated in the context of
electronic design. Several scenarios are developed which show the usefulness of the system
in the context of choosing the best components during the design of electronic circuit
boards.

In contrast to our approach, this system is based on a single solution approach. There-
fore, it is unable to reliably rule out artificial conflicts and iterative negotiation about
values for design parameters. Moreover, Galileo3, which is used in [Bahler et al., 1994a,
Bahler et al., 1995, Bowen and Bahler, 1991, Bowen and Bahler, 1993] suffers from seri-
ous restrictions. For instance, only linear constraints are allowed, constraints which unbind
variables are not allowed and inequalities are not supported.

6.4.2 Progressive Negotiation among Collaborating Design Agents

The authors of [Khedro et al., 1993] describe some characteristics of collaborative design,
namely that collaborative design tasks are generally under-constrained, that hard as well
as soft constraints must be considered, that design decisions are made concurrently and

132 CHAPTER 6. RELATED WORK

collaboratively, and that conflicts are common. Therefore, they conjecture that negotiation
about conflicts during collaborative design is essential for efficiency and product quality.

In order to support collaborative design efforts, Khedro et al. suggest a Federation
of Collaborating Design Agents (FCDA). Domain specific design agents are attributed
to a single facilitator. These task independent facilitator agents connect and coordinate
the design agents. Each design agent declares its interests and perspectives, and is given
authority on a set of design decisions. The facilitator agents are able to translate between
different perspectives and route messages according to the agents’ interests. Design agents
adhere to rules of behaviour which allow for negotiation in case of conflict.

In [Khedro and Genesereth, 1994], the same authors describe the FCDA approach
more formally using predicate logic to express knowledge, decisions, solutions and what
they call progressive negotiation. During progressive negotiation, conflicts are classified
into three different kinds: Critical conflicts are caused by design decisions which vio-
late hard constraints. Non-critical conflicts violate soft constraints and are split into two
classes according to whether they are caused by a decision on which the conflict detect-
ing agent has authority or not. In progressive negotiation, design agents adhere to rules
of behaviour. When an agent detects a critical conflict, it sends out the violated hard
constraints and rejects the decision which causes the problem. The agent which initiated
the rejected decision updates his knowledge with the hard constraint it didn’t know about
and suggests a new decision which is consistent with this constraint. A similar process
occurs when a non-critical constraint is detected by an agent which has authority about
the decision to be considered. In contrast, when an agent detects a non-critical decision
and has not authority for the decision, it only proposes the violated soft constraint for
consideration while the agent having the authority may or may not take it into account.
This negotiation process has been proven to converge to a globally consistent solution for
the whole task when certain reasonable conditions on the agents’ interests and authorities
are met.

An FCDA has been implemented for the construction industry. Eight different de-
sign agents including CAD, structural analysis tools, as well as planning and scheduling
programs running on several machines with various operating systems have been linked
together successfully. Although the authors state, that collaborative design tasks are
generally under-constrained they still adhere to the use of single solutions.

6.4.3 Knowledge-Based Negotiation

In [Werkman, 1993], Werkman outlines that knowledge is needed in resolution of conflicts.
“Shared agent perspectives” provide the ability to share knowledge between agents which
must negotiate about conflicting design issues. In the multi-agent system proposed, an
arbitrator agent maintains a network of shared-issue relations among the participating
design agents. When a conflict occurs, the arbitrator suggests compromises according to
the knowledge the involved agents share about the concerned issue and the history of the
negotiation dialog.

6.4. NEGOTIATION METHODOLOGIES 133

6.4.4 Game and Negotiation Theory

In [Badhrinath and Jagannatha Rao, 1996] game theory is applied to collaborative design
optimisation in order to model negotiation about design goals. In examples from civil
engineering, optimisation is modelled from the perspective of several collaborators as non-
linear programs. Control on variables is attributed to project partners, such that no
partner acts on the control variables of another partner. Several multi-player games are
then used to model the collaborative optimisation process and deliver different results.
Games used include non-cooperative, cooperative and dominant negotiation schemes.

A negotiation methodology for large-scale collaborative engineering projects in the
AEC industry is suggested in [Peña-Mora and Wang, 1998, Peña-Mora, 1998]. In order
to construct an accurate model of collaborative negotiation in the construction industry,
research results from game theory are combined with results from negotiation theory.
Game theory thereby models quantitative aspects such as utility for single users and
groups, while negotiation theory models qualitative aspects such as who is involved in
a conflict and who is notified about changes. Peña-Mora and Wang characterise the
negotiation in the construction industry as cooperative-competitive, domain-dependent
and strategy influenced.

Construction projects are cooperative because all participants have the goal to com-
plete the entire design task in short time and good quality, such that the client will consider
them in subsequent projects again. Nevertheless, collaboration is also competitive since
project partners maximise their profit within the project. Therefore, a designer may not
necessarily accept to invest more effort in a certain issue although he/she knows that
another project partner would save much effort in this way.

The second characteristic of construction projects according to Peña-Mora and Wang
is domain-dependence. Project partners have very specific knowledge about their domains
and make decisions accordingly. Therefore, other partners cannot judge these decisions
and negotiation therefore takes place with incomplete information. In order to make
collaborative decisions, knowledge transfer must take place continually. However, project
partners use strategies and tactics to influence the outcome of projects. Exaggerating
issues they are interested in, is a common strategy which leads to biased decisions in favour
of the exaggerating project partner. This strategy mainly works, when the knowledge
transfer between the project partners does not occur. Collaborators not always permit
such knowledge transfer in commercial environments in order to protect their know-how.

In [Peña-Mora and Wang, 1998, Peña-Mora, 1998], an agent called CONVINCER is is
presented, which provides support for negotiation given the characteristics stated above.
CONVINCER allows project partners to specify information about their preferences and
willingness for compromises on project parameters. In case of conflict, CONVINCER
suggests settlements according to game theoretic evaluation of all specified opinions with-
out revealing the provided information to other project partners. Participants are finally
free to iterate on this specification/evaluation process until all of them can accept the
settlement.

134 CHAPTER 6. RELATED WORK

6.4.5 Negotiation Considerations in CDSS

All of the mentioned approaches to negotiation exclusively treat single solutions. The
negotiation about project requirements is neglected in all negotiation approaches so far.
Current negotiation approaches try to achieve agreement on parameter values and finding
a feasible set of requirements at the same time. Therefore, participants collaboratively
search through a very large design space in order to find a suitable solutions.

Our main contribution to negotiation in collaborative engineering projects is the idea
of splitting the negotiation process into two phases: negotiation about requirements (Sec-
tion 2.2.1) and negotiation about values (Section 2.2.2). In the first phase a feasible set
of requirements is found and in the second phase project partners find a design instance
which fulfils all requirements. The former phase is essential to the specification of the
project and improves the efficiency of the latter.

6.5 Tradeoffs and Decision-Making

During negotiation in collaborative design projects many decisions must be made in a
cooperative manner. In order to make good decisions, taking into account all important
issues, support for decision-making is needed. Several approaches to provide designers
with the necessary knowledge for collaborative decision-making are proposed in recent
research projects.

6.5.1 Hierarchical Concurrent Engineering

Several approaches to concurrent engineering defend the point of view that egalitarism
between collaborating peers is desirable. However, in [Birmingham et al., 1997] it is ob-
served that flat organisation in large collaboration projects is unrealistic. Large design
tasks are always divided hierarchically, i.e., decisions about certain subtasks have higher
priority than decisions in other subtasks.

Following this reasoning, Birmingham et al. introduce Hierarchical Concurrent Engi-
neering (HCE). Within an agent-framework (ACME) a contractor/subcontractor network
of agents is employed which contains an agent for each subtask. Preferences of subcontrac-
tors are only taken into account when general contractors are indifferent. In the proposed
agent framework a distinction between decisions about feasibility and decisions about
preferences, i.e. values, is made. Constraint satisfaction techniques are used to determine
feasibility and utility functions help to decide about preferences.

Domain specific agents solve subtasks in the ACME and agent wrappers around CAD-
or specific analysis-tools are employed in order to allow human experts to participate in the
negotiation process. A group of such specific agents provide the Automated Configuration
Design Service (ACDS) focusing on configuration design using catalogues and constraints.
ACDS [Darr and Birmingham, 1994] provides catalogue and constraint agents which inter-
act such that the combinatorial explosion inherent to configuration is lessened by enforcing
consistency. The basis for configuration is a set of catalogues from which components are

6.5. TRADEOFFS AND DECISION-MAKING 135

picked and composed in order to fulfil the task at hand. The ACDS catalogue agents
are able to generate attribute spaces for the components they contain by computing one
interval I ∈ < for each attribute such that the corresponding values of all components are
contained in I.

Collaborating designers use the ACDS constraint agents in order to specify their par-
ticular requirements. These constraints are then used to restrict the attribute space and
thereby rule out a considerable amount of components, thus reducing the combinatorial
problem in configuration. The formal model used to represent the constraint satisfac-
tion problems is called Distributed Dynamic Interval Constraint Satisfaction Problems
(DDICSP) [Darr and Birmingham, 1996], an amalgamation of CSPs [Mackworth, 1977a],
Interval CSPs [Davis, 1987, Hyvonen, 1992], Distributed CSPs [Yokoo et al., 1992] and
Dynamic CSPs [Mittal and Falkenhaimer, 1990]. From a computational point of view,
local consistency algorithms are used to prune the attribute space, namely node- and
arc-consistency for n-ary constraints is employed.

[D’Ambrosio et al., 1996] focuses on the treatment of preferences within the ACME
system. When consistent attribute spaces are found, collaborative decision-making is
needed to decide on one solution taking into account preferences of all participants. For a
sample of possibilities, all participating agents are asked to provide a ranking and utility
values for all occurring attributes. This information is then used to form an estimation
of an overall utility function as a weighted sum of the utility values for all attributes.
Ranges for the weights of this sum are determined automatically such that the rankings
are always respected. With respect to this unprecise overall utility value, the agents search
for a non-dominated solution, possibly inquiring for further information when several non-
dominated solutions exist.

6.5.2 Constraints, Criteria and Optimisation

Constraints are recognised as a practical language to express design requirements in the
context of cable harness design [Cerezuela et al., 1998]. The authors propose dynamic
constraint satisfaction to weaken the combinatorial explosion inherent in the cable harness
design problem. The number of considered solutions is further restricted by the elimination
of non-Pareto optimal solutions. The remaining alternatives are evaluated according to a
weighted sum of criteria.

