02.02.2005

Data analysis in cell-based functional assay

Tools for automated pre-processing, analysis and visualization of high throughput FACS data

- Challenge and Concept
- Assay Design
- Data Analysis

Challenge and Concept

- Assay Design
- Data Analysis

The Challenge: Identification of Disease Genes

Candidate gene sets from systematic gene identification and microarray studies: dozens...hundreds

How close the gap?

Capacity of *in-vivo* functional studies: ...few

The Concept: Functional Profiling

Cancer relevance: challenging the cell cycle

Challenge and Concept

- Assay Design
- Data Analysis

The design: manipulate gene expression

- system to willfully manipulate expression level of certain genes in cells
 - ↑ <u>up regulation</u> (transfection of expression vectors)
 - down regulation (RNA interference)
- means to monitor perturbation (beneficial but not mandatory)

expression of fluorescence protein tag

means to monitor effect of perturbation

expression or activation state of key regulatory proteins (<u>FACS</u>, automated microscope)

ORF cloning: The Gateway[™] System

FACS: a quick reminder

- measures fluorescence intensities as well as morphological parameters on the basis of light emission
- offers single cell resolution

Automation

pipetting robot (liquid handling)

HTS Sampler for automated flow cytometry

Workflow

- Challenge and Concept
- Assay Design
- Data Analysis

Keeping track of experiments: PACAT

	Proje	ct:		Create:	Delive	r: 🗖	Institute:	Comm	ent		Open	Save	Export
1	proliferation plate1		6/25/2003	0		dkfz							
Name:				Rest			Name: Arlt						
		0 1 2		3	4	5	6 7		8 9		10 11		12
	Α	YFP	YCA	YPP2	pdYFPhamy 2_1p4_1E1 Y1	pdYFPhamy 2_1p4_1E1 Y2	pDhfbr2_2d 15.1E6Y1	pDhfbr2_2d1 5.1E6Y2	pDhfbr2_78k 24.1E3Y1	pdhfkd2_4k1 4.1E2Y1	pdhfkd2_4k1 4.1E2Y2	pDhtes3_50j 4.1E1Y2	pDhtes3_50j 4.1E2Y1
-	в	YFP	YCA	YPP2	pdYFPhamy 2_1p4_1E1 Y1	pdYFPhamy 2_1p4_1E1 Y2	pDhfbr2_2d 15.1E6Y1	pDhfbr2_2d1 5.1E6Y2	pDhfbr2_78k 24.1E3Y1	pdhfkd2_4k1 4.1E2Y1	pdhfkd2_4k1 4.1E2Y2	pDhtes3_50j 4.1E1Y2	pDhtes3_50j 4.1E2Y1
	С	pDhtes3_7p 9.1E1Y1	pdhfbr2_2c1 8.2E2Y1	pdYFPhfbr2 _2c18Gy	YFP	YCA	YPP2	pdYFPhfbr2 _22f21_B	pdYFPhfbr2 _22a1_By	pdYFPhfbr2 _23b10_A	YFP	YCA	YPP2
	D	pDhtes3_7p 9.1E1Y1	pdhfbr2_2c1 8.2E2Y1	pdYFPhfbr2 _2c18Gy	YFP	YCA	YPP2	pdYFPhfbr2 _22f21_B	pdYFPhfbr2 _22a1_By	pdYFPhfbr2 _23b10_A	YFP	YCA	YPP2
	Е	CFP	CCA	CPP2	pdCFPhamy 2_1p4_Bx	pdCFPhamy 2_1p4_By	pDhfbr2_2d 15.1E5C1	pDhfbr2_2d1 5.1E5C2	pDhfbr2_78k 24.1E3C2	pdhfkd2_ 4k14.1E2C1	pdhfkd2_ 4k14.1E2C2	pDhtes3_50j 4.1E1C3	pDhtes3_50j 4.1E1C2
	F	CFP	CCA	CPP2	pdCFPhamy 2_1p4_Bx	pdCFPhamy 2_1p4_By	pDhfbr2_2d 15.1E5C1	pDhfbr2_2d1 5.1E5C2	pDhfbr2_78k 24.1E3C2	pdhfkd2_ 4k14.1E2C1	pdhfkd2_ 4k14.1E2C2	pDhtes3_50j 4.1E1C3	pDhtes3_50j 4.1E1C2
	G	pDhtes3_7p 9.1E1C2	pdhfbr2_2c1 8.3E1C1	pdhfbr2_2c1 8.2E2C1	CFP	CCA	CPP2	pdCFPhfbr2 _22f21_B1	pdCFPhfbr2 _22a1_Bx	pdhfbr2_ 23b10.1E1C 1	CFP	CCA	CPP2
1	Н	pDhtes3_7p 9.1E1C2	pdhfbr2_2c1 8.3E1C1	pdhfbr2_2c1 8.2E2C1	CFP	CCA	CPP2	pdCFPhfbr2 _22f21_B1	pdCFPhfbr2 _22a1_Bx	pdhfbr2_ 23b10.1E1C 1	CFP	CCA	CPP2

(Heiko Rosenfelder)

package prada contains functionalities for analysis of data derived from cell based assays

→ modular framework

- data preprocessing
- data visualization
- data integration

for statistical inference and modeling general purpose tools can be used

- linear and local regression
- hypothesis testing

Data import and maintenance

• FCS 3.0 files

- standardized storage format for FACS data
- contains fluorescence values in data segment, wealth of meta data in text segment
- can be imported into R (function readFCS)

• cytoFrame

R internal representation of data from one FCS file \rightarrow generic functions

cytoSet

R internal representation of data from several FCS files (e.g. one 96 well plate)

Data pre-processing: FSC vs. SSC plot

distinction on basis of morphological properties

strong variation between experiments

 \rightarrow dynamic determination

Data pre-processing: finding the main population

assumption: bivariate normal distribution → robust fitting

discarding cells that do not lie within some given boundary of this distribution

Data pre-processing: finding the main population

assumption: bivariate normal distribution → robust fitting

discarding cells that do not lie within some given boundary of this distribution

shape and localization of main distribution can be used for quality control

plate plots as graphical representation of experimental entities

- false color coding for concise display of numeric outcomes from statistical analyses
- HTML image map allows for hyper linking to include further information for each well

plate plots as graphical representation of experimental entities

- false color coding for concise display of numeric outcomes from statistical analyses
- HTML image map allows for hyper linking to include further information for each well

different responses for different assays

 continuous response: concentration dependent (e.g. MAP kinase)

 discrete response: on/off mechanism (e.g. apoptosis, proliferation)

statistical analysis: discrete response

between well analysis: finding true effectors

data integration

 cellular assays help to close the gap between genome-wide large scale studies and analyses on the single molecule level

association/correlation \rightarrow causal relationships

- FACS has proven to a capable tool for high throughput analyses with single cell resolution
- package prada provides a framework for integrating various analysis approaches of multiple assays

modular structure

Annemarie Poustka Stefan Wiemann Wolfgang Huber Andreas Buneß Marcus Ruschhaupt Heiko Rosenfelder Alex Mehrle

Dorit Arlt Meher Majety Mamatha Sauermann

YOU for the invitation!