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Abstract

Approach: Technologies like micro- or macroarrays are the source of various prob-
lems concerning analysis and evaluation of the datasets obtained. In the present thesis
a functional classification provided by the Gene Ontology is used to group large-scale
gene-expression. The problem was: How can the expression levels of all genes in a
functional group be combined to a single number (score), and how can this score be
tested for differential gene expression of the GO-node? Two different statistical tests
are discussed to find an accumulation of induced genes in a GO-node on the one hand.
On the other hand, we test for a contamination of GO-node with genes that display
moderately increased or decreased expression levels. The tests are applied on GO-
scores measuring the level of differential gene-expression in GO-nodes. Two different
methods are proposed to calculate a GO-score.

Results: The tests are used to compare expression data derived from two different
types of human breast cancer. The first dataset comes from the Estrogen receptor
positive type of breast cancer, the second one comes from the Estrogen receptor
negative type. The most important finding is, that the method provides insight, that
can not be found by gene-wise screens, since the GO-scores are mainly driven by genes
which do not indicate statistical significance in a gene-wise multiple testing context.
One interesting group is the GO-term mitosis. Differential expression of the genes in
this group reflects the differences in the proliferative potential of these breast cancer
types. To enlarge the practical use, a graphical user-interface has been implemented
which allows the molecular biologist for browsing and structuring results of microarray
experiments.
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Chapter 1

Introduction

Since the whole genome sequences of several organisms are available, the parallel exe-
cution of expression analysis for multiple genes in a single experiment has become an
important technology in molecular biology. The most prominent implementations for
large-scale analysis of gene-expression are cDNA-macro- or microarrays and the DNA-
chip technology. All these methods measure the mRNA levels for many genes at once,
according to the following principle: A labeled mRNA is captured by single-stranded,
complementary DNA-probes immobilized on a spot of an array or a DNA-chip. The
amount of the mRNA hybridized to the specific spot can be quantified by detecting
the amount of label and therefore the amount of the corresponding mRNA. While
adding several hundred or thousand different DNA-probes to the arrays or chips, the
parallel analysis of many genes can be performed. A DNA-chip from Affymetrix con-
tains short oligo-nucleotides synthesized directly on a class wafer by a proprietary
technology [12][22]. A macro- and microarray contains separately synthesized oligo-
nucleotides spotted to either a nylon-membrane [11] or a glass-slide [4]. The radioac-
tive labeling used in conjunction with nylon-membranes and the fluorescent labeling
combined with Affymetrix DNA-chips are examples for multiple-slide experiments.
The comparison of the gene-expression in one tissue-type to the gene-expression in
another tissue-type requires two separate samples. The glass-slide microarray tech-
nology is a single-slide method. The mRNA from the two different tissue-types are
labeled with different fluorescent-dyes (red and green). These probes are hybridized
to the same microarray. The ratio of the red and green intensity is a direct measure
for differential gene-expression of a particular gene.

The analysis of large-scale gene-expression data raise numerous computational and
statistical questions. Starting from the output of a scanner which reads the labeling
intensities, image-processing is the first problem while analyzing the data. The data
have to be normalized, to compare the expression values of the genes on a single array
to each other or to that from another array. Image-processing and normalization can
be summarized by the term pre-processing (see [10] for a review). The result from pre-
processing is a list of expression values or ratios for every single gene. These values can
be used to identify those genes, differentially expressed in different tissue-types. For
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CHAPTER 1. INTRODUCTION

that, a statistical test is required to assess the significance of differential expression.
A method, based on a gene-wise two sample t-test, is introduced by Dudoit et al. [7].
This test raises an important problem. The significance analysis of microarray-data is
a multiple testing problem. Assume that for each gene a statistical test for differential
expression is conducted. If one fixes a gene-wise significance level of e.g. α = 0.05,
on average one in every 20 genes that are actually not differentially expressed will
show a p-value below α just by chance. According to the large number of genes
represented on a microarray, this may lead to a large number of false positive calls
[10]. Different methods are suggested to adjust the p-values according to the multiple-
testing problem. For example, multiplying the p-values by n, with n denoting the
number of genes represented on the microarray, is known as Bonferroni correction. A
less conservative way used by Dudoit et al. [7] is the step-wise adjustment of p-values
due to Westfall and Young [16]. Both methods may miss genes, which are differentially
expressed. A way to decide whether or not a specific expression difference indicates
systematic de-regulation is to look at the functional context of the corresponding gene.
One would expect a gene acting in a specific biological process to be de-regulated, if
the other members of the whole process are de-regulated, too. Another problem raised
by the significance analysis of single genes is, that even if the multiple testing problem
can be solved adequately one will often end up with a long list of significantly de-
regulated genes. Examining every single gene manually is time-consuming and difficult
to carry out. A benefit of grouping genes according to specific biological properties is,
that the interpretation of the data is simplified. The approach allows for identifying
functional groups particularly attached by differential gene-expression.

The literature describes several methods for grouping the gene-expression data into
functional groups. The first attempt linking biological knowledge to large-scale gene-
expression data was made by Fellenberg and Mewes [8]. They compare the results from
clustering to known metabolic pathways. This method uses un-supervised clustering
and compares the results in a second step with biological knowledge. A complementary
way to find interesting pathways or functional correlated groups of genes is following
the opposite direction: Starting from a known functional related group one examines
how well this group is supported by expression data. Several approaches follow this
way for analyzing large-scale gene-expression data. Zien et al. [18] introduce an ap-
proach to check whether or not several possible glycolysis pathways fit to a time series
of 8 microarray-experiments representing the diauxic shift of Saccharomyces cerevisiae
[3]. They construct the theoretical pathways from open-reading-frames coding en-
zymes of the glycolysis and propose three methods to score differential gene-expression
in the given pathways. These methods are based on p-value like score indicating the
level of differential gene expression at a given time-point (ti) compared to the ref-
erence time-point (t0). They introduce a gene-score from the mean of the negative
logarithms of the sample-by-sample p-values and propose a score for a pathway which
is the overall mean of the gene-scores in this pathway. They call it conspicuous score.
In a second approach they score, how well the differential expression of the genes in
the same pathway is correlated over the time-series. The third score is a combination
of their conspicuous and correlation score. They assess the significance of their scores
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CHAPTER 1. INTRODUCTION

by comparing them to scores computed for 10000 randomly composed pathways. Zien
et al. conclude from their results that the conspicuous score best addresses the overall
changes in the gene-expression of a specific pathway. In contrast, they claim that the
correlation score seems to identify those cases, if the genes belonging to the same
pathway are simultaneously activated. The result of the combined score is the same
as those produced by the conspicuous score. Zien et al. suggest, that a dominating
conspicuous term in the combined scoring function is responsible for this result.

Zien et al. use their approach to examine how well theoretically constructed pathways
fit to the ”real world”. They are looking only at a single biological process, the glycol-
ysis. However, molecular biologist are interested in extracting a biological processes
particularly attached by differential gene-expression from a large set of biologically
related groups. The Gene Ontology [2][23] provides a structure that organizes genes
into biologically related groups according to three different criteria. It classifies genes
and their products due to either the biological process in which they are acting, the
molecular function they are able to conduct or the cellular component where they
can be found. The Gene Ontology consortium aims to provide a unified vocabulary
to describe genes. For that reason, the GO-database is a hierarchical ordered set of
terms for describing genes. The descriptions which form the nodes of the hierarchical
graph-structure increase in detail as one descends down the hierarchy. The root-node
of the graph is the term Gene Ontology. The first level of organization contains the
three organizing criteria described above (biological process, molecular function and
cellular component). Contributors of the GO-database can annotate genes to the dif-
ferent terms or nodes. If a gene is annotated to a GO-node, it is a member of the
ancestors of the node, too. A child-node of the graph can be either a part of or an in-
stance of its parent-nodes. A hexokinase for example is a part of the biological process
called glycolysis. However, it is an instance of the molecular function called kinase.
The Gene Ontology database is not only a tool that allows for viewing a genome in
a well structured way. It provides the possibility to group large-scale gene-expression
data into biologically related groups.