Collaborative optimisation in multidisciplinary configuration design is the focus of
[Tappeta and Renaud, 1997]. Compatibility constraints between design components are
expressed as equalities and optimisation methods are used within an approach of simulta-
neous analysis and design (SAND). Two optimisation methods are compared using differ-
ent variants to formalise the compatibility constraints. Thereby serial quadratic program-
ming substantially outperforms a generalised reduced gradient approach.

More general, the usefulness of constraints in the context of design and collaboration
is emphasised in [Serrano, 1991]. Serrano argues that the expressiveness of algebraic con-
straints is well adapted to many engineering domains and claims that algebraic equations

136 CHAPTER 6. RELATED WORK

and inequations are more efficient than rules in this context. A collaboration system using
a constraint propagation engine as its central component is proposed to enhance communi-
cation and negotiation by computational support. A collaboration environment has been
implemented and evaluated in several domains such as HVAC design. Serrano’s system,
however, is limited to single solutions and therefore, provides little support for visualisa-
tion of tradeoffs and multi-criteria optimisation. Nevertheless, its facilities for collecting
and using constraints help project partners to explore alternatives and find contradicting
project requirements.

6.5.3 Supporting Collaboration through Decision-Maintenance

Redux’ [Petrie, 1993] is a decision maintenance system for distributed design tasks. Its
bookkeeping keeps track of dependencies between decisions such that whenever changes
occur, the system can highlight all decisions which depend on the change. Whenever design
agents take decisions, they submit an appropriate message to a Redux’ server stating the
goal to be achieved by the decision as well as its rationale, potential contingencies, resulting
assignments and dependent subgoals. Dependencies between objects are built according
to these messages. Designers can announce goals and constraint violations by sending
messages to the Redux’ server. The semantics of Redux’s ontology are very abstract, thus
the ontology is domain-independent.

When changes occur, constraints may become unsatisfied and when decisions cause
conflicts with other decisions, Redux’ can propagate the effects through its network of
dependencies and notify the involved design agents. Thus, Redux’ supports coordina-
tion and change management. However, Redux’ provides little computational support for
decision-making and conflict resolution. Although Redux’ represents parts of its knowl-
edge as constraints, it performs coordination services only. Constraint violation must be
detected and design consistency maintained by Redux’ clients. The system does also not
suggest compromises which may resolve conflicts.

Redux’ has been used to enhance the cable-harness configuration system First-Link
[Park et al., 1994]. Redux’ enriches the functionality of First-Link with the use of sub-
goals and the tracking of decision revision [Petrie et al., 1994]. The integration of First-
Link and Redux’, called Next-Link, is simple since First-Link communicates through cen-
tral facilitators using a domain-dependent protocol around which the domain-independent
Redux’-ontology can be wrapped. Next-Link thus provides integrated support for deci-
sion maintenance. The Next-Link framework has also been enriched by mechanisms which
track Pareto optimality [Petrie et al., 1995]. Petrie et al. suggest computational support
for automatic detection of opportunities to improve a solution in the view of at least one
participant without worsening it in the view of any other partner.

Process-Link is a further development of Next-Link [Petrie et al., 1997]. A constraint
manager agent is added to the system providing constraint propagation techniques. Re-
dux’ agents keep the central constraint manager up to date with information related
to constraints and parameter domains, while design agents can request k-consistency

6.5. TRADEOFFS AND DECISION-MAKING 137

[Freuder, 1978] to be enforced. In this way, dependency directed backtracking as it is
provided by the Redux’ bookkeeping facilities is combined with constraint propagation.

6.5.4 Tradeoff Evaluation

Within the DICE project (Distributed and Integrated Environment for Computer-Aided
Engineering) [Sriram, 1991] a Design Evaluation Tool (DET) [Garcia and Sriram, 1997]
focusing on tradeoff identification and evaluation in cooperative engineering has been
developed. This tool classifies design parameters into design variables and design charac-
teristics:

Design Variables are those attributes which, taken together, completely and
uniquely specify the design. Thus, given values for the design variables, it is
possible to construct the product that is being designed. Design Characteris-
tics are those attributes which measure the “goodness” of a design (i.e., cost,
reliability, etc.).

Design characteristics may be in conflict when optimised simultaneously and are there-
fore used to identify conflicts. The DET collects information about the following issues to
determine a merit value for each design currently under consideration:

• Distance from completion, the estimated amount of effort still needed to complete
the design, depending on still unattributed design variables and violated constraints,

• Deviation from requirements, a measure for the degree of violation of user require-
ments,

• Resource allocation, the expected cost and effort for manufacturing the artifact, and

• Pareto analysis, a ranking of designs under consideration according to user rankings
with respect two pairs of characteristics.

For the Pareto analysis, users rank current designs according to tradeoffs of pairs of design
characteristics using graphical plots, while the evaluation tool deduces an overall ranking
taking into account all design characteristics. The merit figure for each design is computed
as weighted sum of all of these issues and is used to eliminate certain designs which are
dominated by others and to rank the remaining designs.

The treatment of tradeoffs proposed in [Garcia and Sriram, 1997] is based on many
degrees of freedom. There is no theoretical foundation on how to determine the weights
for the merit figure or the shapes of the utility functions needed. The 2-dimensional plots
of design, where each current design is represented by a dot at the location corresponding
to its performance with respect to its design characteristics, is somewhat similar to our
proposition discussed in Section 5.3.3. However, the set of dots represent only a sample
of possibilities, while our approach illustrates the whole set of potential solutions. On the
other hand, Garcia’s approach allows for immediate traceback from a dot in the plot to an

138 CHAPTER 6. RELATED WORK

actual design which achieves the represented design characteristics, while in our approach
no such mapping exists.

Chen proposes tradeoff analysis using optimisation in [Chen, 1998]. In the context of
concurrent product design, two general conflicting objectives, product performance and
manufacturing cost, are considered during optimisation. Thereby, a single optimisation
criterion is computed using three different methods to weigh cost and performance against
each other. In contrast to standard methods, the weighting coefficients are not fixed a
priori, but are constantly changed during the design process. They are influenced by fuzzy
rules according to the ratio between performance and cost of the current design such that
the weakness of the current design is compensated in the next version. Chen observes that
iterative recalibration of the weight coefficients converges to a good compromise.

This method for multi-criteria optimisation does an automatic analysis of tradeoffs.
Unlike our approach as described in Section 5.3.3, this method does not illustrate trade-
offs. No solution spaces are determined, in fact, a point-to-point search is executed using
iterative automatic fine-tuning of optimisation parameters. The final result is only a good
compromise if all design information is coded in the optimisation criteria. Moreover, the
method is restricted to the tradeoff between cost and performance, not allowing for more
detailed analysis of the design objectives.

6.5.5 Advised Decision-Making

Focusing on the steel building industry Pasley and Roddis argue that a major reason for
additional cost and problems in late phases of construction projects is the lack of upstream
communication [Pasley and Roddis, 1994, Roddis, 1998]. During the preliminary design
of a steel structure important issues concerning fabrication, constructibility and erection
are not considered. Designers are not motivated to spend more effort in order to allow for
savings in later phases of the project, thus leading to increased overall costs.

The use of knowledge-based assistants can provide the necessary information to make
better decisions in the design phase. In the SteelTeam environment [Pasley, 1996] the
combination of rule-based and case-based knowledge is proposed within a computer aided
design and draft system. The rules of an expert system implemented in AutoLISP capture
knowledge about later phases in construction projects such as fabrication, construction and
erection. The advice provided by these assistants focuses on cost estimates and design
consistency, so that designers can avoid undesirable situations later on.

This approach is restricted to constraint checking but provides an important knowl-
edge transfer from the participants in later phases of a project to designers involved in
the preliminary stage. This knowledge-based information transfer is particularly useful,
because direct communication between project partners may not be possible, since often
partners involved in fabrication, construction and erection may not yet be involved in a
project during preliminary phases, in fact, these project partners may still be unknown.

Divita et al. [Divita et al., 1998] suggest a circle architecture for centralised decision-
making. Advice services are arranged around a shared project model in order to support

6.6. SUMMARY 139

one single decision-maker in a consistent way. The shared project model is based an the
function, structure, behaviour paradigm [Gero, 1990]. Services fulfil a function such as site
analysis, predict behaviour based on project requirements, search for a structure to satisfy
the predicted behaviour before actually observe the real behaviour of the found solution
in order to compare it with the original requirements. Changes to the shared project
models are suggested accordingly and as soon as the central decision maker confirms a
decision, the effect is propagated to all concerned advisors. The approach is illustrated
using pre-project planning of fast food restaurants.

This approach is mainly concerned with the coordination of several project partners
while one collaborator retains all responsibility for decisions. It is focused on point-to-
point design, allowing different perspectives using various tools to analyse the shared
project model.

6.5.6 Support for Decision-Making in CDSS

All approaches presented in this section provide support for decision-making in collabo-
ration projects using point-to-point design. While most of them provide suggestions for
compromises based on domain knowledge or optimisation, none of them actually aims to
illustrate tradeoffs such that the involved designers can make informed decisions. The sup-
port provided by CDSS to decision-making, however, takes this illustration approach and
leaves decisions to human designers. Projections of solution space approximations onto
design characteristics or optimisation criteria provide support for interactive and visual
analysis of tradeoffs by project partners (Section 5.3.3). Thereby, the knowledge acquired
by other project partners is taken into account and thus knowledge transfer between do-
main experts takes place.

Another tool for decision-making proposed in this thesis uses interactive design space
exploration (Section 3.4 and Section 5.3.4). Unlike existing approaches, we propose not
only to maintain consistency during navigation in design space but also to determine
feasible ranges for design parameters in order to provide an intuitive illustration of multi-
dimensional relations between parameters.

6.6 Summary

Collaboration in design has been an active research domain in the last few years, pushed
by the growing success of the Internet. Many useful tools and environments have been
suggested and implemented, some of them as commercial products. Mainly the information
management systems are widely used and succeed in improving communication efficiency
and reliability in large-scale collaboration projects of various domains.

Collaborative design and concurrent engineering can benefit from generic tools for com-
puter supported cooperative work as well, but certain specific needs such as conflict mitiga-
tion and change management have been recognised as additional challenges. The currently
proposed approaches to cope with conflicts and changes mainly concentrate on commu-

140 CHAPTER 6. RELATED WORK

nication issues [Cutkosky et al., 1996, Kim et al., 1998], coordination [Divita et al., 1998,
Garcia and Vivacqua, 1996, Gross, 1994, Mokhtar et al., 1998, Petrie et al., 1995] and ap-
propriate data management [Fischer and Froese, 1996, Fruchter, 1996, Olsen et al., 1995],
while they offer little computational support for conflict resolution and change propaga-
tion. Computational support is often only provided in order to automatically determine
optimal solution with respect to a utility function [Badhrinath and Jagannatha Rao, 1996,
Chen, 1998, Garcia and Sriram, 1997, Tappeta and Renaud, 1997]. Thereby, the proper
formalisation of utility functions is still a very difficult task. In contrast, CDSS provides
support for visual tradeoff analysis and interactive design space exploration to the collab-
orating designers and thus encourages experimentation.

