
Rewriting Numeric Constraint Satisfaction

Problems for Consistency Algorithms

Claudio Lottaz
AI-Laboratory, Computer Science Department

Swiss Federal Institute of Technology
CH-1015 Lausanne (Switzerland)

lottaz@lia.di.epfl.ch

Abstract

Reformulating constraint satisfaction problems (CSPs) in lower arity
is a common procedure when computing consistency. Lower arity CSPs
are simpler to treat than high arity CSPs. Several consistency algorithms
have exponential complexity in the CSP’s arity, others only work on low
arity CSPs.

Much work in constraint satisfaction has concentrated on binary CSPs,
since in a theoretical view any CSP on discrete domains can be reformu-
lated in binary form. Although this is not true for numeric CSPs the
constraints of which are equalities and inequalities specified using mathe-
matical expressions, it has been shown that rewriting such CSPs in terms
of ternary constraints is possible as long as only unary and binary op-
erators occur in the mathematical expressions. Nevertheless, very few
methods to actually perform this task automatically have been suggested
so far, the reformulation is often done by hand.

In this paper we present algorithms to rewrite numeric CSPs in terms
of ternary constraints by introducing auxiliary variables. Since the com-
plexity of consistency algorithms also depends on the number of variables
involved, we suggest heuristics, to keep the number of introduced auxil-
iary variables low and to eliminate unnecessary variables from the original
CSP.

Keywords: numeric constraint satisfaction problems, consistency al-
gorithms, reformulation, symbolic algebra

1 Introduction

Several constraint satisfaction algorithms focus on numeric constraint satisfac-
tion problems (CSPs). A numeric CSP is defined by a set of variables, their
domains and the set of constraints which must be satisfied for any solution.
Thereby the domains of the variables are intervals in < and the constraints
are expressed as closed mathematical expressions (equalities and inequalities).

1

Such CSPs can accurately model many engineering and design problems from
domains such as mechanical, electrical and civil engineering.

Constraint satisfaction techniques mainly fall into two categories: search
algorithms and consistency algorithms. Search algorithms determine single so-
lutions to a given CSP. For this task they employ various kinds of intelligent
backtracking and splitting techniques. Consistency algorithms eliminate parts
from search space in which no solution can be expected due to local inconsis-
tencies. Thus they are approximating the solution space of a CSP. In certain
cases, consistency algorithms can compute the solution space of a numeric CSP
exactly.

The arity of a constraint is the number of variables it involves. The arity
of a CSP is equal to the arity of the highest-arity constraint. Reformulation of
numeric CSPs in lower arity before computing consistency is a common proce-
dure because CSPs of lower arity are considerably simpler to treat. Therefore
certain consistency algorithms such as 2-consistency as described in [5, 6] only
accept ternary constraints and 2B- as well as 3B-consistency [7] are based on
primitive constraints which are also ternary. The complexity of other consis-
tency algorithms such as (r, r − 1)-relational consistency [9] are exponential in
the arity of the given CSP and therefore low-arity CSPs are treated much more
efficiently.

Much work in constraint satisfaction has focussed on binary CSPs, since
theoretically any CSP on discrete domains can be reformulated in binary form.
The suggested methods to reformulate discrete CSPs [4, 3, 1], however, are not
applicable to numeric CSPs, because the continuous domains of their variables
cannot be enumarated and thus the domains and constraints for the hidden
variable or the dual graph representation cannot be expressed.

Although numeric CSPs cannot be transformed into binary form, it has been
shown that rewriting such CSPs in terms of ternary constraints is possible as
long as only unary and binary operators occur in the constraints. It is intuitively
clear that any mathematical expression built using unary and binary operators
can be rewritten in ternary form by introducing an auxiliary variable for each
intermediary result generated by a binary operator. This method, of course,
possibly generates many auxiliary variables. So far, very few algorithms to
perform the task of reformulating numeric CSPs in ternary form automatically
have been suggested, the rewriting is often done by hand.