An approach making use of the Gene Ontology for analyzing microarray-experiments
is that of Pavlidis et al. [13]. In their publication they propose three different methods
for scoring differential gene-expression in groups of functionally related genes. They
use datasets derived from samples of the brain of different mouse-strains, different
samples of human leukemia and yeast-samples derived from several growth-conditions.
In the case of the yeast-samples Pavlidis et al. use a yeast-specific database called
MIPS yeast catalog [24] to structure the expression data. The MIPS catalog is similar
to the Gene Ontology database, however it is specific for yeast. They use the Gene
Ontology to perform the analysis of the leukemia and brain data. The first scoring-
method they introduce measures how well the genes in a specific GO- or MIPS-group
cluster together. The score is the average pair-wise correlation between the genes
in the same functional group. The second scoring method they propose reflects the
statistical significance of the expression pattern of each gene with respect to the
experimental design. For that, Pavlidis et al. calculate a p-value for each gene by
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CHAPTER 1. INTRODUCTION

applying the analysis of variance-method (ANOVA) on the gene-specific expression
values over the samples. They calculate the so-called experiment score by adding
the negative logarithms of the ANOVA-p-values of genes which belong to the same
GO- or MIPS-group. The last scoring-method Pavlidis et al. call learnability-score.
They calculate a k-nearest neighbor classifier for each GO- or MIPS-group. The
score they propose is a p-value derived from a leave-one-out cross-validated error
rate. Pavlidis et al. assess the significance of their scores by comparing them to
scores calculated for 500.000 randomly constituted functional groups of each size.
They claim, that the learnability and the correlation score seems to identify GO-or
MIPS-groups containing ”housekeeping”-genes. In contrast, the experiment score is
suggested to be the method most suitable for identifying those functional groups which
reflect the specific biological properties of the different samples.

A second approach using the Gene Ontology to analyze large-scale gene-expression
is to search for over-representation of particular GO-nodes in a list of genes. This
list may contain either significantly de-regulated genes or genes identified by un-
supervised clustering-methods. The FatiGO web-tool of Rámon Dı́az-Uriarte [19]
for example proposes to assign a biological property to a gene-cluster by searching
the most frequent GO-node in the cluster. The MAPPFinder application of Doniger
et al. [5] identifies GO-nodes by counting the number of GO-specific genes which
are significantly de-regulated. They calculate the significance of the single genes in a
previous step by a gene-wise analysis. Doniger et al. introduce a z-score by comparing
the real number of significant genes in a functional group to those which is expected
by chance. The approaches using gene-lists include only genes identified by a un-
supervised clustering or significance analysis applied to the un-grouped microarray.
That’s why, they may miss the influence of genes which can only be identified in
concert by a Gene Ontology driven significance analysis, respectively (e.g. correlation
and conspicuous score of Zien et al. [18]). Despite this disadvantages, FatiGO and
MAPPFinder are useful visualization tools, which allow for quickly inspecting results.

Previous publications provide several approaches to score differential or correlated
expression in groups of functional related genes. The power of a Gene Ontology
driven approach is, that slightly de-regulated genes are able to form a significant
score as group, while the single genes do not reach a significant level of differential
expression. For that reason, these approaches are able to identify de-regulated genes
that cannot be found by gene-wise scans. We implement two different scoring-methods
to identify GO-nodes. We work with the sum of the negative logarithms of p-values
proposed by Zien et al. and Pavlidis et al. as the first GO-score. The second GO-
score we propose is similar to the test of Kolmogorv and Smirnov combined with
Tukey’s higher criticism score [14]. The higher criticism deals with a situation where
there are many test of significance (in our case of differential gene-expression) and
one is interested in rejecting the joint null hypothesis. Using the different scoring
methods, we aim to identify GO-nodes with a significant score without containing any
significantly de-regulated genes from a gene-wise screen. The approaches described in
the literature obtain a test-statistic for the scores by randomizing the annotation of
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CHAPTER 1. INTRODUCTION

the genes to the functional groups. We call this method accumulation test, because it
tests for an accumulation of low p-values in a GO-node. Additionally, we randomize
the annotation of the microarray-samples to the breast-cancer types. We call this new
method contamination test, because it tests for a contamination of a GO-node with
differentially expressed genes.

We use expression-data derived from 49 samples of of human breast-cancer and pro-
vided by West et al. [15]. Half of the microarray samples have been prepared from
estrogen receptor positive (ER+) tumor-cells. The remaining samples have been pre-
pared from estrogen receptor negative tumor (ER−) cells. Expression of the estrogen
receptor is important as predictive factor for response to endocrine therapy, for exam-
ple with tamoxifen. Patients with a ER+-tumors have sightly better survival rates,
because they respond to endocrine therapy [9]. We choose the data-set, because it
provides us expression-data from two well defined tissue-types. An essential part of
this thesis is the comparison of results from the accumulation to that from the con-
tamination test. A prototype of a GO-browser implemented in Java supports the
analysis of our results.
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Chapter 2

Theory

The Gene Ontology provides a functional classification of genes in a hierarchical way.
The root node called Gene Ontology contains all genes annotated to the Gene Ontol-
ogy. Following the graph towards its branches, the functional groups become smaller
and more specific. We are interested in finding levels of differential gene-expression in
specific functional groups, represented by a GO-node. For that reason, the genes rep-
resented on the microarray have to be assigned to GO-nodes. Methods are required
to score a whole node for differential gene-expression. In addition we need significance
tests for these scores.

2.1 Representation of the data

A major problem is, that the annotation of genes to GO-nodes doesn’t reflect the graph
structure of the ontology. The Gene Ontology consortium [23] allows to annotate a
gene to any GO-node in any level of the graph. However, a child-node in the Gene
Ontology graph is defined to be a member of its parent-nodes. A gene annotated to
a child-node has to be annotated to the corresponding parent-node, too. The Gene
Ontology consortium doesn’t set this rule for people contributing an annotation. We
implement a routine copying the ”nested” annotation of child-nodes to its parent-
nodes. Figure 2.1 gives an example for a possible annotation. In this picture the
GO-node GO:1 has no direct annotation. But, according to the graph-structure of
the Gene Ontology, GO:1 contains all the genes shown in the example. Figure 2.2
demonstrates a recursive algorithm which copies the annotation of child-nodes to its
parent-nodes. It is based on a graph-traversing algorithm in post-order.

Figure 2.3 demonstrates the annotation after algorithm 2.2 has been performed on
the data shown in figure 2.1. The data in figure 2.3 are represented by a matrix X
of normalized expression-values, with k rows corresponding to the genes annotated
to GO-nodes and n = n1 + n2 columns corresponding to the n1 samples of the first
tissue-type and n2 of the second tissue-type.
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Figure 2.1: Structure of the Gene Ontology with genes annotated to several GO-
nodes. Note that child-nodes are members of its parent-nodes. So, the genes anno-
tated to child-nodes belong to the parent-nodes, too (e.g. gene 2 and gene 3 belong
to the GO-nodes 5, 4 and 1).