Although it was observed that the least commitment approach is useful in engineer-
ing and design [Easterbrook et al., 1994, Ward et al., 1995], very few tools actually sup-
port this approach. Least commitment means keeping many alternative solutions for
consideration during negotiation. This is, however, a difficult task because the repre-
sentation of many alternatives, especially when parameters have continuous domains, is
costly. Therefore, most current systems focus on point-to-point approaches, iteratively
adapting a current solution in order to find a satisfactory solution for all project partners
[Robinson, 1994]. On the other hand, CDSS supports least commitment by approximating
solution spaces and thus considering many alternatives in early stages of the project.

Constraint satisfaction problems as suggested in this thesis can represent large fami-
lies of potential alternative solutions, while consistency techniques provide means to com-
pute approximations of solution spaces and their intersection efficiently. Moreover, con-
straints emerge naturally in engineering when formally defining design requirements. Only
few approaches presented in this chapter propose constraint satisfaction for collaboration
and negotiation support. Where constraints are used, they are usually employed to per-
form consistency checking [Fiksel and Hayes-Roth, 1993, Khedro et al., 1993, Klein, 1997,
Prasad et al., 1997, Tiwari and Franklin, 1994], to enforce low degrees of local consistency
[Cerezuela et al., 1998, Darr and Birmingham, 1996, Petrie et al., 1997], or for constraint
propagation [Bahler et al., 1995, Hashemian and Gu, 1995, Kuokka and Livezey, 1994].
None of them, however, uses solution spaces for decision-making support or negotiation.

Chapter 7

Conclusions

Due to growing project complexity and stricter deadlines the importance of efficiency
during collaboration in design is becoming more and more evident. Collaboration may be
hindered by the lack of effective facilities for exchanging and organising project information
as well as the absence of tools for efficient coordination and negotiation. Pushed by
the growing success of the Internet and the emerging need for global collaboration in
complex engineering tasks, important developments in computer supported cooperative
work, collaborative design and concurrent engineering have been accomplished recently.
Mainly information management systems are successful also in practice and actively help
to improve efficiency and reliability of communication between project partners.

However, few collaboration tools capable of providing computational support for nego-
tiation and collaborative decision-making have been proposed and almost all collaboration
environments leave it to the project partners to ensure design consistency. This thesis
proposes the use of solution spaces in order to support collaborative design by helping to
maintain design consistency and by providing support for decision-making.

7.1 Contributions

The use of solution spaces during collaborative design implies that tools to determine,
manipulate and analyse these must be provided. Therefore, in addition to considera-
tions about how the use of solution spaces influences the collaboration between project
partners, research into constraint satisfaction techniques on continuous domains and the
development of a constraint-based communication platform prototype were undertaken.
The approach was evaluated in the context of civil engineering.

7.1.1 Solution Spaces for Collaborative Design

In contrast to the current approach to collaboration using point solutions during negoti-
ation, this thesis proposes the collaborative use of solution spaces. Using solution spaces
avoids artificial conflicts and thus, unnecessary negotiation. Moreover, the formal declara-
tion of project requirements allows for the detection of conflicts between diverging design

141

142 CHAPTER 7. CONCLUSIONS

goals early in the project and therefore triggers negotiation about design goals in order to
avoid fruitless search for solutions. The possibility to detect conflicts also allows a more
adequate distribution of the responsibility for design consistency towards the initiators of
changes instead of the possibly overwhelmed recipients. Conventional approaches to col-
laboration make recipients of changes entirely responsible for design consistency. This may
lead to undetected inconsistencies and thus substantial additional cost and lower project
quality. Solution spaces can avoid this problem by allowing the initiators of changes to
check consistency before they forward their proposition to the other project partners. Fi-
nally, the formal expression of project requirements is easily adaptable to changes in the
project context and thus helps managing such changes.

The suggested approach using solution spaces does not avoid negotiation about single
solutions between experts altogether. After solution spaces have been determined, experts
still need to agree on the final solution to be built. An automatic decision for the final
solution, as it is proposed by optimisation tools, is not necessarily desirable, since practical
projects can never be specified entirely in terms of mathematical relations. However, after
the establishment of a non-empty solution space, less objections by project partners are
expected during negotiation to find the final solution, since all solutions discussed satisfy
the basic requirements. Therefore, negotiation guided by solutions spaces is expected to
be more efficient than blind point-to-point negotiation.

The use of solution spaces splits the negotiation phase into two parts: In the first part,
project partners negotiate about design goals expressed as constraints in order to establish
a non-empty solution space. In the second phase, solution spaces guide the negotiation
for the final solution. During this second part of negotiation, the shape of the solution
space can be used as an aid for decision-making, since it illustrates tradeoffs and reveals
implicit relations between design parameters.

Moreover, it is expected that users will object less frequently against innovative ideas,
when computer support guarantees project consistency. Therefore, solution spaces have
the potential to improve solutions found in negotiation. By anticipating the impact of a
decision upon one parameter on all the other parameters, collaborators can gather more
information in order to make up well founded decisions. Tradeoff analysis using projections
of solution spaces on design criteria can serve the same purpose.

The use of solution spaces provides a useful means for performing least commitment
collaboration. This approach often allows for better solutions because fewer uninformed
decisions are needed to push the project forward. Concepts similar to least commitment
collaboration and solution space have existed as management techniques for business tasks.
In addition, we propose recently developed constraint satisfaction techniques as computa-
tional support for the implementation of such efforts.

7.1.2 Constraint Satisfaction Techniques

Numeric constraint satisfaction is proposed to implement collaborative design using solu-
tion spaces. Numeric constraint satisfaction problems (CSPs) can model many problems

7.1. CONTRIBUTIONS 143

of various engineering domains such as mechanical, electrical and civil engineering. Nu-
meric CSPs use mathematical relations, equalities and inequalities, to express restrictions
on variables with continuous domains. This is a natural way of expressing project require-
ments, easily adoptable by engineers, since they work with mathematical expressions in
everyday life. Moreover, numeric constraint satisfaction provides a means to determine
solution space approximations tractably.

In this thesis standard CSP techniques have been extended to implement the collab-
orative design using solution spaces approach. We use consistency algorithms for discre-
tised, ternary CSPs on continuous domains in order to compute solution space approx-
imations. Arc- and 2-consistency in their standard form are defined for binary CSPs
and are equivalent in this context. In the context of ternary CSPs, however, these two
consistency concepts no longer achieve the same pruning of the search space, because
2-consistency treats certain constraints simultaneously during revision of an arc, while
arc-consistency propagates constraints one by one. In this thesis, we propose an algo-
rithm for 2-consistency on ternary CSPs and illustrate its potential for further refinement
compared to arc-consistency. Path-consistency as well is defined in its standard form for
binary CSPs only. In this research we generalised its definition for ternary CSPs. More-
over, the space efficiency of the current (3,2)-relational consistency algorithm has been
improved without compromising its computational efficiency by avoiding the storage of
intermediary results.

The consistency algorithms mentioned above focus on ternary CSPs, i.e., CSPs with
constraints containing at most three variables. Although it has been shown before that
all numeric CSPs expressed using unary and binary mathematical operators can always
be rewritten in terms of ternary constraints, very few practical methods to achieve such
a reformulation automatically exist. We have found a reformulation algorithm which on
practical examples of considerable size completes its task within few minutes. Thereby,
only few extra variables are introduced compared to extensive analysis by hand which may
take several hours. Moreover, a method to eliminate unnecessary intermediary variables
from the original CSP has been developed, which in some cases renders large practical
examples treatable.

After the approximation of solution spaces through consistency algorithms, collabora-
tors are provided with decision-making tools to find the most convenient solution. For this
purpose we suggest an interactive search tool which would use standard backtrack search
algorithms with adapted variable and value ordering schemes to accommodate the user
interaction. Thereby current solutions are interpreted as user preferences and the search
algorithms try to find solutions near this preferred solution.

7.1.3 A Communication and Collaboration Platform

Not only have constraints in the form of mathematical expressions been proposed as suit-
able language for collaboration, but also a prototype communication and collaboration
platform has been implemented in order to evaluate the solution space approach to col-

144 CHAPTER 7. CONCLUSIONS

laborative design. An Internet-based approach has been chosen, with which it is possible
to demonstrate the use of information about parameters and constraints during collab-
oration, including decision support through visualisation and interactive exploration of
solution spaces.

Although the use of strict semantics based on constraints provides the possibility to
automatically interpret the information about the project requirements specified in a for-
mal manner, we have observed that the sole use of such strictly structured information
is insufficient for efficient collaboration and negotiation. In addition, free-format commu-
nication using various types of documents is needed. Therefore, a link to a collaborative
information management system has been implemented, such that constraint-based and
free-format communication go hand in hand.

7.1.4 Evaluation in Civil Engineering

Working with practitioners 3 construction projects have been analysed for their collabora-
tion structure. The project restrictions were modelled using numeric CSPs. We found that
the construction industry is an suitable field for the validation of collaboration tools, since
frequent collaboration between experts from different domains and different enterprises is
common to almost all projects. It has been observed that the industry is currently moving
towards electronic support for information management and communication. However,
little computer support for decision-making and collaboration is currently used.

All analysed projects showed a complex collaboration structure. Partners often share
parameters with many other partners, thus making project decomposition difficult. How-
ever, the usefulness of formalising project requirements and using solution spaces as an aid
for collaborative decisions has been shown successfully. The analysis of these construction
projects also confirmed the necessity of the symbolic reformulation of numeric CSPs in
ternary form and the elimination of unnecessary intermediary variables from such CSPs.

7.2 Limitations

One limitation is related to the abstract nature of formulating project requirement as
mathematical constraints. While engineers have little difficulty expressing their require-
ments in terms of constraints. Other project partners are less used to express their re-
quirements mathematically. This is due to the informal nature of certain requirements,
traditional work habits and the current user interfaces. In the context of the construction
industry, we observe that architects and clients may not immediately accept this abstract
form of information. A similar restriction limits the usefulness of the computed results.
The entirely abstract representation of solution spaces and parameter values during inter-
active exploration avoids the intuitive analysis of results.