Since the performance of all above mentioned consistency algorithms strongly
depends on the number of variables involved in the given CSP, algorithms which
introduce a small number of auxiliary variables are needed. For the same reason
it is interesting to see if it is possible to eliminate unnecessary variables from
the original CSP. When formalizing problems engineers and designers often use
intermediary variables and constants which make the CSP more readable and
reusable. However, in the context of computing consistency the elimination of
such variables may be beneficial.

The algorithms suggested in this paper are particularly suitable for consis-
tency algorithms which treat ternary constraints without any restriction on the
complexity of the constraints’ expressions. Examples of such algorithms are

2

described in [5, 6, 9, 10]. We improve existing suggestions, such as Algorithm
3, by removal of unnecessary intermediary variables from the original CSP and
by optimizing the number of auxiliary variables introduced.

The next section contains theoretical considerations about the relation be-
tween constraint arity and consistency algorithms. The third section is dedi-
cated to the description of algorithms for rewriting numeric CSPs in ternary
form and for eliminating unnecessary variables of the original CSP. Finally we
show experimental results before drawing our conclusions.

2 Constraint arity and consistency algorithms

Treating high-arity constraints in consistency algorithms directly is very com-
plex. Algorithms which enforce consistency on the symbolic level, face important
analytic problems when finding extrema, intersections and the like. Algorithms
which use explicit spatial representations of the constraints spend an outrageous
effort to store these. The following considerations give an intuition about the
benefits of computing (r, r−1)-relational consistency on low arity CSPs instead
of high-arity ones.

In [9] it has been shown that, for a CSP of arity r, given certain partial
convexity restrictions, (r, r − 1)-relational consistency is equivalent to global
consistency, i.e., all solutions can be found without backtracking. Enforcing
(r, r − 1)-relational consistency, however, requires an algorithm with computa-
tional complexity O(n2r−1), where n is the number of variables in the CSP.
As long as the convexity restrictions needed for global consistency keep satis-
fied in the rewritten CSP, we can expect the results to be equivalent. Thus,
since the algorithm’s complexity is exponential in r, rewriting a numeric CSP
in lower arity before computing (r, r−1)-relational consistency has the potential
to accelerate the calculation.

Numeric CSPs expressed as mathematical expressions using unary and bi-
nary operators can be rewritten with lower arity by introducing auxiliary vari-
ables. It is intuitively clear that by introducing auxiliary variables for the inter-
mediary results of all binary operators in a constraint, the constraint’s arity can
be reduced at the expense of increasing the number of variables (the auxiliary
variables) and constraints (the definitions of the auxiliary variables).

A constraint which defines an auxiliary variable that actually helps to reduce
the arity of another constraint has at least arity three. Otherwise the auxiliary
variable would replace an expression which depends only on one variable by a
new variable and could thus not reduce the arity of any constraint. Therefore,
a numeric CSP rewritten in the above manner has at least arity three. On the
other hand arity three can always be reached by replacing every binary operator
by auxiliary variables.

So, on one hand decreasing the arity of a CSP before computing (r, r −
1)-relational consistency reduces the computational complexity. On the other
hand there is a trade-off between decreasing arity and increasing the number
of variables of the CSP by introducing auxiliary variables in order to achieve

3

the lower arity. For deciding whether rewriting CSPs in lower arity pays off, we
estimate how many auxiliary variables are introduced. Since (r, r−1)-relational
consistency’s complexity is exponential in r, we only consider the case when the
arity is reduced as much as possible, i.e. as mentioned before, to an arity of
three.

In the worst case rewriting a numeric CSP of arity r > 3 in ternary form
requires the addition of O(m) auxiliary variables, where m is the number of
binary operators in the CSP. In this case the complexity O((n+m))5) for (3,2)-
relational consistency on the rewritten constraint set compares to the complexity
O(n2r−1) for (r, r − 1)-relational consistency on the original CSP. In practical
problems the exponential influence of r can be expected to outweigh by far the
polynomial influnce of m.