Data : currentNode: the GO-node to be annotated
Result : annotation: complete annotation directly and downwards to currentNode

function collectSubAnnotation(currentNode)
annotation← empty list
children← children of currentNode
foreach children do

currentChild← the current child-node
annotation← collectSubAnnotation(currentChild) !Recursion!
annotation← genes annotated directly to currentNode

return annotation

Figure 2.2: Algorithm to copy the annotation of child-terms to parent-terms

2.2 Scoring

We consider two different scores, to assess differential gene-expression in a GO-node.
Both scores are based on a two-sample t-statistic and a gene-wise p-value calculated
from the t-distribution. The first scoring function [18][13] sums the negative loga-
rithms of the p-values for the genes in the same GO-node. The second approach is
based on Tukey’s higher criticism principle [14]. It can be viewed as a Kolmogorov-
Smirnov test (KS-test) on the distribution of p-values. We introduce this new scoring
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Figure 2.3: Representation of the microarray-data annotated to the Gene Ontology
database. The k rows of the matrix X contain the expression values corresponding to
the genes. The genes are annotated to different GO-nodes. This is indicated by the
brackets to the right of the matrix. The n columns of X contain the expression-values
corresponding to different microarray-samples.

method as an alternative to the sum of logarithms. In some cases it is more sensitive
than the approach used by Zien and Pavlidis.

2.2.1 T-score

Let Hj denote the null hypothesis of no differential gene-expression between the two
tissue-types for a fixed gene j, j = 1, ..., k. The alternative representing an individual
gene is two-sided. For gene j, the t-score is

tj =
xn2 − xn1√

1
n1

+ 1
n2

n1+n2−2
(
∑n

i=n1+1 (xi,j − xbj
)2 +

∑n1
i=1 (xi,j − xaj

)2)

(2.1)

where xn1 and xn2 denote the average expression level of gene j in the n1 samples
of the first tissue-type and n2 samples of the second tissue-type. Furthermore, xi,j

denotes the expression value of gene j in sample i. The t-score for gene j is denoted
by tj.

Large absolute t-scores suggest that the corresponding genes have different expression
levels in the two cancer types. A p-value is calculated from the t-distribution. Note
that the t-score only follows a t-distribution in the case of normality of the expression
values. In a microarray-experiment this is not necessarily the case. That’s why, we
do not see the p-value as a real p-value but as part of a scoring function. The p-value
is useful for the current calculations for another reason. It normalizes t-values to a
number between 0 and 0.5. For normally, independently distributed expression values,
one would expect a uniform distribution of the p-values. This is not necessarily the
case, but again we will not use these assumptions on the distribution to compute a
score from it. Another reason for calculating the p-value-like scores is, that we want
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to calculate the sum of logarithms-score. The formula for the p-values obtained from
the t-distribution reads as follows:

pj =

{
1− cdfdf (tj) t ≥ 0

cdfdf (tj) t < 0
(2.2)

cdf : cumulative t-distribution function
df : degrees of freedom (number of samples minus 2)

The result so far is a set of p-values per GO-node. The problem is to find scoring
methods to summarize them and obtain a score for the node.

2.2.2 Sum of negative logarithms as score

The first scoring function we use was suggested by Zien et al. [18] and Pavlidis et
al.[13]. As a cumulative measure Zien et al. calculate the negative sum of logarithms
of p-values belonging to the same metabolic pathway. Pavlidis et al. suggest the same
function to score differential gene-expression in nodes of the Gene Ontology. Here, we
adapt this approach. Following them we define:

Sgo-node =
∑

n
i=0 log 2pi (2.3)

Note, the logarithm of one is zero. For that reason the p-values are modified by
multiplying them by two. This results in a smaller influence on the score from p-
values around 0.5 (⇒ 2 ∗ p ≈ 1). As a consequence the score is mostly driven by low
p-values which suggest differential gene-expression. The summation corresponds to
some assumption of independence of genes. This assumption is certainly not correct.
However, the sum of logarithms is again seen as part of the score and not as a reliable
probability for a false positive error. We use permutations to estimate the distribution
of the scores and to assess their significance (see 2.3).

2.2.3 Scoring according to Kolmogorov and Smirnov

The Kolmogorov-Smirnov-test is a statistical method to decide whether or not an
empirical distribution fits to a presumed theoretical one. In the case that a theoretical
description holds true, the maximal deviation between observed distributions and
the theoretical one is scattered according to the KS-distribution. The Kolmogorov-
Smirnov function itself is independent of the particular shape of the distribution
tested. Here, we apply this property not on the distribution of the data but in a
meta-analysis on the distribution of p-values belonging to the same GO-node. This
approach is similar to Tukey’s higher criticism score [14] which deals with a situation
where there are many tests of significance (in our case of differential gene-expression)
and one is interested in rejecting the joint null hypothesis (no differential expression of
the genes in the same GO-node). The work of D. Donoho and J. Jin [6] gives a detailed
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description on the higher criticism in the case of independent test. Donoho and Jin
assume, that under the joint null hypothesis the p-values sorted in an increasing order
are uniformly distributed. The alternative assumes that there are more low p-values.
Here, we also assume a uniform distribution of p-values in the same GO-node. If
there is an accumulation of low p-values in a GO-node, the maximum distance to the
uniform distribution increases. Hence, this distance is a quantity for differential gene-
expression. We use it as GO-score. The actual calculation of the score is implemented
as follows: The inspected GO-node contains n p-values. P (n) is defined as the sorted
array of the p-values multiplied by two (2.2.1). The uniform distribution is modeled
by the array F (n) = 1

n
, 1

n−1
, ..., 1

2
, 1. In analogy to the KS-test the score is calculated

as:
Sgo-node = max|P (n)− F (n)| (2.4)

Note, the assumptions on the p-values, their distribution and their independence not
necessarily hold true. Like for the sum of logarithms score (see 2.2.2), we check the
significance of the KS-score against a distribution simulated by permutations (see
2.3).

2.3 Testing the scores

Section 2.2 describes the calculation of two different scores for differential gene-
expression in a GO-node. Since we are interested in finding GO-nodes with more
differential gene-expression, a test is required to assess the significance of the GO-
scores. But, what does more differential gene-expression mean? One answer could
focus on the distribution of de-regulated genes. Here we do not question that there
are differentially expressed genes at all. What we test for is that these genes do not
fall randomly into GO-nodes, but accumulate in the tested GO-node. Another answer
does not take the presents of de-regulated genes as a given fact but tests for them
de novo, GO-node per GO-node. Note, several moderately induced genes can cause
a GO-node to be tested positive, also none of these genes is significant in a gene-
wise test. We derive two tests from both definitions of differential gene-expression
of a GO-node. We call them accumulation test and contamination test. The
accumulation test proposed by Zien et al. and Pavlidis at al. [18][13] checks for the
null hypothesis that there are differentially expressed genes falling randomly into dif-
ferent GO-nodes. The contamination test checks for the null hypothesis, that there
is no differential gene-expression in a GO-group. We use permutations to estimate
the corresponding test-statistics. Permutations are performed either on the rows of
the data matrix X (see figure 2.3), to randomize the composition of the GO-nodes
(accumulation test), or on the columns, reflecting the hypothesis of no differential
gene-expression at all (contamination test).