Disjunctive constraint sets must currently be accommodated one at a time as sep-
arate problems. Dynamic constraint satisfaction has the potential to manage multiple
constraints sets for collaboration tasks.

7.3. FURTHER RESEARCH 145

The constraint techniques suggested in this thesis work with explicit spatial represen-
tations of feasible regions. In order to keep such representations treatable it is necessary
to compute with limited precision. Often in preliminary phases of projects this is perfectly
acceptable. However, it can be misleading in later stages since conflicts are detected less
reliably and the search for exact solutions based on solution space approximations may be
more difficult than expected.

Although, under certain a posteriori convexity restrictions, (3,2)-relational consistency
is equivalent to global consistency and therefore guarantees search for solutions without
backtracking, the mentioned convexity restrictions only rarely hold on practical examples.
Therefore, very efficient exploration of exact solution spaces based on (3,2)-relational con-
sistent labels is not possible in most real-world situations. Nevertheless, (3,2)-relational
consistency provides more precise approximations for solution spaces and reveals more in-
formation about induced relations between design parameters than the other consistency
methods suggested.

Collaboration projects in construction are often of considerable size. For such projects
usually low degrees of consistency can be computed rapidly while the calculation of high
degrees of consistency such as (3,2)-relational consistency usually takes too much time.
Engineers may accept one night of computation, provided that an interesting analysis can
be made interactively the next day. However, currently (3,2)-relational consistency cannot
be enforced on full scale collaboration projects within reasonable time limits.

7.3 Further Research

From the above mentioned limitations we can deduce that more research is needed related
to usability, precision and efficiency of the solution space approach to collaborative design
in order to make it useful in practice. This section presents future research directions to
improve the current concept.

7.3.1 Intuitive Interfaces

In order to have a larger number of potential collaborators accept the use of solution spaces
expressed with CSPs, further work to provide intuitive interfaces to specify constraints
is needed. Currently we only provide a general purpose interface asking collaborators to
enter their restrictions directly in mathematical form. Special purpose human computer
interfaces can be adapted to the particular needs of the envisioned users and avoid the
specification of constraints using abstract mathematical expressions. The same also applies
to the interpretation of the solution spaces generated and the solutions visited during
interactive exploration of solution spaces. Without a direct connection between parameter
values and the objects, properties of which they represent, no intuitive interpretation of
of results are difficult.

For instance, architects may not accept specifying the geometry of an artifact by
giving mathematical equalities. By coupling the architect’s CAD system with automatic

146 CHAPTER 7. CONCLUSIONS

constraint generation such as it has been provided in [Smith et al., 1996], the working
environment architects are used to can be employed to simplify the task of specifying
constraints. Similarly, the interactive exploration would be more intuitive when geometric
parameters were adapted directly within a CAD software package. Approaches like this
may push project partners to accept the use of constraints in collaboration.

7.3.2 Data Structures for Representing Feasible Regions

The solution space approximation’s quality depends on the employed consistency method
but is also influenced by the data structure representing it and the initial resolution of
the approximations generated for the feasible regions of the constraints. Throughout
this thesis an approximation based on cubes is adopted. Although this ensures simple
computation, such data structures cannot satisfactorily approximate many constraints
without excessively augmenting the resolution.

More sophisticated data structures, such as binary space partitioning (BSP) trees
[Fuchs et al., 1980], may improve the quality of approximations without using too much
memory. BSP trees are able to approximate many constraints very smoothly and are
exact on linear constraints. However, additional computational difficulty is introduced by
sophisticated data structures.

A compromise would be to use intersections of half-spaces to represent polytopes. This
would restrict the approximations to convex regions but may resolve the computational
complexity problem of the BSP approach. Given that (3,2)-relational consistency is par-
ticularly interesting when applied to convex problems, since in this case it guarantees
backtrack-free search, the restriction to convex regions may be very useful.

7.3.3 Exploiting Sparsity of Problems

The performance of consistency algorithms is penalised by the fact that they do not adapt
to the structure of the problem in hand. In practical situations not every parameter
is linked to all other parameters so that many revision steps do not propagate much
information. Such CSPs are called sparse. A recently suggested approach to render
enforcing path-consistency on sparse CSPs more efficient may be suited for generalisation
to (3,2)-relational consistency.

It has been shown in [Bliek and Sam-Haroud, 1999] that when path-consistency is
enforced on triangulated graphs only instead of complete graphs as usual, most information
is properly propagated. That is to say, although the method does not generate labels for
all edges, most of the labels on the edges which belong to the triangulation are equal
to those generated through path-consistency on the complete graph. In fact, all labels
are equal when the CSP is convex. Therefore, the missing labels can be derived from
existing ones and thus, path-consistency on triangulated graphs is equivalent to path-
consistency on complete graphs for convex problems. When the original CSP is sparse,
the computation of path-consistency on triangulated graphs is substantially more efficient
than on the complete graph.

7.3. FURTHER RESEARCH 147

The definition of a similar notion as triangulation using cliques of size 5 instead of
cliques of size 3, may lead to an analogous result for (3,2)-relational consistency. In this
way efficiency of enforcing (3,2)-relational consistency may be improved without losing
much precision of the approximation of the solution space.

7.3.4 Decomposition of Constraint Satisfaction Problems

When two parts of a constraint graph are weakly connected, the corresponding parts of
the CSPs are likely to depend weakly on each other. Therefore, it is of interest to solve
such sub-CSPs independently and then integrate the partial solutions. The straightforward
approach for discrete CSPs is to cluster the variables in a sub-CSP into one variable within
a new meta-CSP, where the domains are the solutions for the sub-CSP. The constraints
of the meta-CSP are the relations between the sub-CSPs. Such clusters usually have very
large domains and for continuous variables an accurate representation is difficult.

Tree-structured CSPs can be solved efficiently [Freuder, 1982]. Current methods to
cluster variables generate a tree-structured meta-CSP. Two such methods are the tree-
clustering method described in [Dechter and Pearl, 1989] and the hinge decomposition
method by Gyssens et al. [Gyssens et al., 1994]. Although both methods have been de-
veloped and tested on discrete domains, their application on continuous CSPs may be
possible, because they reason on the CSP’s graph-structure. Several methods for decom-
position including the above mentioned are compared within a new framework for decom-
position of CSPs in [Gottlob et al., 1999]. A specific method for the search of solutions in
continuous CSPs using decomposition is described in [Bliek et al., 1998].

The meta-CSPs suggested by methods such as tree-clustering and hinge decomposition
in general contain multidimensional nodes (clusters of variables) as well as high arity con-
straints between such clusters. Since this work is based on continuous variables, the needed
representation and propagation of n-dimensional domains may be difficult. However, in
[Sam-Haroud and Faltings, 1996] conditions were identified which allow a tractable repre-
sentation of a globally consistent solution space through a set of 3-dimensional projections
by enforcing (3,2)-relational consistency. These conditions include an instantiation or-
der, in which backtrack-free instantiation is achieved. When (3,2)-relational consistency
is enforced to compute the solution space of all clusters of a tree-structured meta-CSP,
the labels of the shared variables can be used for propagation of restrictions from clus-
ter to cluster. On each cluster (3,2)-relational consistency imposes an instantiation order
to achieve backtrack-free search. Given a global instantiation order of all variables in
all clusters, which is compatible with the instantiation order of each separate cluster,
backtrack-free search of the whole CSP could be reached.

Ensuring (3,2)-relational consistency in this decomposed manner is linear in the number
of clusters and has complexity O(N5) where N is the size of the largest cluster. Although
this sounds quite promising, it has to be mentioned that not only the partial convexity
conditions needed in order to define a backtrack-free instantiation order of a subproblem
are often not given, but also N is not necessarily small. Our observations in practice

148 CHAPTER 7. CONCLUSIONS

show that there are often large cycles in the problems. Therefore, such a decomposed
computation of consistency is not necessarily possible or efficient.

7.3.5 A Priori Decomposition

To find an appropriate decomposition of a CSP not only the algorithms mentioned may
serve. It seems probable that CSPs in collaborative design have specific structures. Since
different subtasks are performed by different experts independently, corresponding sub-
CSPs are likely to be loosely coupled. Other a priori decomposition schemes according
to geometry or function may occur. During our work, however, we could not confirm
the hypothesis that decomposition into parts for collaboration yields loosely coupled sub-
CSPs. Project partner in fact work on the same project parameters, while considering
different aspects and the corresponding impact on these parameters.

Moreover, it is common that certain parts of a problem predominate the rest of the
CSP. When one part involves particularly many parameters its solving determines most
parameters and no interesting a priori decomposition is done. Therefore, automatic de-
termination of tree-structured decomposition is more promising.

7.3.6 Distributed Solution of Decomposed CSPs

Another approach for improving the performance of consistency algorithms is distributed
computation. The distributed solving of a CSP makes sense in the context of collaborative
engineering. It is useful to compute consistency within sub-CSPs in order to check for
errors and contradictions in the subtasks before tempting to find a solution to the whole
task. Reusing local solution spaces integrating partial solution, is potentially useful.

As soon as a decomposition of the CSP is found, distributed solving of the CSP is
possible, i.e., its sub-CSPs are solved in parallel on different machines, the results are
collected and their intersection yields the solution space of the whole CSP. This solution
space is then redistributed to sub-CSPs. For example, designers would solve their sub-
CSPs locally and then communicate the solution space obtained to a central constraint
solver. The central solver would determine the global solution space and communicate it
back to the designers. The major drawback of this suggestion is related to communication
between the different machines. Much time would be spent in the transmission of explicit
representations of solution spaces through computer networks.

7.4 Conclusion

Since design tasks become more and more complex, collaboration of designers from dif-
ferent domains is needed in many projects. Currently collaboration is typically based on
point-to-point design. Major difficulties include conflict mitigation, change management
and negotiation efficiency. We believe that the solution space approach described in this
thesis has the potential to improve both, collaboration efficiency and project quality by
avoiding premature decisions, artificial conflicts and excessive iteration during negotiation.

Bibliography

[Bacchus and van Run, 1995] Bacchus, F. and van Run, P. (1995). Dynamic variable
ordering in CSPs. In Montanari, U. and Rossi, F., editors, Principles and Practice of
Constraint Programming, Lecture Notes in Computer Science, pages 258–275, Cassis.
Springer Verlag.

[Badhrinath and Jagannatha Rao, 1996] Badhrinath, D. and Jagannatha Rao, J. R.
(1996). Modeling for concurrent design using game theory formulations. Concurrent
Engineering: Reasearch and Applications, 4(4):389–399.