Moreover, several consistency algorithms for numeric CSPs were developed
specifically for ternary CSPs [5, 6, 7, 9], since any numeric CSP expressed with
closed mathematical expressions in unary and binary coperators can be rewrit-
ten using ternary constraints exclusively. Nevertheless, very few methods to
actually perform this task automatically have been suggested so far, and the
known methods in general generate far too many auxiliary variables, thus im-
pliying inefficient subsequent computation of consistency. In fact the CSPs are
often rewritten by hand although this may take a long time for large examples.

3 Rewriting numeric CSPs

Although the complexity considerations above show that rewriting numeric
CSPs has the potential to accelerate consistency algorithms considerably, the
gain in performance strongly depends on the number of variables in the trans-
formed CSP. In this section we present heuristics to keep the number of variables
in the rewritten CSP low.

3.1 Eliminating unnecessary intermediary variables

Designers and engineers use constants and intermediary variables to keep their
mathematical formulas easier to read and adaptable to other contexts. Some
of these unnecessary variables can and should be eliminated from the CSP by
substitution before computing consistency.

An intermediary variable a is defined in the CSP as the result of a functional
expression a = f(x1, . . . , xn). It can be removed from the CSP by eliminating
its definition from the CSP and by substituting a wherever it occurs in the
remaining constraints of the CSP by f(x1, . . . , xn). However, substitution of a
is only enough to keep the CSP equivalent, when a is a constant. Otherwise
the information contained in the domain of a is lost and thus the new CSP is
less restrictive. Therefore, in addition the constraints a > f(x1, . . . , xn) and
a< f(x1, . . . , xn) must be added where a and a are the lower and upper bound
of the domain of a.

4

Candidates for potentially unnecessary variables can be found in any equal-
ity. Solving an equality for one of its variables a yields the definition f(x1, . . . , xn)
for a. However, this is only valid if f(x1, . . . , xn) is functional. Otherwise,
for instance if the original equation was quadratic in a, substitution of a by
f(x1, . . . , xn) in the CSP is not equivalent. In the case of a quadratic expres-
sion, substitution of a by f(x1, . . . , xn) implies the loss of one of the two possible
solutions for a.

If a is a valid candidate for substitution, it should be substituted if its
substitution does not increase the arity of any constraint to more than three.
Removing a variable the substitution of which renders any constraint C non-
ternary is unlikely to be useful in the context of making CSPs ternary, because
it would imply an additional subsequent generation of at least one auxiliary
variable in order to rewrite C in ternary form.

For illustration consider the following small example, a simplified problem
from civil engineering:

u < (3.18e−5Hs + 0.0054)S
Hs > 137.7− 0.08633S + 5.511e−5S2 − 8.358e−9S3

p = u+ 9.62 · 10−5(0.0417W)1.5161

Hb > 0.077(pW 2)0.3976

Hb > 0.0168(SW 3)0.2839

This system of constraints contains the intermediary variable p defined as u +
9.62 · 10−5(0.0417W)1.5161. Thus the definition of p only involves the variables
u and W . The only occurrence of p is in Hb > 0.077(pW 2)0.3976. Substituting
p in this ternary constraint leaves it ternary because W is involved in both, the
definition of p and the constraint where p is to be substituted. Therefore, p is
an unnecessary intermediary variable and its elimination accelerates computing
consistency.

Since the substitution of a constant or an intermediary variable in the above
described manner may decrease the arity of a constraint, unnecessary variables
are eliminated iteratively until no more changes occur. The algorithm is shown
in Algorithms 1 and 2.

3.2 Making constraints ternary

The so far suggested methods for rewriting CSPs in ternary form introduce
far too many auxiliary variables in most cases. In this section we describe a
heuristic to generate fewer auxiliary variables.