The figures 2.4 and 2.5 give a detailed description of the algorithms for calculating
the GO-scores and for assessing their significance. There is an important difference
between the two algorithms. The algorithm for the accumulation test requires the
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Data : Number of permutations: B
n GO-nodes: gon

Matrix of expression data: Xi,j with j rows (genes gj)
For each GO-node gon:

Rn: indices of the rows (genes) of Xi,j annotated to gon

Result : p-value for every GO-node probn

function performAccumulationTest()
foreach gj do

compute t-statistics tj
compute p-values from t-distribution pj

foreach gon do
compute GO-score Sn from a the subset of pj with j ∈ Rn

countn ← 0

for b← 1 to B do
permute pj

(p-values now maped to random GO-groups)
foreach gon do

compute GO-score Un from a the subset of pj with j ∈ Rn

if Un ≥ Sn then
countn ← countn + 1

foreach gon do
probn ← countn/B

return probn

Figure 2.4: Algorithm to perform the accumulation test.

calculation of t-statistics and p-value only once (see 2.2.1). The result is an array
pj of p-values which are ordered like the rows of the data-matrix X. The algorithm
performs the permutation not on X but on the array pj, because the single-gene p-
values remain unchanged in the accumulation test, with respect to the permutations.
In contrast, the algorithm for the contamination test performs the permutation on the
columns of X. It calculates a new p-value for every gene and every permutation. The
contamination test algorithm is more time consuming. The calculation of GO-scores
is the same, except that the scores are calculated from p-values randomly assigned
to GO-nodes on the one hand and from p-values obtained by random assignments of
the microarray-samples to tissue-types on the other hand. The algorithms calculate
a measure of significance for differential gene-expression of GO-nodes by counting
the number of simulated GO-scores (Un) which are equal or larger than the original
GO-scores (Sn). This number relates to the probability of a false positive error.
We define the p-value pn for the GO-score Sn and the corresponding test as the
number of simulated scores Un reaching the original score divided by the number B
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Data : Number of permutations: B
n GO-nodes: gon

Matrix of expression data: Xi,j with j rows (genes gj)
For each GO-node gon:

Rn: indices of the rows (genes) of Xi,j annotated to gon

Result : p-value for every GO-node probn

function performContaminationTest()
foreach gj do

compute t-statistics tj
compute p-values from t-distribution pj

foreach gon do
compute GO-score Sn from a the subset of pj with j ∈ Rn

countn ← 0

for b← 1 to B do
permute columns i of the data matrix Xi,j

(Expression values are now maped to random tissue-types.
For that reason, the t-scores have to be calculated again:)

foreach gj do
compute t-statistics tj
compute p-values from t-distribution pj

foreach gon do
compute GO-score Un from a the subset of pj with j ∈ Rn

if Un ≥ Sn then
countn ← countn + 1

foreach gon do
probn ← countn/B

return probn

Figure 2.5: Algorithm to perform the contamination test.

of permutations (pn = #(Sn≤Un)
B

). This time, we interpret pn as real p-values in full
meaning of the word. Given the null-hypotheses holds true, pn is the probability to
obtain equal or more evidence for accumulation or contamination of GO-node n, than
we observe in the score Sn.

The distinction between both testing methods might be confusing at first. But, have
a look at the large GO-groups, including the root-node of the Gene Ontology. The
contamination test randomizes the assignment of different microarray-samples to the
corresponding tissue-types. In the case of differential gene-expression, the gene-wise p-
values, calculated for the original assignment of the samples to the tissue-types, tend to
be low. In this case, the root-node will always be tested positive by the contamination
test, because it contains differentially expressed genes. If the child-nodes inherit
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equal portions of differentially expressed genes from the root-node, they will be tested
positive by the contamination test, too. Otherwise, if the differential gene-expression
is restricted to a particular sub-branch of the Gene Ontology, the contamination test
will identify this sub-branch. This is different with the accumulation test. The large
GO-nodes contain many genes. The root-node represents the most extreme case. It
contains each of the gene having a GO-annotation. Hence, its composition cannot be
randomized. The simulated scores Uroot are equal to the original GO-score Sroot. The
condition Sroot ≤ Uroot holds true for each simulated score. Hence, the accumulation
test will always be negative for the root-node with proot = 1. The situation changes, if
the GO-nodes become smaller and do not contain all genes having a GO-annotation.
There will be simulated scores exceeding the original score and those doing not. Hence,
the accumulation and the contamination test are different methods for analyzing GO-
specific differential gene-expression.

15



Chapter 3

Implementation

This chapter deals with the implementation of the statistical analysis. We use the
programming language Java [20], that provides us several advantages: The object
orientation of Java allows for implementing the Gene Ontology graph in a clear and
well structured way. The core application programming interface (API, [20]) of Java
provides classes supporting the implementation and visualization of tree like struc-
tures given by the Gene Ontology. But, the most important advantage of Java is its
independence of the system used to run a program.

We have to solve different problems concerning the implementation of the Gene On-
tology approach. We have to represent the GO-graph in a appropriate data structure.
We must perform the annotation of the genes on the DNA-chip to the GO-nodes. Fur-
thermore, we have to implement the analysis and evaluation of the gene-expression
data according to chapter 2. Last, we want to present the results in a graphical user
interface. A complete documentation of our implementation is available under [25].

3.1 The Gene Ontology graph

The first step is to store the graph structure of the GO-database. A graph consists
of nodes connected by edges. The Gene Ontology is a directed acyclic graph (DAG)
which we can characterize by the following properties: The edges represent directed
connections between parent- and child-nodes. A child-node can have more than one
parent-node – a property distinguishing a DAG from a tree. While following the graph
towards the direction defined by its edges, we can’t get back to a node we have already
visited. That’s what is meant by acyclic. A root-node has no parent-node, so that
no in-edge points to it. A leaf-node has no child-nodes or no out-edges, respectively.
The Gene Ontology graph contains just one root-node and multiple leaf-nodes.

Our implementation of the Gene Ontology graph follows an object-oriented approach.
Objects representing the edges of the graph connect objects representing the nodes.
This kind of programming allows for writing the code in a modular way. An object
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is characterized by fields storing its data and by methods accessing and changing
the content of the fields. In Java objects are implemented by class-files. An object
itself is an instance of a class. For example, if a class GOnode contains the field term

describing the GO-node, and the variable go stores an instance of the class GOnode,
then the command go.term will return the value of term. Another way to access and
change the value of term could be realized by methods like setTerm() and getTerm().
These methods would be accessible by the commands go.setTerm(newName) and
newName = go.getTerm(). According to the example, the core implementation of
the Gene Ontology graph consists of the classes GOnode representing the GO-nodes
and GOedge representing the edges.

3.1.1 The Java-class GOnode

A node of the Gene Ontology itself is characterized by a term describing it and an
unique identifier. The position of the node in the Gene Ontology graph is defined by
a set of in-edges connecting the node to its parent-nodes and out-edges connecting
the node to its child-nodes. We put all these information into the class GOnode.
Additionally, the class contains optional fields describing additional properties of a
GO-node and methods accessing and manipulating all the information stored in it:

Fields of the class GOnode:

• The string-variable term storing the term describing the node.

• An array of strings we call goIds[] storing the unique identifier characterizing
every GO-node. It is accessible by the first index of the array (goIds[0]). The
following elements of the array contain old identifiers, documenting the history
of changes of the Gene Ontology.

• An array of strings we call attributes[] storing additional information on the
node like cross-references to other databases or synonyms of the term describing
the node. This field is optional.

• A string-variable we call group, to store the name of the sub-branch of the
Gene Ontology to which the current node belongs. This is one of the terms
molecular-function, biological-process or cellular-component (see chap-
ter 1). This field is optional.