[Bahler et al., 1994a] Bahler, D., Dupont, C., and Bowen, J. (1994a). An axiomatic ap-
proach that supports negotiated resolution of design conflicts in concurrent engineering.
In Gero, J. S. and F., S., editors, AI in Design, pages 363–379, Boston MA. Kluwer
Academic Publishers.

[Bahler et al., 1994b] Bahler, D., Dupont, C., and Bowen, J. (1994b). Mediating conflict
in concurrent engineering with a protocol based on utility. Concurrent Engineering:
Reasearch and Applications, 2(3):197–207.

[Bahler et al., 1995] Bahler, D., Dupont, C., and Bowen, J. (1995). Mixed quantita-
tive/qualitative method for evaluating compromise solutions to conflicts in collaborative
design. Artificial Intelligence for Engineering Design, Analysis and Manufacturing (AI-
EDAM), 9(4):325–336.

[Berker and Brown, 1996] Berker, I. and Brown, D. C. (1996). Conflicts and negotiation
in single function agent based design systems. Concurrent Engineering: Reasearch and
Applications, 4(1):17–33.

[Bessière, 1994] Bessière, C. (1994). Arc-consistency and arc-consistency again. Artificial
Intelligence, 65(1):179–190.

[Bessière and Régin, 1997] Bessière, C. and Régin, J. C. (1997). Arc consistency for gen-
eral constraint networks: Preliminary results. In International Joint Conference on
Artificial Intelligence (IJCAI), volume 1, pages 398–404, Nagoya, Japan.

[Birmingham et al., 1997] Birmingham, W. P., D’Ambrosio, J. G., and Darr, T. P. (1997).
Hierarchical concurrent engineering. Concurrent Engineering: Reasearch and Applica-
tions, 5(2):129–136.

149

150 BIBLIOGRAPHY

[Bliek et al., 1998] Bliek, C., Neveu, B., and Trombettoni, G. (1998). Using graph de-
composition for solving continuous CSPs. In Maher, M. L. and Puget, J.-F., editors,
Principles and Practice of Constraint Programming, Lecture Notes in Computer Sci-
ence, pages 102–117, Berlin, Heidelberg, New York NY. Springer Verlag.

[Bliek and Sam-Haroud, 1999] Bliek, C. and Sam-Haroud, D. (1999). Path-consistency
on triangulated graphs. In International Joint Conference on Artificial Intelligence
(IJCAI), volume 1, pages 456–461, Stockholm, Sweden.

[Bowen and Bahler, 1991] Bowen, J. and Bahler, D. (1991). Supporting cooperation be-
tween multiple perspectives in a constraint-based approach to concurrent engineering.
Journal of Design and Manufacturing, 1(2):89–105.

[Bowen and Bahler, 1993] Bowen, J. and Bahler, D. (1993). Constraint-based software for
concurrent engineering. IEEE Computer, 26(1):66–68.

[Cerezuela et al., 1998] Cerezuela, C., Cauvin, A., Boucher, A., and Kieffer, J.-P. (1998).
A decision support system for a concurrent design of cable harnesses: Conceptual
approach and implementation. Concurrent Engineering: Reasearch and Applications,
6(1):43–52.

[Chen, 1998] Chen, L. (1998). On the tradeoff control to concurrent product and process
design. Concurrent Engineering: Reasearch and Applications, 6(3):259–270.

[Chung and Wu, 1995] Chung, K.-L. and Wu, C.-J. (1995). A fast search algorithm on
modified S-trees. Pattern Recognition Letters, 16:1159–1164.

[Cutkosky, 1996] Cutkosky, M. R. (1996). Agent based concurrent design. In Sobolewsky,
M. and Fox, M., editors, Advances in Cuncurrent Engineering CE96, pages 439–447,
Toronto, Canada. Technomic Publishing Co. Inc.

[Cutkosky et al., 1993] Cutkosky, M. R., Engelmore, R. S., Fikes, R. E., Genesereth,
M. R., Gruber, T. R., Mark, W. S., Tennenbaum, J. M., and Weber, J. C. (1993).
PACT: An experiment in integrating concurent engineering systems. IEEE Computer,
26(1):28–37.

[Cutkosky and Tennenbaum, 1991] Cutkosky, M. R. and Tennenbaum, J. M. (1991). Pro-
viding computational support for concurrent engineering. Systems Automation: Re-
search and Application, 1(3):239–261.

[Cutkosky et al., 1996] Cutkosky, M. R., Tennenbaum, J. M., and Glicksman, J. (1996).
Madefast: Collaborative engineering over the internet. Communications of the ACM,
39(9):78–87.

[D’Ambrosio et al., 1996] D’Ambrosio, J. G., Darr, T. P., and Birmingham, W. P. (1996).
Hierarchical concurrent engineering in a multiagent framework. Concurrent Engineer-
ing: Reasearch and Applications, 4(1):47–57.

151

[Darr and Birmingham, 1994] Darr, T. P. and Birmingham, W. P. (1994). Automated de-
sign for concurrent engineering. IEEE Expert, Intelligent Systems & their Applications,
9(5):35–42.

[Darr and Birmingham, 1996] Darr, T. P. and Birmingham, W. P. (1996). An attribute-
space representation and algorithm for concurrent engineering. Artificial Intelligence
for Engineering Design, Analysis and Manufacturing (AI-EDAM), 10(1):21–36.

[Davis, 1987] Davis, E. (1987). Constraint propagation with intervals. Artificial Intelli-
gence, 32(3):281–331.

[De Figueiredo et al., 1992] De Figueiredo, L. H., De Miranda Gomes, J., Terzopoulos, D.,
and Velho, L. (1992). Physically-based methods for polygonization of implicit surfaces.
In Proceedings of Graphics Interface ’92, pages 250–257, Vancover, British Columbia,
Canada.

[De Jonge et al., 1994] De Jonge, W., Scheuermann, P., and Schijf, A. (1994). S+-trees:
An efficient structure for the representation of large pictures. Computer Vision, Graph-
ics, and Image Processing. Image Understanding, 59(3):265–280.

[Dechter et al., 1991] Dechter, R., Meiri, I., and Pearl, J. (1991). Temporal constraint
networks. Artificial Intelligence, 49(1-3):61–95.

[Dechter and Pearl, 1989] Dechter, R. and Pearl, J. (1989). Tree-clustering for constraint
networks. Artificial Intelligence, 38(3):353.–366.

[Divita et al., 1998] Divita, E. L., Kunz, L. C., and Fischer, M. A. (1998). Collaborative
desktop engineering. In AI in Structural Engineering, Lecture Notes in AI, pages 69–85,
Berlin, Heidelberg, New York NY. Springer Verlag.

[Easterbrook et al., 1994] Easterbrook, S., Finkelstein, A., Kramer, J., and Nuseibeh, B.
(1994). Coordinating distributed viewpoints: the anatomy of a consistency check. Con-
current Engineering: Reasearch and Applications, 2(3):209–222.

[Ellis, 1991] Ellis, C. A. (1991). Groupware: Overview and perspectives. In International
GI Congress Knowledge-Based Systems, Informatik Fachberichte 291, pages 18–29.

[Ellis and Gibbs, 1991] Ellis, C. A. and Gibbs, S. J. Rein, G. L. (1991). Groupware: Some
issues and experiences. Communications of the ACM, 34(1):38–58.

[Faltings, 1994] Faltings, B. V. (1994). Arc-consistency for continuous variables. Artificial
Intelligence, 65(2):363–376.

[Faltings and Gelle, 1997] Faltings, B. V. and Gelle, E. M. (1997). Local consistency for
ternary numeric constraints. In International Joint Conference on Artificial Intelligence
(IJCAI), volume 1, pages 392–397, Nagoya, Japan.

152 BIBLIOGRAPHY

[Fiksel and Hayes-Roth, 1993] Fiksel, J. and Hayes-Roth, R. (1993). Computer aided re-
quirement management. Concurrent Engineering: Reasearch and Applications, 1(2):83–
92.

[Finger et al., 1995] Finger, S., Konda, S., and Subrahmanian, E. (1995). Concurrent
design happens at the interfaces. Artificial Intelligence for Engineering Design, Analysis
and Manufacturing (AI-EDAM), 9(2):89–99.

[Fischer and Froese, 1996] Fischer, M. and Froese, T. (1996). Examples and characteris-
tics of shared project models. Computing in Civil Engineering, 10(3):174–182.

[Fourier, 1970] Fourier, J. B. (1970). reprinted in: Histoire de l’Academie Royale des
Sciences de l’Institut de France, chapter Oeuvres de Fourier, pages 325–328. Olms G,
Hildersheim.

[Freuder, 1978] Freuder, E. C. (1978). Synthesizing constraint expressions. Communica-
tions of the ACM, 21(11):958–966.

[Freuder, 1982] Freuder, E. C. (1982). A sufficient condition for backtrack-free search.
Journal of the ACM, 29(1):24–32.

[Froese, 1996] Froese, T. (1996). Models of construction process information. Computing
in Civil Engineering, 10(3):183–193.

[Frost and Dechter, 1995] Frost, D. and Dechter, R. (1995). Look-ahead value ordering
for constraint satisfaction problems. In Mellish, C. S., editor, International Joint Con-
ference on Artificial Intelligence (IJCAI), pages 572–578, Montreal, Canada. Morgan
Kaufmann.

[Fruchter, 1996] Fruchter, R. (1996). Conceptual, collaborative building design through
shared graphics. IEEE Expert, Intelligent Systems & their Applications, 11(3):33–41.

[Fuchs et al., 1980] Fuchs, H., Kedem, Z. M., and Naylor, B. F. (1980). On visible surface
generation by a priori tree structures. Computer Graphics SIGGRAPH, 14(3):124–133.

[Garcia et al., 1994] Garcia, A. C. B., Howard, H. C., and Stefik, M. J. (1994). Improving
design and documantation by using partially automated synthesis. Artificial Intelligence
for Engineering Design, Analysis and Manufacturing (AI-EDAM), 8(4):335–354.

[Garcia and Vivacqua, 1996] Garcia, A. C. B. and Vivacqua, A. S. (1996). The use of
active design documents to assist conflict mitigation in concurrent engineering. In
Advances in Concurrent Engineering, pages 65–72, Lancaster PA, USA. Technomic.

[Garcia and Sriram, 1997] Garcia, F. and Sriram, R. D. (1997). Developing knowledge
sources to identify and evaluate tradeoffs among alternate designs in a cooperative
engineering framework. Concurrent Engineering: Reasearch and Applications, 5(3):279–
292.

153

[Gargantini, 1982] Gargantini, I. (1982). Linear octtrees for fast processing of three-
dimensional objects. Computer Graphics and Image Processing, 20:365–374.