3.2.1 Introducing auxiliary variables

A simple algorithm to rewrite a given CSP in terms of ternary constraints is
suggested in [9, 6]. It replaces any binary operator in a constraint by a new
auxiliary variable which represents its result. This step is iterated until all
constraints have arity three or less. (see Algorithm 3). Thereby the operands

5

procedure eliminate-unnecessary(constraints)
while changes occur do

foreach equality C ∈ constraints do
foreach variable a ∈ C do

if check-subs(a, C, constraints) then
remove C from constraints
substitute a in constraints

Algorithm 1: Eliminating constants and unnecessary intermediary variables
from numeric CSPs.

function check-subs(a, C, constraints)
f ← solve C for a
if f is not functional then return false
foreach C’ ∈ constraints do

C ′′ ← substitute a in C ′ by f
if arity C ′′ > arity C ′ then

if arity C ′′ > 3 then return false

return true

Algorithm 2: This function checks if substituting a defined in C is likely to be
useful for subsequent computation of consistency.

6

of the chosen operator do not contain any binary operator in order to avoid
introducing non-ternary constraints when defining auxiliary variables.

procedure simple-ternarize(C)
while C is not ternary do

choose a subexpression e : xi ◦ xj of C
substitute e in C by new variable xn+1

add the constraint xn+1 = xi ◦ xj

Algorithm 3: Simple algorithm to make one constraint ternary. xi and xj do
not contain binary operators.

This algorithm shows that it is always possible to rewrite a numeric CSP
expressed using unary and binary constraints in terms of ternary form but it
generates far too many auxiliary variables for various reasons. First, it unneces-
sarily introduces binary constraints if xi or xj are constants or involve the same
variable. Second, it does not allow the introduction of complex definitions for
auxiliary variables, since only one binary operator is allowed. Finally, it does
not reuse auxiliary variables in other constraints or subexpressions.

Some implementations improve upon the last critique about not reusing
auxiliary variables by avoiding duplicate definitions. This allows for some opti-
mization, however, current algorithms do not try to provoke the reuse of aux-
iliary variables when choosing the expressions to define these. Therefore many
opportunities for reusing auxiliary variables are missed.

We suggest a more general algorithm to perform the task of rewriting nu-
meric CSPs in ternary form: In the first step the constraints which already have
ternary form are sorted out and are no longer manipulated. In the second step
the algorithm searches for an expression in two variables which occurs in one of
the n-ary constraints. The third step is to substitute the expression found in step
two in all non-ternary constraints. These three steps must be repeated until the
list of non-ternary constraints is empty. Algorithm 4 illustrates this procedure.
In step two subexpressions involving exactly two variables are chosen because
these expressions have the potential to decrease the arity of a constraint, and
at the same time they do not add non-ternary constraints to the system.

When a new auxiliary variable is added, its domain must be determined
as well. Interval-arithmetic provides utilities to find upper and lower bounds
for the auxiliary variables according to their definitions and the domains of the
variables involved in their definition. However, when variables occur several
times in an expression which defines a new auxiliary a, the domains of a may be
overestimated. This is inherent to interval arithmetics and not crucial for several
consistency algorithms. On the other hand interval arithmetic guarantees that
no solutions to the original numeric CSP are lost due to underestimation of
domains.

7

function make-ternary(constraints)
ternaries = ∅
i← 1
while constraints 6= ∅ do

foreach C ∈ constraints do
if arity C ≤ 3 then

remove C from constraints
add C to ternaries

In constraints find f(x, y) in two variables
add auxi = f(x, y) to ternaries
substitute f(x, y) by auxi in constraints
i = i+ 1

return ternaries

Algorithm 4: Make numeric CSPs ternary.

3.2.2 Defining auxiliary variables

In order to find expressions for defining auxiliary variables, we must find subex-
pressions in two variables occurring in the CSP. This is performed by traversing
the expression tree defined by the CSP. Whenever the traversing algorithm vis-
its subexpressions involving exactly two variables, it stores them into a list
instead of descending further into the expression tree. Thus no subexpressions
of expressions in two variables are considered.

What makes traversing an expression tree more complex than expected is
that addition and multiplication are commutative. When we encounter the
expression a+ b+ c, we have to consider a+ b, a+ c and b+ c as possible subex-
pressions. In fact, computer algebra systems like Maple V treat addition and
multiplication as n-ary operators. Finding all subexpressions implies considering
all subsets of an operator’s operands. Algorithm 5 returns subexpressions in two
variables occurring in an expression. Running it on each constraint determines
the candidates for defining auxiliary variables.