• A hash-table we call parents, mapping the identifiers (goIds[0]) of the parents
of a specific GO-node to objects of the class GOedge (see 3.1.2). This field
connects a node to its parents.

• A hash-table we call children: Similar to the field parents, but maps a node
to its children, respectively.
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• A hash-table we call directAnnotation, mapping identifiers for the probes of
a microarray (image-ids) to gene-names. This field stores the direct annotation
of a GO-node to a microarray (see figure 2.1).

• A hash-table we call allSubAnnotation: Similar to directAnnotation, but
contains, additionally to the direct annotation, the whole set of genes annotated
downwards in the Gene Ontology (see figure 2.1).

• A boolean value we call isInteresting, storing the information, if a node is
significant, according to a GO-score calculated for differential gene-expression
(see 2.2).

• A boolean value we call hasInterestingChildren, storing the information, if
one of the nodes downwards from this node in the Gene Ontology is significant
according to section 2.2.

Methods of the class GOnode

Except of isInteresting and hasInterestingChildren, all the fields in the class
GOnode can be accessed indirectly by methods, we call for example addId(newId) or
getId(index). This way of accessing and manipulating the fields enables the imple-
mentation of additional operations necessary in case a value of a field is changed. For
example, if a gene is added to directAnnotation, this field is checked for redundancy
first. Beside the methods for accessing and manipulating the fields, the class contains
the implementation of the algorithm 2.2 which collects the annotation downwards a
node (see sections 2.1 and 3.3 for further information). The online documentation of
our complete implementation [25] gives an overview over the methods implemented
in the class GOnode.

3.1.2 The Java-class GOedge

The class GOedge connects the nodes of the Gene Ontology. It contains three fields,
one storing the parent-node (source of an edge), one the child-node (target of an edge)
and one storing a literal coding the relationship between a parent- and a child-node
(see chapter 1). Similarly to the class GOnode, the fields can be accessed indirectly
by methods (see online-documentation for details). Only the indirect connection of
the nodes of the GO-graph by objects of the class GOedge allows for storing the
relationship between the parent- and child-nodes. For that reason, we implement the
class GOnode.

3.1.3 Example

The following example demonstrates the implementation of the data-structure we
choose to store the Gene Ontology. The GO-node ”axon guidance” is characterized
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by its term and two different GO-identifiers. The current identifier is stored at the
first position of the array goIds[]. The second identifier documents a change in
the history of the Gene Ontology database. The node contains only one attribute
describing a synonym for the term. It belongs to the Gene Ontology sub-branch
”biological process”. The node has two parent- and no child-nodes. It is a leaf-node.
There are several genes annotated to the node. Since ”axon guidance” is a leaf-node,
references stored in the hash-table directAnnotation are the same than those stored
in the hash-table allSubAnnotation. Note, the hash-table allSubAnnotation stores
the references to all genes annotated directly and downwards in the Gene Ontology.
The following text-boxes show the contents of the GOnode-object ”axon guidance”,
two string-objects storing the names of the annotated genes and two objects of the
type GOedge which connect the node ”axon guidance” to its parent-nodes.

GO-node ”axon guidance:” Note, the fields parents, children, directAnnotation
and allSubAnnotation are hash-tables mapping separate objects to key-values. The
connection of the parent- and child-nodes is realized by mapping the GO-identifiers of
the parent- and child-nodes to separate objects of the type GO-edge (hash-tables
parents, children). Similarly, the names of annotated genes are mapped to a
unique identifier for each gene on a microarray.

GOnode axon guidance:

• term = "axon guidance";

• goIds[] = {"GO:0007411" ; "GO:0008040"};

• attributes[] = {"synonym:axon growth cone guidance"};

• group = "biological process";

• parents = {"GO:0007409"←in-edge1 ; "GO:0008037"←in-edge2 };

• children = {};

• directAnnotation = {"U28369 at"←gene1 ; "M73239 s at"←gene2 };

• allSubAnnotation = {"U28369 at"←gene1 ; "M73239 s at"←gene2 };

Genes annotated to the GO-node ”axon guidance”. The genes are referenced
by the hash-tables directAnnotation and allSubAnnotation.

• gene1 = "sema domain, immunoglobulin domain";

• gene2 = "hepatocyte growth factor(hepapoietin A; ...)";

The edge connecting the node ”axon guidance” to its parent-node ”axono-
genesis”. Note, the character ’<’ defines, that the node ”axon guidance” is a part
of the node ”axonogenesis”.
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In-edge1:

• parent = GOnode axonogenesis;

• child = GOnode axon-guidance;

• relation = ’<’;

The edge connecting the node ”axon guidance” to its parent-node ”cell
recognition”. Note, the character ’%’ defines, that the node ”axon guidance” is an
instance of the node ”cell recognition”.

In-edge2:

• parent = GOnode cell recognition;

• child = GOnode axon-guidance;

• relation = ’%’;

3.2 Construction of the GO graph

Section 3.1 gives an overview over the data-structure we choose to store the GO-graph.
In this section we describe the implementation of a parser which reads the GO-graph
from text-files and constructs the data-structure.

We download the current GO-version of the from the web page of the Gene Ontology
Consortium [23]. It is provided in form of three flat-files, one for every sub-branch of
the ontology (see chapter 1). The following text shows an excerpt of the file storing
the sub-branch molecular-function:

$Gene_Ontology ; GO:0003673

<molecular_function ; GO:0003674

%anti-toxin ; GO:0015643

%lipoprotein anti-toxin ; GO:0015644

%anticoagulant ; GO:0008435

%antifreeze ; GO:0016172

%ice nucleation inhibitor ; GO:0016173

%antioxidant ; GO:0016209

Every line in the text-file represents a GO-node. The character at the beginning of a
line codes the relationship of a child-node to its parent- node (% instance of, < part
of, $ root (see chapter 1)). This literal is followed by the term describing the node
and its unique identifier. The indentation of the line indicates the level of the node
in the GO-graph. In the shown example, the terms anti-toxin, anticoagulant,
antifreeze and antioxidant are instances of the term molecular-function (one
of the three major-branches of the GO). The node molecular-function itself is a
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Data : text-file containing the Gene Ontology

Result : hash-table with objects of GO-nodes
mapped to unique GO-identifiers and connected by edges

function parseOntology(text-file)
hash-table ontology ← empty hash-table
stack currentPath← empty stack
foreach line of the text-file do

currentGoId← unique GO-identifier from the current line
if onology contains key currentGoId then

newNode← get object from ontology mapped to currentGoId

else
newNode← create new GOnode-object from the current line
ontology ← newNode mapped to the key currentGoId

indentation← indentation of the current line (space-characters)
currentPath ← trim to size of indentation, by removing elements from the
top
newNodesParent← top of currentPath
create edge between the newNodesParent and newNode
currentPath← put newNode on top

return ontology

Figure 3.1: Algorithm implemented by a parser which reads text-files containing the
Gene Ontology. It reads the text-file line by line and creates a new GO-node for every
row. A stack stores the GO-nodes which form the path from the root to the new
GO-node. The algorithm trims the stack-size to the length of the indentation of the
current row. This is performed by removing GO-nodes from the top of the stack. For
that reason, the GO-node on the top of the stack always represents the parent of the
current GO-node. After cross-linking the parent- and child-node, the new GO-node
is put to the top of the stack.