[Gelle, 1998] Gelle, E. M. (1998). On the Generation of Locally Consistent Solution Spaces
in Mixed Dynamic Constraint Problems. Phd-thesis no. 1826, Swiss Federal Institute
of Technology in Lausanne.

[Gent et al., 1996] Gent, I. P., MacIntyre, E., Prosser, P., Smith, B. M., and Walsh, T.
(1996). An empirical study of dynamic variable ordering heuristics for the constraint
satisfaction problem. In Freuder, E. C., editor, Principles and Practice of Constraint
Programming, Lecture Notes in Computer Science, pages 179–193, Berlin, Heidelberg,
New York NY. Springer Verlag.

[Gero, 1990] Gero, J. S. (1990). Design prototypes: A knowledge representation schema
for design. AI Magazine, 11(4):26–48.

[Gottlob et al., 1999] Gottlob, G., Leone, N., and Scarcello, F. (1999). A comparison of
structural CSP decomposition methods. In International Joint Conference on Artificial
Intelligence (IJCAI), volume 1, pages 394–399, Stockholm, Sweden.

[Gross, 1994] Gross, M. D. (1994). Avoiding conflicts in architectural subsystem layout.
Concurrent Engineering: Reasearch and Applications, 2(3):163–171.

[Gunther, 1988] Gunther, O. (1988). Efficient Structures for Geometric Data Manage-
ment, volume 337 of Lecture Notes in Computer Science. Springer Verlag, Berlin, Hei-
delberg, New York NY.

[Gupta et al., 1887] Gupta, A., Ferris, C., Wilson, Y., and Venkatasubramanian, K.
(1887). Implementing Java computing: Sun on architecture and applications deploy-
ment. IEEE Internet Computing, 2(2):60–64.

[Guttman, 1984] Guttman, A. (1984). R-trees: A dynamic index structure for spatial
ssarching. In Yormack, B., editor, Preceedings of the ACM SIGMOD, pages 47–57,
Boston, MA. ACM.

[Gyssens et al., 1994] Gyssens, M., Jeavons, P. G., and Cohen, D. A. (1994). Decompos-
ing constraint satisfaction problems using database techniques. Artificial Intelligence,
66(1):57–89.

[Haralick and Elliott, 1980] Haralick, R. and Elliott, G. (1980). Increasing tree search
efficiency for constraint satisfaction problems. Artificial Intelligence, 14(3):263–313.

[Haroud et al., 1995] Haroud, D., Boulanger, S., Gelle, E. M., and Smith, I. F. C. (1995).
Management of conflicts for preliminary engineering design tasks. Artificial Intelligence
for Engineering Design, Analysis and Manufacturing (AI-EDAM), 9(4):313–323.

154 BIBLIOGRAPHY

[Hashemian and Gu, 1995] Hashemian, M. and Gu, P. (1995). A constraint-based system
for product design. Concurrent Engineering: Reasearch and Applications, 3(3):177–186.

[Hua et al., 1996] Hua, K., Faltings, B. V., and Smith, I. F. C. (1996). CADRE : Case-
based geometric design. AI in Engineering, pages 171–183.

[Hyvonen, 1992] Hyvonen, E. (1992). Constraint reasoning based on interval arithmetics:
the tolerance propagation approach. Artificial Intelligence, 58(1–3):71–112.

[Jansen et al., 1989] Jansen, P., Jégou, P., Nouguier, B., and Vilarem, M. C. (1989).
A filtering process for general constraint satisfaction problems: Achieving pairwise-
consistency using an associated binary representation. In IEEE Workshop on Tools for
Artificial Intelligence, pages 420–427, Fairfax VA, USA.

[Jussien and Lhomme, 1998] Jussien, N. G. and Lhomme, O. (1998). Dynamic domain
splitting for numeric CSPs. In Prade, H., editor, European Conference on Artificial
Intelligence (ECAI), pages 224–228, Chichester, UK. John Wiley & Sons.

[Kamel and Faloutsos, 1994] Kamel, I. and Faloutsos, C. (1994). Hilbert R-tree: An im-
proved R-tree using fractals. In Proceedings of the Twentieth International Conference
on Very Large Databases, pages 500–509, Santiago, Chile.

[Khedro and Genesereth, 1994] Khedro, T. and Genesereth, M. R. (1994). Progressive
negotiation for resolving conflicts among distributed heterogeneous cooperating agents.
In National Conference on Artificial Intelligence (AAAI), pages 381–386, Seattle, WA.

[Khedro et al., 1993] Khedro, T., Genesereth, M. R., and Teicholz, P. M. (1993). FCDA:
A framework for collaborative distributed multidisciplinary design. In Gero, J. S. and
Maher, M. L., editors, Workshop on AI in Collaborative Design at AAAI’93, pages
67–81, Washington D. C. AAAI Press.

[Kim et al., 1998] Kim, C.-Y., Kim, N., Kim, Y. Kang, S.-H., and O’Grady, P. (1998). Dis-
tributed concurrent engineering: Internet-based interactive 3-d dynamic browsing and
markup of STEP data. Concurrent Engineering: Reasearch and Applications, 6(1):53–
69.

[Klein, 1993] Klein, M. (1993). Capturing design rationale in concurrent engineering
teams. IEEE Computer, 26(1):39–47.

[Klein, 1997] Klein, M. (1997). An exception handling approach to enhancing consis-
tency, completeness and correctness in collaborative requirements capture. Concurrent
Engineering: Reasearch and Applications, 5(1):73–80.

[Kondrak and van Beek, 1997] Kondrak, G. and van Beek, P. (1997). A theoretical eval-
uation of selected backtracking algorithms. Artificial Intelligence, 89(1–2):365–387.

155

[Kott and Peasant, 1995] Kott, A. and Peasant, J. L. (1995). Representation and man-
agement of requirements: The RAPID-WS project. Concurrent Engineering: Reasearch
and Applications, 3(2):93–106.

[Krishnmamurthy and Law, 1995] Krishnmamurthy, K. and Law, K. H. (1995). A data
management model for design change control. Concurrent Engineering: Reasearch and
Applications, 3(4):329–343.

[Kuokka and Livezey, 1994] Kuokka, D. and Livezey, B. (1994). A collaborative para-
metric design agent. In National Conference on Artificial Intelligence (AAAI), pages
387–393, Seattle, WA. AAAI Press.

[Lhomme, 1993] Lhomme, O. (1993). Consistency techniques for numerical CSPs. In
International Joint Conference on Artificial Intelligence (IJCAI), volume 1, pages 232–
238, Chambéry, France.

[Lin et al., 1996] Lin, J., Fox, M. S., and Bilgic, T. (1996). A requirement ontology for
engineering design. Concurrent Engineering: Reasearch and Applications, 4(3):279–291.

[Logan and Smithers, 1993] Logan, B. and Smithers, T. (1993). Creativity and design
as exploration. In Gero, J. S. and Maher, M. L., editors, Modelling Creativity and
Knowledge Based Design, pages 139–175, Mahwah, USA. Lawrence Erlbaum.

[Lottaz, 1999a] Lottaz, C. (1999a). Rewriting numeric constraint satisfaction problems
for consistency algorithms. In Workshop on Non-binary CSPs, International Joint Con-
ference on Artificial Intelligence (IJCAI), pages E:1–15, Stockholm, Sweden.

[Lottaz, 1999b] Lottaz, C. (1999b). Rewriting numeric constraint satisfaction problems
for consistency algorithms (short paper). In Jaffar, J., editor, Principles and Prac-
tice of Constraint Programming, Lecture Notes in Computer Science, pages 486–487,
Alexandria VA, USA. Springer Verlag.

[Lottaz et al., 1999] Lottaz, C., Clément, D., Smith, I. F. C., and Faltings, B. V. (1999).
Constraint-based support for collaboration in design and construction. Computing in
Civil Engineering, 13(1):23–35.

[Lottaz et al., 1998] Lottaz, C., Stalker, R. A., and Smith, I. F. C. (1998). Constraint
solving and preference activation for interactive design. Artificial Intelligence for Engi-
neering Design, Analysis and Manufacturing (AI-EDAM), 12(1):13–27.

[Lottaz et al., 2000] Lottaz, C., Stouffs, R., and Smith, I. F. C. (2000). In-
creasing understanding during collaboration through advanced representations.
Electronic Journal of Information Technology in Construction, pages 1–24.
http://www.itcon.org/2000/1/.

156 BIBLIOGRAPHY

[Love and Gunasekaran, 1997] Love, P. E. D. and Gunasekaran, A. (1997). Concurrent
egnineering in the construction industry. Concurrent Engineering: Reasearch and Ap-
plications, 5(2):155–162.

[Mackworth, 1977a] Mackworth, A. K. (1977a). Consistency in networks of relations.
Artificial Intelligence, 8(1):99–118.

[Mackworth, 1977b] Mackworth, A. K. (1977b). On reading sketch maps. In Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), volume 2, pages 598–606,
Combridge MA, USA.

[Mackworth and Freuder, 1985] Mackworth, A. K. and Freuder, E. C. (1985). The com-
plexity of some polynomial network consistency algorithms for constraint satisfaction
problems. Artificial Intelligence, 25(1):65–74.

[Mittal and Falkenhaimer, 1990] Mittal, S. and Falkenhaimer, B. (1990). Dynamic con-
straint satisfaction problems. In National Conference on Artificial Intelligence (AAAI),
pages 25–32. AAAI Press.

[Mohr and Henderson, 1986] Mohr, R. and Henderson, C. T. (1986). Arc- and path-
consistency revisited. Artificial Intelligence, 28(2):225–233.

[Mokhtar et al., 1998] Mokhtar, A., Bédard, C., and Fazio, P. (1998). Information model
for managing design changes in a collaborative environment. Computing in Civil Engi-
neering, 12(2):82–92.

[Nakamura et al., 1993] Nakamura, Y., Abe, S., Ohsawa, Y., and Sakauchi, M. (1993).
A balanced hierarchical data structure for multidimensional data with highly efficient
dynamic characteristics. IEEE Transactions on Knowledge and Data Engineering,
5(4):682–694.

[Naylor, 1992a] Naylor, B. (1992a). Interactive solid geometry via partitioning trees.
In Proceedings of Graphics Interface ’92, pages 11–18, Vancover, British Columbia,
Canada.

[Naylor, 1992b] Naylor, B. (1992b). Partition tree image representation and generation
from 3-d geometric models. In Proceedings of Graphics Interface ’92, pages 201–212,
Vancover, British Columbia, Canada.