As soon as the candidate expressions are determined we must decide which
is the best expression to be used. Since we want to decrease the arity of all con-
straints below four, the sum of the arities of all non-ternary constraints seems
to be a reasonable criteria. Therefore we choose the candidate expression which
decreases the arity of the most of the non-ternary constraints, breaking ties
in favor of the candidates which generate the simplest constraints after substi-
tution, i.e., the constraints with the fewest operands. In order to determine
the best candidate expression, all candidates are substituted in the non-ternary
constraints and the one yielding the best result is chosen.

8

function find-subexpressions(expr)
if expr involves 0 / 1 variable then return (∅);
if expr involves 2 variables then return (expr);

subs← ∅
foreach subset S of expr’s operands do

e← expression with expr’s operator on S
subs← subs ∪ find-subexpressions(e)

return (subs)

Algorithm 5: Finding all expressions in two variables.

3.2.3 Complexity considerations

Algorithms 1 and 2 eliminate unnecessary variables from a CSP. The outermost
loop of Algorithms 1 is executed once for each constraint, i.e. c times, in the
worst case, when all constraints in the CSP can be eliminated. The second loop
is called for each remaining constraint and the innermost loop is called r times in
the worst case, where r is the arity of the CSP. Therefore check− subs is called
O(rc2) times. check − subs performs its task in O(c) and thus the complexity
of the elimination of unnecessary variables is cubic in the number of constraints
in the CSP and linear in its arity.

The simple algorithm for making one constraint ternary (Algorithm 3) re-
places all but two binary operators by auxiliary variables, because a constraint
involving three variables has at least two binary operators. Thereby we consider
the constraints in normalized form, i.e. with zero on the righthand side. The
algorithm has to be launched for each constraint in the CSP. Hence the overall
complexity is O(mc) where m is the number of binary operators and c is the
number of constraints in the CSP.

In order to estimate the complexity of our suggestion to rewrite a CSP in
ternary form, we give the number of times the substitution of a candidate in
the whole CSP is performed. In the worst case Algorithm 4 also introduces m
auxiliary variables. For each of these, Algorithm 5, called on all constraints,
finds O(c · 2RD) subexpressions in the worst case, where R is the maximum
arity of operands, and D is the maximum depth of expressions. Given that R
and D are bounded, this yields that substitution is called O(mc) times. The
complexity of the substitution itself is difficult to estimate, because we use the
symbolic algebra package Maple V to perform this task.

However, our experimental results show that Algorithms 4 and 5 can be used
on problems of considerable size. Moreover, the computation of consistency by
far outweighs this symbolic pretreatment in time cost.

9

4 Experimental Results

We implemented the above mentioned algorithms in Maple V, making use of
Maple’s facilities for symbolic manipulation of expressions, namely its sophis-
ticated methods for substituting subexpressions in equalities and inequalities.
The algorithms are used in SpaceSolver, an Internet-based solver for numeric
CSPs, accessible at http://liawww.epfl.ch/l̃ottaz/SpaceSolver/.

4.1 Examples

The experiments we present in this section involve constraint sets which model
problems in mechanical, electrical and civil engineering, namely:

• statics in a school building (Example 1)

• a kinematic pair (two gearwheels, Example 2)

• kinematics in a robot arm (Example 3)

• transistors in an electronic circuit (Example 4)

• dynamics in two stacked gyms (Example 5)

• ventilation in a computer building (Example 6)

The characteristics of these examples are summarized in Table 1. Examples 1
and 2 are borrowed from [9], Examples 3 and 4 are borrowed from [2, 11], and
Examples 5 and 6 are taken from [8]

Example |V | |C| arity
1 6 5 3
2 9 8 7
3 12 12 9
4 12 12 5
5 11 15 5
6 39 41 6

Table 1: Characteristics of our examples. |V |: number of variables, |C| number
of constraints, ’arity’: arity of the highest-arity constraint.