part of the node Gene-Ontology which represents the root. A line of the file can
contain further information on a GO-node. The GO-web page provides a detailed
description on this. We implement a parser that loads the graph-structure into the
memory of a computer. Basically this parser constructs line by line an object of the
type GOnode. For having direct access to the GO-nodes, a hash-table maps the created
node-objects to their unique identifier. The parser-algorithm is shown in figure 3.1.
After parsing the flat-files, the complete Gene Ontology graph is stored in memory.
In a next step, we have to perform the annotation to the probes of a microarray.
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3.3 Annotation

3.3.1 Performing the annotation

An essential step is the appropriate GO-annotation for the Affymetrix DNA-chips,
since we use data obtained by Affymetrix DNA-chips. Fortunately Affymetrix pro-
vides free access to its proprietary databases [22]. This includes the possibility to
perform batch-queries. Hence, we can download GO-annotations for microarray-data
from the web. Available are files that list the direct annotation of genes to GO-
identifiers. For example a transcription factor is annotated to the GO-node transcrip-
tion factor but not to the corresponding parent-nodes. However, the Gene-Ontology
defines child-nodes as members of its parent-nodes (see figure 2.1). To get all the
genes that belong to a specific GO-node, the annotation downwards from this node
has to be collected. For that purposes we use an implementation of the algorithm
described in section 2.1 and figure 2.2. The implementation is accessible as a method
of the class GOnode (see online-documentation [25]).

3.3.2 Thinning out the GO-graph

We do not have an annotation of a gene represented on the microarray to every
GO-node. For that reason, we remove all GO-nodes from the GO-graph, which are
neither annotated directly, nor containing a child-node with a gene annotated to it.
The implementation of the class GOnode contains a recursive method, that looks up
for annotation of its children, of the children of the children and so on. Starting
from the root of the GO-graph, all the sub-branches are removed, that do not contain
genes from the microarray. We call this method removeNotAnnotatedChildren (see
online-documentation [25]).

3.4 Calculating and testing the GO-scores

One major implementation question is, how to deal with the large data-sets. A so-
lution has been found in form of a Java-API provided by Wolfgang Hoschek [21]. A
set of packages belonging to the so called Colt-API allow for creating large matrices
and performing complex calculations on them in Java. A main feature of the API is,
that views of a matrix can be created by selecting specific rows and columns. These
views are new matrices consisting of the selected rows and columns. While creating
a view, the values of the matrix remain untouched. They are not copied to another
location in memory. The selection returns a reference to the original values. For that
reason, a view is rather a new object of the type matrix, but another way to look at
the original data. This way of dealing with large data-sets saves time and computing
power and is well established in applications like Matlab or R. Its availability in Java
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provides us with the possibility to build analysis-tools independent of the platform
and any mathematical software. Additionally, the code uses some statistical functions
also taken from the Colt-API.

3.4.1 Data-selection

Figure 2.3 demonstrates the representation of gene-expression data. The rows of the
matrix X correspond to genes and the columns correspond to different microarray-
samples. The expression-values of the genes annotated to a GO-node, can be obtained
by the selection of the rows corresponding to the GO-node. The microarray-samples
of a specific tissue-type can be obtained by the selection of the corresponding columns
of X. The Colt-API provides the Java-class DoubleMatrix2D which allows for stor-
ing two-dimensional arrays. The class contains the method viewSelection (int[]

rowIndices, int[] columnIndices). This method returns a new instance of the
class DoubleMatrix2D, representing a virtual view on the original data (see above).
The rows of the new virtual matrix are those given by the parameter rowIndices and
the columns are those of the parameter columnIndices. For example, the parame-
ter rowIndices = {4, 3, 2, 1, 1} returns a new matrix with the rows in reversed
order and a second copy of the row with the index 1.

3.4.2 Calculating gene-wise p-values

The viewSelection-method of the Colt-API (see 3.4.1) allows for selecting the columns
of X corresponding to the two tissue-types and storing them separately in new matri-
ces X1 and X2. Note, permutation of the columns of X results in a new assignment
to either the matrix X1 or matrix X2. Our implementation of the equations 2.1
and 2.2 calculates a p-value pj, using row j of matrix X1 as sample-set 1 and the
same row of matrix X2 as sample set 2. The Java-class TwoSampleT implements a
classical t-test (see online-documentation [25]). We need a quantile-table of the t-
distribution, to calculate a p-value from a t-value. We use a class from the Colt-API
called Probability. It contains the method studentT returning the value of the cu-
mulative t-distribution function for a given t-value and a defined number of degrees
of freedom. The implementation of equation 2.1, which calculates the t-value, uses
the Colt-class Descriptive. This class provides methods to calculate a mean-value,
its standard deviation and its variance. The result of calculating the p-values is an
array pj which is ordered like the rows of the data-matrix X.

3.4.3 Calculating the GO-scores

A score for a GO-node is calculated from the p-values of the genes annotated to the
GO-node. We get the p-values by selecting them from the array pj (see above). An
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array in of integer-values is created for every GO-node. This array contains the row-
index for each gene annotated to the GO-node. We create a new array pn containing
the GO-specific p-values using the viewSelection-method (see 3.4.1) with in as pa-
rameter. From these node-specific p-values, we calculate the scores according to the
equations 2.3 and 2.4. Note, permutation of pj results in a new assignment of the
p-values to GO-nodes.

3.4.4 Performing the permutation-tests

We use two different methods to test GO-scores for significance, the accumulation
and the contamination test (see section 2.3). The tests are implemented according
to the algorithms 2.4 and 2.5. Remember, the accumulation test needs permutation
of the array pj containing a p-value for every gene. The contamination test needs
permutation of the columns of the data-matrix X. We implement these permutations
as follows:

• Create a random sequence of integer-values ranging from the first to the last
index of the matrix which will be permuted (see Algorithm 3.2).

• Select the rows or the columns of the matrix, according to the random sequence
of integer-values.

• Take this selection as new data-matrix.

Note, algorithm 3.2 requires a random generator, generating uniformly distributed
integer-values. In contrast to the core Java-API, the Colt-API provides several classes
implementing such a random generator. We use the Colt-class Uniform. Its method
nextIntFromTo (min,max) applied on an instance of Uniform returns a random
integer-value between min and max.

3.5 Visualization of the GO-graph

Since we want to present the results of our Gene Ontology driven microarray-analyzes
in a graphical user interface, we have implemented a prototype for a Gene Ontology
browser. Figure 3.3 demonstrates its features. The browser-window contains three
different frames. The left frame visualizes the hierarchical structure of the Gene
Ontology. The lower-right frame contains a table, listing the genes falling into a
particular GO-node. This list can be obtained by double-clicking a GO-node in the
hierarchy. The upper-right frame contains a detailed description of a particular gene
from the gene-list. This information can be obtained by double-clicking a gene in
the lower-right table. Additionally, the results from the calculation of the GO-scores
are visualized. So, the table on the lower-right contains for each gene the t- and
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Data : min: the lowest value of the set of integer-values required
max: the largest value of the set of integer-values required
A random generator returning uniformly distributed random integer-values

Result : vn: Array containing n integer-values ranging from min to max in a random
order

function integerRangePermutation(min,max)
n← (max−min + 1)
bn ← array of the length n
vn ← array of the length n
for j ← 1 to n do

bj ← min
min← (min + 1)

for i← 1 to n do
generate random integer g, g = 0, 1, ..., (n− i− 1)
rand← (i + g)
vi ← brand

brand ← bi

bi ← vn

return vn

Figure 3.2: Algorithm that generates a random permutation of integer-values rang-
ing from min to max.

p-score calculated according to the equations 2.1 and 2.2. The significance of either
the accumulation or the contamination test is color-coded in the hierarchy-view. GO-
nodes with a significant score are colored in red. The level of the significance is
indicated by a continuous scale from red to green. While browsing the results, one
might be interested in the question, if a particular GO-node has child-nodes with a
significant score. This information is provided by a small file-icon which is added to
a GO-node in the hierarchy-view, if it has significant child-nodes.