[Naylor, 1993] Naylor, B. (1993). Constructing good partition trees. In Proceedings of
Graphics Interface ’93, pages 181–191, Toronto, Ontario, Canada.

[Naylor et al., 1990] Naylor, B., Amanatides, J., and Thibault, W. (1990). Merging BSP
trees yields polyhedral set operations. In Baskett, F., editor, Computer Graphics SIG-
GRAPH ’90 Proceedings, volume 4, pages 115–124, Dallas, Texas; 6-10 August 1990.

157

[Ndumu and Tah, 1998] Ndumu, D. T. and Tah, J. M. H. (1998). Agents in computer-
assisted collaborative design. In AI in Structural Engineering, Lecture Notes in AI,
pages 249–270, Berlin, Heidelberg, New York NY. Springer Verlag.

[Oh and Sharpe, 1995] Oh, V. and Sharpe, J. (1995). Conflict management in an interdis-
ciplinary design environment. Artificial Intelligence for Engineering Design, Analysis
and Manufacturing (AI-EDAM), 9(4):247–258.

[Olsen et al., 1995] Olsen, G. R., Cutkosky, M. R., Tennenbaum, J. M., and Gruber, T. R.
(1995). Collaborative engineering based on knowledge sharing agreements. Concurrent
Engineering: Reasearch and Applications, 3(2):145–159.

[Park et al., 1994] Park, H., Cutkosky, M. R., Conru, A. B., and Lee, S.-H. (1994). An
agent-based approach to concurrent cable harness design. Artificial Intelligence for
Engineering Design, Analysis and Manufacturing (AI-EDAM), 8(1):45–61.

[Pasley, 1996] Pasley, G. P. (1996). SteelTeam - Careating a Collaborative Desing Envi-
ronment for the Steel Building Industry. PhD thesis, Department of Civil and Environ-
mental Engineering, University of Kansas.

[Pasley and Roddis, 1994] Pasley, G. P. and Roddis, W. M. K. (1994). Using artificial
intelligence for concurrent design in the steel building industry. Concurrent Engineering:
Reasearch and Applications, 2(4):303–310.

[Paterson and Yao, 1989] Paterson, M. S. and Yao, F. F. (1989). Binary partitions with
applications to hidden-surface removal and solid modeling. In Proceedings of ACM on
Computational Geometry, pages 23–32. ACM.

[Peña-Mora, 1998] Peña-Mora, F. (1998). A collaborative negotiation methodology for
large scale civil engineering and architectural projects. In AI in Structural Engineering,
Lecture Notes in AI, pages 271–294, Berlin, Heidelberg, New York NY. Springer Verlag.

[Peña-Mora et al., 1995] Peña-Mora, F., Siriram, D., and Logcher, R. (1995). Design
rationale for computer-supported conflict mitigation. Computing in Civil Engineering,
9(1):57–72.

[Peña-Mora and Wang, 1998] Peña-Mora, F. and Wang, C.-Y. (1998). Computer-suppor-
ted collaborative negotiation methodology. Computing in Civil Engineering, 12(2):64–
81.

[Petrie, 1993] Petrie, C. J. (1993). The Redux’ server. In Huhns, M., Papazoglou, M. P.,
and Schlageter, G., editors, International Conference on Intelligent and Cooperative
Information Systems (ICICIS), pages 134–141, Rotterdam.

[Petrie et al., 1994] Petrie, C. J., Cutkosky, M. R., and Park, H. (1994). Design space
navigation as a collaborative aid. In Gero, J. S. and Sudweeks, F., editors, AI in
Design, pages 611–623, Boston MA. Kluwer Academic Publishers.

158 BIBLIOGRAPHY

[Petrie et al., 1997] Petrie, C. J., Jeon, H., and Cutkosky, M. R. (1997). Combining con-
straint propagation and backtracking for distributed engineering. In Constraints &
Agents Workshop at AAAI’97, pages 76–82, Providence, Rhode Island. AAAI Press.

[Petrie et al., 1995] Petrie, C. J., Webster, T. A., and Cutkosky, M. R. (1995). Using
Pareto-optimality to coordinate distributed agents. Artificial Intelligence for Engineer-
ing Design, Analysis and Manufacturing (AI-EDAM), 9(4):269–281.

[Prasad et al., 1997] Prasad, B., Wang, F., and Deng, J. (1997). Towards a computer-
supported cooperative environment for concurrent engineering. Concurrent Engineering:
Reasearch and Applications, 5(3):233–252.

[Quadrel and Myers, 1995] Quadrel, R. W. and Myers, L. (1995). A comparison of strong
and weak computational methods for conflict resolution in architectural design. In
Concurrent Engineering: A Global Perspective, pages 291–303, McLean, VA.

[Rechmann et al., 1990] Rechmann, N., Kriegel, H. P., Schneider, R., and Seeger, B.
(1990). The R*-tree: An efficient and robust access method for points and rectangles.
Proceedings of the ACM SIGMOD 1990, pages 322–331.

[Robinson, 1994] Robinson, R. N. (1994). Interactive decision support for requirements
negotiation. Concurrent Engineering: Reasearch and Applications, 2(3):237–251.

[Roddis, 1998] Roddis, W. M. K. (1998). Knowledge-based assistant in collaborative en-
gineering. In AI in Structural Engineering, Lecture Notes in AI, pages 320–334, Berlin,
Heidelberg, New York NY. Springer Verlag.

[Roy et al., 1997] Roy, U., Bharadwaj, B., Kodkani, S., and Cargian, M. (1997). Product
development in a collaborative design environment. Concurrent Engineering: Reasearch
and Applications, 5(4):347–365.

[Sadeh and Fox, 1996] Sadeh, N. and Fox, M. S. (1996). Variable and value ordering
heuristics for the job shop scheduling constraint satisfaction problem. Artificial Intelli-
gence, 86(1):1–41.

[Sam-Haroud, 1995] Sam-Haroud, D. (1995). Constraint Consistency Techniques for Con-
tinuous Domains. Phd-thesis no. 1423, Swiss Federal Institute of Technology in Lau-
sanne.

[Sam-Haroud and Faltings, 1996] Sam-Haroud, D. and Faltings, B. V. (1996). Consistency
techniques for continuous constraints. Constraints, 1(1&2):85–118.

[Samet, 1990a] Samet, H. (1990a). Applications of Spatial Data Structures. Addison-
Wesley, Reading, Mass.

[Samet, 1990b] Samet, H. (1990b). The Design and Analysis of Spatial Data Structures.
Addison-Wesley, Reading, Mass.

159

[Samet and Webber, 1988] Samet, H. and Webber, R. E. (1988). Hierarchical data struc-
tures and algorithms for computer graphics. IEEE Computer Graphics and Applications,
8(4):59–75.

[Sauthier, 1996] Sauthier, E. P. (1996). Model Based Supervisory Control using Empirical
Knowledge. Phd-thesis no. 1560, Swiss Federal Institute of Technology in Lausanne.

[Schmitt, 1998] Schmitt, G. (1998). A new collaborative design environment for engineers
and architects. In AI in Structural Engineering, Lecture Notes in AI, pages 384–397,
Berlin, Heidelberg, New York NY. Springer Verlag.

[Schmitt et al., 1999] Schmitt, G., Stouffs, R., Kurmann, D., Tunçer, B., Mieusset, K.-H.,
Stäger, B., and Harada, M. (1999). A tool set for the virtual aec company. Technical
report, Chair of Architecture and CAAD, Swiss Federal Institute of Technology in Zurich
(Switzerland), http://iccs.arch.ethz.ch/.

[Schrijver, 1986] Schrijver, A. (1986). Theory of Linear and Integer Programming, chapter
Primal-Dual, Elimination and Relaxation Method, pages 155–157. John Wiley & Sons,
Chichester.

[Schwendimann et al., 1998] Schwendimann, M., Frey, U., and Mantegani, P. (1998).
Dreifachturnhallen der Gewerbeshule Biel. In Bauen in Stahl / Construire en Acier
/ Construire in Acciaio, number 10.

[Sellis et al., 1987] Sellis, T., Roussopoulos, N., and Faloutsos, C. (1987). The R+-tree:
A dynamic index for multidimensional objects. In Proceedings of the 13th Conference
on Very Large Databases, Los Altos CA, Brighton, Sydney. Morgan Kaufmann.

[Serrano, 1991] Serrano, D. (1991). Constraint-based concurrent design. Systems Automa-
tion: Research and Application, 1(3):287–304.

[SIA160, 1989] SIA160 (1989). Action sur les structures porteuses. Norme suisse SIA 160,
Société Suisse des ingénieurs et architectes (SIA), Zurich (Switzerland).

[SIA161, 1990] SIA161 (1990). Constructions métalliques. Norme suisse SIA 161, Société
Suisse des ingénieurs et architectes (SIA), Zurich (Switzerland).

[Smirrnov et al., 1995] Smirrnov, A. B., Sheremetov, L. B., Romanaov, G. V., and Turbin,
P. A. (1995). Multi-paradigm approach to cooperative decisions-making. In Concurrent
Engineering: A Global Perspective, pages 215–221, McLean, VA.

[Smith and Grant, 1998] Smith, B. M. and Grant, S. A. (1998). Trying harder to fail first.
In Prade, H., editor, European Conference on Artificial Intelligence (ECAI), pages 249–
253, Chichester, UK. John Wiley & Sons.

[Smith et al., 1996] Smith, I. F. C., Stalker, R. A., and Lottaz, C. (1996). Creating design
objects from cases for interactive spatial composition. In Gero, J. S. and Sudweeks, F.,
editors, AI in Design, pages 97–116, Boston MA. Kluwer Academic Publishers.

160 BIBLIOGRAPHY

[Sriram, 1991] Sriram, D. (1991). Computer aided collaborative product development.
Research Report R91-14, Intelligent Engineering System Laboratory, Massechusetts In-
stitute of Technology.

[Stouffs et al., 1998] Stouffs, R., Tunçer, B., and Schmitt, G. (1998). Supports for in-
formation and communication in a collaborative building project. In Gero, J. S. and
Sudweeks, F., editors, AI in Design, pages 601–617, Boston MA. Kluwer Academic
Publishers.

[Sycara and Lewis, 1991] Sycara, K. P. and Lewis, M. C. (1991). Modeling group decision
making and negotiation in concurrent product design. Systems Automation: Research
and Application, 1(3):217–238.

[Tappeta and Renaud, 1997] Tappeta, R. V. and Renaud, J. E. (1997). A comparison of
equality constraint formulations for concurrent design optimization. Concurrent Engi-
neering: Reasearch and Applications, 5(3):253–261.