4.2 Removing unnecessary variables

Table 2 compares the four variants for removal of unnecessary variables we sug-
gest in the context of making numeric CSPs ternary. As expected, removing
constants and unnecessary intermediary variables which depend on one other
variable never causes problems and always allows smaller CSPs after the rewrit-
ing in ternary form. Such removals only occur in Examples 5 and 6 in our
sample but are expected to be quite frequent in engineering problems.

10

Example 1 2 3 4 5 6
Eliminate constants |R| 0 0 0 0 6 13

|A| 0 4 9 17 4 31
|V | 6 13 21 29 15 70

time 0.1s 0.5s 1.7s 6.1s 1.1s 61.3s
Eliminate depend on 1 |R| 0 0 0 0 8 20

|A| 0 4 9 17 4 31
|V | 6 13 21 29 13 63

time 0.1s 0.4s 1.8s 6.2s 1.2s 61.3s
Eliminate depend on 2 |R| 1 2 2 0 8 27

|A| 0 7 8 17 4 38
|V | 5 14 18 29 13 63

time 0.3s 0.8s 1.6s 6.2s 1.2s 75.4s
Eliminate depend on 3 |R| 1 2 2 0 8 28

|A| 0 7 8 17 4 35
|V | 5 14 18 29 13 59

time 0.2s 0.8s 1.8s 6.2s 1.2s 67.4s

Table 2: Compare the four variants of our rewriting algorithms, namely: elim-
inate unnecessary variables which depend on zero (constants), one, two and
three other variables respectively. |R|: removed variables, |A|: auxiliary vari-
ables added when making ternary, |V |: variables in the rewritten CSP, ’time’:
time needed for the rewrite.

Removing intermediary variables which depend on two other variables occurs
surprisingly often in our sample (Examples 1, 2, 3 and 6). It is interesting to note
that in Example 2 the removal of an unnecessary intermediary variable causes
additional auxiliary variables to be added during the process of making the CSP
ternary. The removal of this more complex unnecessary variable prevents make-
ternary from recognizing certain reoccurring subexpressions and thus the result
gets worse than without the removal. However, in all other cases the removal
of the unnecessary intermediary variable makes the resulting CSP smaller.

Removing intermediary variables which depend on three other variables is
rarely possible, because all constraints where it is to be replaced must not involve
any other variable but those which occur in the unnecessary variable’s defini-
tion. However, the only case observed in our examples allows a reformulation
of Example 6 smaller by four variables.

The running times of the algorithms for the rewrite (including make −
ternary) as they are given in Table 2 show, that these reformulation algorithms
are not very time consuming compared to enforcing high degrees of consistency.
All variants of the rewrite are run and the best result is chosen for subsequent
computation. The running times are measured on a SUN Ultra 60.

11

4.3 Rewriting examples in ternary form

Table 3 compares the simple algorithm given in Algorithm 3 with the Algorithms
4 and 5 for rewriting a numeric CSP in ternary form. It shows that choosing
the expressions to define new auxiliary variables carefully results in important
gains in number of variables, and thus accelerates the execution of consistency
algorithms.

The first column in Table 3 gives the number of variables of the CSPs rewrit-
ten by Algorithm 3 when the constants were substituted beforehand. The second
column shows the time needed for rewriting the CSP in ternary form using all
variants for removal of unnecessary intermediary variables with Algorithms 1
and 2 before rewriting with Algorithms 4 and 5. The third column gives the
number of variables of the smallest CSPs found. The last column contains the
estimated speed-up for (3,2)-relational consistency according to its complexity
(O(n5)) and the sizes of the CSPs, i.e. tsimple

theuristic
= (nsimple

nheuristic
)5.