The implementation of the GO-browser makes use of an important feature of the
Java-API. The class JTree automatically creates a file-system like view of hierarchi-
cal structures. The structure must be provided by an interface called TreeModel.
Note, a Java-interface is a class-like file which only defines names and parameters of
methods. A class implementing an interface has to contain the concrete code for these
methods. The interface TreeModel defines the methods, required to visualize hierar-
chical structures. These are for example the methods getChild(Object node, int

index), getParent(Object node) and getRoot(). So, our GO-browser contains a
class which implements the interface TreeModel. We call this class GeneOntology. It
transforms our representation of the Gene Ontology to the representation required for
visualization by the class JTree. The core composition of the Gene Ontology browser
contains the following classes (see online-documentation [25]):
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Figure 3.3: Prototype of a Gene Ontology browser. The left frame visualizes the Gene
Ontology. The significance of the GO-nodes according to the accumulation or the
contamination test is color-coded by a continuous red/green scale (red: significant).
GO-nodes containing children with a significant score are marked by a small file-icon.
The upper-right frame gives detailed information on a particular gene. The lower-right
frame shows a table with genes that fall into a particular GO-node.

• class GOnode and class GOedge: Representation and connection of the GO-
nodes.

• class GeneOntologyTree extends JTree: Visualization of the Gene Ontol-
ogy. The class extends the class JTree. It inherits all methods and fields from
the class JTree.

• class GeneOntology implements TreeModel: Provides the graph-structure
for the GeneOntologyTree by implementing the interface TreeModel
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Chapter 4

Results

For testing our Gene Ontology approach, we analyze expression-data derived from
two different types of human breast-cancer using Affymetrix Human GeneFL genechip
DNA arrays. We compare 25 estrogen receptor positive (ER+) tumor-samples to 24
estrogen receptor negative (ER−) ones (data provided by [15]). There are signifi-
cant differences between the two types of breast-cancer concerning their response to
endocrine therapy, for example with tamoxifen interrupting the function of the estro-
gen receptor. There is active research on the role of the estrogen receptor in human
breast-cancer. Many genes are known to be differentially expressed in ER+ and ER−
tissues[9]. We hope add to the picture by structuring these genes according to the
Gene Ontology and to possibly reveal additional subtle differences by GO-node based
scoring. We use the scoring- and testing-methods described in chapter 2. The current
chapter presents a comparative analysis of the accumulation- and contamination-test
as well as the two scoring methods.

4.1 Annotation

The Affymetrix Human GeneFL genechip DNA array has 7129 genes represented on it.
We obtain a GO-annotation for 4081 of the genes from the Affymetrix web-page [22].
2641 GO-nodes contain at least one GO-annotated gene after copying the annotation
of the child-nodes to their parent-nodes (see section 2.1). We perform the following
calculations only on the subset of 4081 annotated genes. So, we have a data-matrix
X containing n = 49 columns each representing a microarray-sample and k = 4081
rows, each representing a gene.

4.2 Analysis

We calculate a p-value-like score for each of the 4081 genes, according to section
2.2.1. We us these p-values to obtain sum of logarithms- and KS-score for each of
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the 2641 annotated GO-nodes. We repeat the calculation 1000 times with random
permutations of either the rows (accumulation test) or the columns (contamination
test) of the data-matrix X. The result is a set of 1000 random scores for each kind of
scoring and permutation. We consider a GO-score to be significant if it is exceeded
by less than 5 percent of the corresponding random scores. This corresponds to a
significance level of 0.05.

4.3 Comparing the tests
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Figure 4.1: Relative number of significant GO-groups in percent. The plot shows the
results from the accumulation and the contamination test applied to the KS-score
(KS) and the sum of logarithms-score (SLOG). The null-hypothesizes are rejected at
a p-value larger 0.05. Only the results for GO-groups containing more than 10 and
less than 200 genes are shown.

The contamination test strongly depends on the size of the GO-nodes and returns
much more significant nodes than the accumulation test. Figure 4.1 should demon-
strates the different results. It shows the relative number of significant GO-nodes
according to the different scoring-methods and tests, plotted against the size of the
GO-nodes. We expect such a result (see section 2.3). The contamination test checks
for each GO-node separately, whether there are differentially expressed genes. The
larger the GO-node is, the more de-regulated genes are found in it. If a child-node
is significant, its corresponding parent-nodes are expected to be significant, too. The
root-node is always positive, if there is any difference in gene-regulation at all. The
accumulation test checks whether the known differentially expressed genes accumulate
in a GO-node. Figure 4.2 visualizes that the results of the tests depends on the size
of the inspected GO-groups. It shows two windows of our Gene Ontology browser.

28



CHAPTER 4. RESULTS 4.4. THE SCORES AND THE SINGLE GENES

The left frame of both windows provides a tree-like view on the Gene Ontology. It
shows a complete path of the Gene Ontology leading from the root-node to the node
”apoptotic program”. The text beside each node is colored. This color codes the sig-
nificance of each node. GO-nodes with a significant score are red, those which are not
have a green color. The level of the significance is indicated by a continuous scale from
red to green. The upper window visualizes the result of the accumulation test, the
lower that of the contamination test. The accumulation test returns few significant
GO-nodes in different levels of the hierarchy. The contamination test returns signifi-
cant GO-nodes mainly in the higher levels. Following the graph by its branches, the
number of significant GO-nodes decreases. The GO-nodes downwards the ”apoptotic
program”-node contain no differentially expressed genes at all. The whole branch is
unaffected by differential gene-expression. Hence, the contamination test discovers,
if branches of the GO-graph are affected by differential gene-expression. This is a
particular property of the contamination test. The identification of new drug-targets
maybe a possible application of this property. For example, the response to endocrine
therapy is more successful in patients suffering from the ER(+) breast-cancer type
[9]. This can be explained by the differential expression of the estrogen receptor
which is target of the therapy. The treatment of a biological process that is equally
regulated may provide an appropriate therapy effecting on both subtypes of human
breast-cancer. A candidate might be for example the process ”apoptotic program”
containing 20 genes which are 20 possible new drug-targets.

4.4 The scores and the single genes

4.4.1 Excluding the significant genes

Our GO-approach allows for discovering genes that are differentially expressed as
functional group. However, does this provide new insight or is it just the summary
of the results we can also obtain from gene-wise screening? Are the scores mainly
driven by genes which can also be found by a significance analysis applied to single
genes? We address this question and exclude all the genes from our analysis which are
differentially expressed at a level, that could be detected by a gene-wise procedure.

We use the gene-wise p-values (see section 2.2.1) for a rough single-gene significance
analysis, although they should not be interpreted as meaningful p-values. We obtain
a list roughly representing the rank-order of differential expression by sorting the
genes by their corresponding p-values. The single-gene null-hypothesis is rejected at
a significance level of α = 0.05. Since the microarray-analysis represents a multiple-
testing problem, we adjust this significance level according to Bonferroni to α∗ = α/n
with n denoting the number of genes to be analyzed (4081 in our case). We consider
genes as significantly de-regulated, if their p-value is lower or equal than α∗. According
to this condition 68 of the 4081 GO-annotated genes are differentially expressed. We
compute new scores modified by excluding the significant genes from our analysis.
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Figure 4.2: The path of the Gene Ontology graph leading to the node ”apoptotic pro-
gram”. The p-value according to either the accumulation test (top) or the contami-
nation test (bottom) applied on the sum of logarithms score is coded by a red-green
ratio (red low p-value, green large p-value).