[Tiwari and Franklin, 1994] Tiwari, S. and Franklin, H. A. (1994). Automated con-
figuration management in concurrent engineering projects. Concurrent Engineering:
Reasearch and Applications, 2(3):149–161.

[van Beek, 1992] van Beek, P. (1992). On the minimality and decomposability of con-
straint networks. In Swartout, W., editor, National Conference on Artificial Intelligence
(AAAI), pages 447–452, San Jose, CA. AAAI Press.

[van Hentenryck et al., 1998] van Hentenryck, P., Michel, L., and Benhamou, F. (1998).
Newton: Constraint programming over nonlinear constraints. Science of Computer Pro-
gramming, 30(1–2):83–118.

[von Arb et al., 1997] von Arb, S., Güntensperger, T., and Schärer, W. (1997). Integration
von Aufgaben, Prozessen und Daten im Bauwesen - ZIP Bau. Jahrbuch 1996 department
of architecture, Swiss Federal Institute of Technology in Zürich.

[Ward et al., 1995] Ward, A., Liker, J. K., Christiano, J. J., and Sobek, D. K. (1995).
The second Toyota paradox: How delaying decisions can make better cars faster. Sloan
Management Review, pages 143–152.

[Werkman, 1993] Werkman, K. J. (1993). Using negotiation and coordination in collabo-
rative design. In Gero, J. S. and Maher, M. L., editors, Workshop on AI in Collaborative
Design at AAAI’93, pages 129–139, Washington D. C. AAAI Press.

[Yokoo et al., 1992] Yokoo, M., Durfee, E. H., Ishida, T., and Kawabara, K. (1992). Dis-
tributed constraint satisfaction for formalizing distributed problem solving. In Inter-
national Conference on Distributed Computing Systems, pages 514–621, Los Alamitos,
CA, USA. IEEE Computer Society.

Curriculum Vitae

Personal Data

Name: Claudio Lottaz
Born: May 6, 1968, Berne, Switzerland
Nationality: Swiss
Languages: German, English, French

Education

1976–1984: Regular School in Zollikofen near Berne (Switzerland)
1984–1988: Gymnasium Bern-Neufeld (Switzerland
1988: Matura Typus C (scientific)
1988–1994: Studies in computer science and mathematics at the Univer-

sity of Berne as well as microelectronics at the University of
Neuchatel (Switzerland)

1994: Diploma in computer science at the Institute for Computer Sci-
ence and Applied Mathematics of the University of Berne, the-
sis: “Behandlung von Unsicherheiten in Expertensystemen”

1994–1999: Research Assistant at the Artificial Intelligence Laboratory of
the Swiss Federal Institute of Technology in Lausanne (EPFL)

Awards

1988: Second prize of the city of Berne for excellent performance at the
Matura examination

1997: Our project IDIOM was awarded by “Technologiestandort Schweiz”
(Location Switzerland) and thus presented at CeBIT’97

Journal Publications

[1] C. Lottaz, R. Stouffs, and I. F. C. Smith. Increasing understanding during col-
laboration through advanced representations. Electronic Journal of Information
Technology in Construction, http://www.itcon.org/2000/1/, vol. 5, 1–24, 2000.

[2] C. Lottaz, D. Clément, I. F. C. Smith, and B. V. Faltings. Constraint-based sup-
port for collaboration in design and construction. Journal of Computing in Civil
Engineering, 13(1):23–35, January 1999.

161

162 CURRICULUM VITAE

[3] C. Lottaz, R. A. Stalker, and I. F. C. Smith. Constraint solving and preference
activation for interactive design. Artificial Intelligence for Engineering Design,
Analysis and Manufacturing (AI-EDAM), 12(1):13–27, January 1998.

Conference Papers

[4] C. Lottaz. Rewriting numeric constraint satisfaction problems for consistency al-
gorithms (short paper). In Hoxan Jaffar, editor, Constraint Programming, Lecture
Notes in Computer Science, Washington, 1999.

[5] C. Lottaz, D. Sam-Haroud, B. V. Faltings, and I. F. C. Smith. Constraint techniques
for collaborative design. In IEEE International Conference on Tools with Artificial
Intelligence (ICTAI), pages 34–41, Taipei, Taiwan R.O.C., November 1998.

[6] I. F. C. Smith, R. A. Stalker, and C. Lottaz. Creating design objects from cases
for interactive spatial composition. In F. Sudweeks and J. S. Gero, editors, Ar-
tificial Intelligence in Design, pages 97–116, Boston MA, 1996. Kluwer Academic
Publishers.

[7] I. F. C. Smith, C. Lottaz, and B. V. Faltings. Spatial composition using cases
: IDIOM. In CBR Research and Development, Lecture Notes in AI, pages 88–97,
Berlin, Heidelberg, New York NY, 1995. Springer Verlag.

Talks, Workshops and Technical Reports

[8] C. Lottaz. Rewriting numeric constraint satisfaction problems for consistency al-
gorithms. In Workshop on Non-binary CSPs, International Joint Conference on
Artificial Intelligence (IJCAI), pages E:1–15, Stockholm, August 1999.

[9] C. Lottaz. Constraint-based Support for Collaborative Design, Invited talk within
the Postgraduate Program in Artificial Intelligence at the Universitat Polytechnica
de Catalunya, Barcelona, may 11th 1999.

[10] E. M. Gelle and C. Lottaz. Consistency Techniken für Design-Probleme. Kolloquium
des Zentrums für Mathematik, Institut für Exakte Wisschenschaften, Universität
Bern, jun. 24th 1998.

[11] C. Lottaz and I. F. C. Smith. Collaborative Design using Constraint Solving. Swiss
Workshop on Collaborative and Distributed Systems, Lausanne (Switzerland), may
2nd, 1997.

[12] C. Lottaz. Constraint solving, preference activation and solution adaptation in
IDIOM. Technical Report 96/204, Swiss Federal Institute of Technology in Lausanne,
1996.

	Abstract
	Résumé
	Acknowledgements
	Introduction
	Current Practice of Collaborative Design
	Paper-based Communication
	Electronic Communication
	The Crux of Current Collaboration Approaches

	Collaborative Design using Solution Spaces (CDSS)
	Augmenting Single Solution with Solution Spaces
	Implementation using Constraint Satisfaction Techniques
	Support for Collaborative Negotiation and Decision-Making

	Recent Research into Related Topics
	Computer Supported Cooperative Work (CSCW)
	Collaborative Design and Concurrent Engineering
	Constraint Satisfaction Techniques in Collaborative Design

	Guide to this Thesis

	Collaborative Design using Solution Spaces
	Traditional Approach using Single Solutions Only
	Artificial Conflicts
	Undetected Real Conflicts
	Responsibility for Design Consistency
	Management of Changes

	Augmenting Single Solutions with Solution Spaces
	Negotiation about Project Requirements
	Negotiation about Parameter Values

	Representing Solution Spaces through Constraints Sets
	Expressiveness of Constraint Sets
	Constraint Satisfaction Techniques

	Summary

	Implementing CDSS using Constraint Techniques
	Consistency Algorithms for Ternary CSPs
	Local Consistency
	Global Consistency
	Consistency Algorithms
	Degrees of Consistency and Solution Spaces

	Rewriting Numeric Constraint Satisfaction Problems
	Constraint Arity and Consistency Algorithms
	Removing Unnecessary Intermediary Variables
	Making Constraint Satisfaction Problems Ternary
	Complexity Considerations

	Discretised Constraints on Continuous Variables
	Spatial Data Structures to Represent Feasible Regions
	2k-trees for Constraint Satisfaction Techniques
	Generation of Feasible Regions
	Set Operators for Consistency Algorithms

	Interactive Search for Single Solutions
	Searching with Minimal Change
	Feasible Ranges
	Illustration of Interactive Solution Adaptation

	Summary

	Porting CDSS onto the Internet
	SpaceSolver's System Architecture
	User Interface to the Worldwide Web
	Specifying Design Parameters and Constraints
	Management of Collaboration Projects
	Visualisation of Constraints and Solution Spaces
	Interactive Exploration of Solution Spaces

	Linking to an Information Management System
	The ICC Collaboration Environment
	Linking the ICC Communication Environment to SpaceSolver

	Summary

	Evaluating CDSS in the Construction Industry
	Example 1: A Steel-framed Computer Building
	Project Description
	Describing the Problem using Constraints
	Collaboration Structure
	Ternarisation of the numeric CSP
	Finding Real Conflicts
	Planning Negotiations

	Example 2: Stacked Gymnastic Halls
	Project Description
	Collaboration Structure
	Finding Causes of Conflicts
	Approximations of Solution Spaces

	Example 3: A Storage Hall with 50t Crane
	Project Description
	Making a CSP Treatable by Reformulation
	Tradeoff Analysis
	Exploring Solution Spaces

	Summary

	Related Work
	Communication and Information Management
	Shared Project/Product Models
	Heterogeneous Agent Systems for Concurrent Engineering
	Internet-Based Collaboration Environments
	Management of Changes
	Management of Project Requirements
	Information Management in CDSS

	Conflict Management
	Avoiding Conflicts using Zones
	Design Rationale for Conflict Mitigation
	Conflict Mitigation using Formal Domain Models
	Understanding and Classifying Conflicts
	Constraint Checking for Conflict Detection
	Weak Commitment by Management of Inconsistencies
	Conflict Management in CDSS

	Conflict Resolution
	Combining Agent Technology and Constraint Satisfaction
	Conflict Resolution by Human Analysts
	Rule-Based Conflict Resolution versus Genetic Algorithms
	Conflict Resolution in CDSS

	Negotiation Methodologies
	Negotiation Support through Design Advice Tools
	Progressive Negotiation among Collaborating Design Agents
	Knowledge-Based Negotiation
	Game and Negotiation Theory
	Negotiation Considerations in CDSS

	Tradeoffs and Decision-Making
	Hierarchical Concurrent Engineering
	Constraints, Criteria and Optimisation
	Supporting Collaboration through Decision-Maintenance
	Tradeoff Evaluation
	Advised Decision-Making
	Support for Decision-Making in CDSS

	Summary

	Conclusions
	Contributions
	Solution Spaces for Collaborative Design
	Constraint Satisfaction Techniques
	A Communication and Collaboration Platform
	Evaluation in Civil Engineering

	Limitations
	Further Research
	Intuitive Interfaces
	Data Structures for Representing Feasible Regions
	Exploiting Sparsity of Problems
	Decomposition of Constraint Satisfaction Problems
	A Priori Decomposition
	Distributed Solution of Decomposed CSPs

	Conclusion

	Bibliography
	Curriculum Vitae