Only in Example 2 our algorithms cannot improve the performance of con-
sistency because the structure of this CSP allows for too little freedom to choose
the auxiliary variables. In our sample we observe that small examples have less
potential for improvement while in larger ones the search for the best expres-
sions to define auxiliary variables pays off. In Example 4, Algorithm 3 generates
many auxiliary variables with definitions depending on only one variable, be-
cause the constraints contain many coefficients and constants in the expressions.
The same effect occurs in Example 3 and Example 5, but in addition several op-
portunities for reusing auxiliary variables are missed. In Example 6 the effects
mentioned before accumulate with the fact that the simple algorithm cannot
define an auxiliary variable with more than one binary operator.

It turns out in our experiments that the time needed to enforce consistency
largely outweighs the effort for rewriting a numeric CSP in ternary form in the
way we suggest.

Example nsimple trewrite nheuristic
tsimple
theuristic

1 6 0.7 s 5 2.5
2 13 2.5 s 13 1.0
3 29 6.9 s 18 10.9
4 53 34.7 s 29 20.4
5 18 4.7 s 15 5.1
6 99 265.4 s 59 13.3

Table 3: Compare Algorithm 3 to Algorithms 4 and 5. ’nsimple’/’nheuristic’:
variables in the CSPs rewritten by Algorithm 3 and Algorithms 4/5 respectively,
’trewrite: time needed by Algorithms 4/5, ’ tsimple

theuristic
’: expected speed-up for (3,2)-

relational consistency.

12

4.4 Comparing (r, r − 1)-relational consistency on original
CSP to (3,2)-relational consistency on rewritten CSPs

In Section 2 it was claimed that the exponential influence of a CSP’s arity
outweighs the increase of variables due to rewriting the CSP in lower arity
when computing (r, r − 1)-relational consistency. Given the above mentioned
results about what we can reach in rewriting CSPs automatically, let us illustrate
this claim with some runtime estimations for our examples. Table 4 gives an
estimation of the ratio of expected running times between (r, r − 1)-relational
consistency on the original CSPs and (3, 2)-relational consistency on the CSPs
rewritten in ternary form based on their respective computational complexity.
Since the theoratical complexity of (r, r − 1)-relational consistency is known
to be O(n2r−1) and the one of (3, 2)-relational consistency is thus O(n5), we
compute an estimation of the ratio beween the aforementioned ratio as

to
tr

=
n2ro−1
o

n5
r

where to is the runtime for (r, r− 1)-relational consistency on the original CSP,
no is its number of variables and ro its arity. tr represents the runtime of (3, 2)-
relational consistency on the corresponding rewritten CSP and nr is the number
of variables including auxiliary variables of the rewritten CSP. ‘

Example no ro nr O(totr)
1 6 3 5 2.45
2 9 7 13 6.85 · 106

3 12 9 18 1.17 · 1012

4 12 5 29 2.52 · 102

5 11 5 15 3.11 · 103

6 39 6 59 7.15 · 108

Table 4: Compare performance of (r, r − 1)-relational consistency on original
CSP to (3, 2)-relational consistency of rewritten CSP. no gives the number of
variables in the original CSP and ro its arity. nr is the number of variables
including auxiliary variables of the CSP in ternary form. O(totr) is an estima-
tion of the ratio between executaion times based on their respective theoratical
complexity.

O(totr) in Table 4 gives a rough estimation of the ratio between the runtime
of (r, r− 1)-relational consistency on the original CSP and (3, 2)-relational con-
sistency on the corresponding CSP in ternary form. On one hand the used esti-
mations of to and tr may not be directly comparable, because we use worst case
complexity, thus dividing the two at least abstracts an unknown multiplicative
constant. On the other hand, the convexity restrictions for global consistency
are typically not satisfied and therefore the pruning achieved may not be the
same. Nevertheless, the values for O(totr) are large enough to conjecture that

13

calculation on lower arities allows for significant gains in performance. In fact,
(r, r − 1)-relational consistency is intractable on most examples.

5 Conclusions

When considering numeric CSPs it is necessary to treat non-binary CSPs, be-
cause the reformulation in binary form as it is suggested for discrete domains
are not applicable to CSPs on continuous domains. However, theoretical con-
siderations about complexity of reaching (r, r − 1)-relational consistency for
r-ary numeric constraint satisfaction problems reveal that reformulation of such
CSPs in terms of ternary constraints is very promising. In fact the complexity
O(n2r−1) for the computation on the original CSP compares to O((n+m)5) for
the computation on the ternary CSP, where n is the number of variables and
m is the number of binary operators in the CSP. It can be expected that in
practical problems m is substantially less than would be needed to reverse the
gain in complexity.

Reformulating numeric CSPs in ternary form is simple as long as the intro-
duction of an arbitrary number of auxiliary variables is acceptable. However, in
the case where the result should be minimal in the number of variables, the task
is difficult. We suggest a heuristic to determine good candidate expressions to
define auxiliary variables. Our tests show that the automatic rewriting intro-
duces fewer auxiliary variables than the straight forward manner in acceptable
running times.

For better readability and reusability, designers and engineers are likely to
use variables which are not needed to keep the arity of the CSP low. We suggest
a method to eliminate such unnecessary variables automatically in order to
accelerate subsequent computing of consistency. Although the elimination of
constants and unnecessary variables depending on one variable is always useful,
it turns out that the substitution of complex unnecessary variables may cause
problems, because the subsequent rewriting in terms of ternary constraints may
fail to recognize and reuse the more complex expressions.

Acknowledgments

This work was performed within a project funded by the Swiss Priority Pro-
gramme in Computer Science (SPP-IF). The author would also like to thank
Djamila Sam-Haroud, Steven Willmott, Boi Faltings, Christian Bliek and Marc
Torrens for encouragement and helpful discussions.

References

[1] F. Bacchus and P. Van Beek. On the conversion between non-binary and
binary constraint satisfaction problems. In National Conference on Arti-

14

ficial Intelligence (AAAI), pages 311–318, Menlo Park CA, Madison WI,
July 1998. AAAI Press.

[2] F. Benhamou, D. McAllester, and P. Van Hentenryck. CLP(intervals) re-
visited. In Maurice Bruynooghe, editor, Logic Programming - Proceedings
of the 1994 International Symposium, pages 124–138, Cambridge MA, Lon-
don, 1994. MIT Press.

[3] R. Dechter. On the expressivenes of networks with hidden variables. In Na-
tional Conference on Artificial Intelligence (AAAI), pages 556–562, Menlo
Park CA, Madison WI, 1990. AAAI Press.

[4] R. Dechter and I. Meiri. Experimental evaluation of preprocessing tech-
niques in constraint satisfaction problems. In N. S. Sridharan, editor, Inter-
nation Joint Conference on Artificial Intelligence (IJCAI), pages 271–277.
Morgan Kaufmann, August 1989.

[5] B. V. Faltings and E. M. Gelle. Local consistency for ternary numeric con-
straints. In Internation Joint Conference on Artificial Intelligence (IJCAI),
volume 1, pages 392–397, 1997.

[6] E. M. Gelle. On the Generation of Locally Consistent Solution Spaces in
Mixed Dynamic Constraint Problems. Phd-thesis no. 1826, Swiss Federal
Institute of Technology in Lausanne, 1998.

[7] O. Lhomme. Consistency techniques for numerical CSPs. In Internation
Joint Conference on Artificial Intelligence (IJCAI), volume 1, pages 232–
238, 1993.

[8] C. Lottaz, D. Clément, B. V. Faltings, and I. F. C. Smith. Constraint-based
support for collaboration in design and construction. Journal of Computing
in Civil Engineering, 13(1):23–35, January 1999.

[9] D. Sam-Haroud. Constraint Consistency Techniques for Continuous Do-
mains. Phd-thesis no. 1826, Swiss Federal Institute of Technology in Lau-
sanne, Switzerland, 1995.

[10] D. Sam-Haroud and B. V. Faltings. Consistency techniques for continuous
constraints. Constraints, 1(1&2):85–118, September 1996.

[11] P. Van Hentenryck, L. Michel, and Y. Deville. Numerica - A Modelling
Language for Global Optimization. MIT Press, Cambridge MA, London,
1997.

15