First, we apply the accumulation test on modified KS-scores. 81.5 percent of the
significant GO-nodes we obtain by this new analysis are identical to those identified
without modification of the score. The contamination test applied on modified and not
modified KS-scores returns 82.3 percent identical GO-nodes. Hence, the KS-score is
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independent of genes which can also be found by gene-wise-screens. The GO-approach
can identify slightly de-regulated genes.

4.4.2 Interesting GO-nodes

We use our GO-browser to inspect the GO-scores manually and to identify interest-
ing GO-nodes according to the breast-cancer data-set. We can show that our GO-
approach provides insight, that can not be found by gene-wise screens. The GO-node
”complement component” (unique GO-identifier: GO:0003811) is a very interesting
example, because it contains no gene with a significant single-gene p-value (see ta-
ble 4.1). But, the KS-score for this GO-node reaches significance according to the
accumulation and the contamination test. Hence, our GO-approach can filter use-
ful information from microarray-experiments. This information maybe completely
concealed from gene-wise screens. The GO-node ”complement component” contains
genes important in the immune system. Currently, we have no possible biological
interpretation for the significance of this GO-node.

We can identify another interesting GO-node called ”mitosis” (see table 4.2). It
contains 33 genes responsible for the regulation and the performance of the cell-
division. Only one of these genes can be detected by gene-wise screens. The score for
the ”mitosis”-node remains significant, even if this gene is removed from the analysis.
The identification of the GO-node can be explained biologically. The ER(−)-type is
more aggressive according to the proliferation of the tumor-cells [9]. So, one would
expect a differential expression of the mitosis-genes. We use the descriptions of the
10 genes listed in table 4.2 to query the PubMed database [26]. The query for the
PLK-gene returns reference to a publication of Wolf et al. [17]. Wolf et al. could show
by immunohistochemistry, that the expression of the PLK-gene (polo-like kinase) is
different in ER(+)- and ER(−)-cells. We can show the differential expression of the
PLK-gene, too. But, we can show this only by using the GO-approach. A gene-wise
microarray-analysis cannot identify the differential expression of the PLK-gene.

4.5 The scoring methods

We propose two different methods to combine the expression levels in a GO-node to
a single number. These are the sum of logarithms- and the KS-score. The results
which we obtain from the methods are similar but they do not exactly return the
same GO-nodes. Currently, we cannot explain the reason for the different results.
However, we can fix from excluding the significant genes, that the KS-score seems to
be more robust against strongly de-regulated genes. Additionally, it produces more
significant scores, if we use the accumulation test.
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Image-ID Bonferroni adjusted gene description
p-value p∗ = p ∗ n

J15702 at 0.29 B-factor, properdin
M84526 at 0.63 D component of complement (adipsin)
J04080 at 36.82 complement component 1, s subcomponent
M16973 at 186.02 complement component 8, bet polypeptide
M83652 s at 261.76 properdin P factor, complement
M13232 s at 264.09 coagulation factor VII
M14058 at 309.25 complement component 1, r subcomponent
X02176 s at 360.92 complement component 9
K02766 at 1645.78 complement component 9
M65134 at 2441.36 complement component 5
J03507 at 3570.63 complement component 7

Table 4.1: List of genes falling into the the GO-node ”complement component”. The
genes are ordered by their level of differential expression. The second column contains
the Bonferroni-adjusted gene-wise p-value p∗ = p ∗ n with n = 4081 denoting the
number of spots on the microarray.

Image-ID Bonferroni adjusted gene description
p-value p∗ = p ∗ n

M86699 at 0.001 TTK TTK protein kinase
U30872 at 1.114 CENP-F kinetochore protein mRNA
U63743 at 1.19 Mitotic centromere-associated kinesin mRNA
U01038 at 2.28 PLK mRNA
Z15005 at 2.86 CENPE Centromere protein E (312kD)
S78187 at 7.18 M-PHASE INDUCER PHOSPHATASE 2
X89109 s at 14.12 MacMarcks mRNA
X51688 at 34.89 CCNA Cyclin A
D21262 at 44.89 KIAA0035 gene, partial cds
U49070 at 92.23 Peptidyl-prolyl isomerase and ...
... ... ...

Table 4.2: List of genes falling into the the GO-node ”mitosis”. The genes are ordered
by their level of differential expression. The second column contains the Bonferroni-
adjusted gene-wise p-value p∗ = p ∗ n with n = 4081 denoting the number of spots on
the microarray. Only 10 out of 33 genes are shown.
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Chapter 5

Discussion

In the present thesis we approach large-scale gene-expression data from a higher level
of organization. We use Gene Ontology providing a hierarchical, functional classifi-
cation of genes. Since we want to combine the expression levels of genes in the same
GO-node to a single number, we propose two different scoring-methods. We check
their significance using two different tests. We use a data-set derived from two differ-
ent classes of human breast-cancer, the estrogen receptor positive and estrogen recep-
tor negative class. We can show by three examples, that the GO-approach provides
insight, that can not be found by gene-wise screens of microarray-data (GO-nodes
apoptotic program, complement component and mitosis). We implement a prototype
for a Java-application which allows for browsing the Gene Ontology and supports the
manual inspection of microarray-data.

We introduce a scoring-method which is based on a Kolmogorv-Smirnov test applied
on the distribution of p-values. This score is similar to Tukey’s higher criticism score
dealing with the multiple-testing problem [14]. The analysis of microarray-data is a
multiple-testing problem. So, we propose the application of the higher criticism-based
KS-score to be an alternative method to the sum of logarithms-score proposed by Zien
et al. and Pavlidis et al. [18][13]. We suggest two different null hypothesizes to assess
the significance of the scores. In the first null hypothesis we assume, that there are
differentially expressed genes falling randomly into different GO-nodes. We propose
the accumulation test to check for this hypothesis. This test uses permutations of the
rows of the data matrix randomly assigning the gene-wise expression values to GO-
nodes. We compute the scores for these simulated GO-nodes to obtain a test statistic.
This way to test the scores is identical to those proposed by Zien et al. and Pavlidis
et al. [18][13]. In the second null hypothesis we separately assume for each GO-node
that there are no differentially expressed genes in it. We propose the contamination
test to check for this hypothesis. This test uses random permutations of the columns
of the data matrix to obtain a test statistic. The permutations randomly assign tissue-
samples to tissue-classes. We compute for each permutation gene-wise p-values and
use them to calculate GO-scores. Dudoit et al. [7] propose permutations randomizing
the class-assignment to perform a gene-wise significance analysis of microarray-data.
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We modify this gene-wise screen by adding the GO-scoring step. Hence, we obtain a
new test statistic different from that proposed by Zien et al. and Pavlidis et al.. We
obtain it by a modification of the gene-wise significance analysis suggested by Dudoit
et al..

We aim to find GO-nodes containing differentially expressed genes. For that reason,
we propose two different statistical tests to identify the interesting GO-nodes. This
raises an important biological question. What is the difference between the GO-nodes
identified by the accumulation test and those identified by the contamination test. We
show that this question is not only a formal, but can provide different insights into
the biology. The accumulation test provides few GO-nodes with a significant score.
This supports the manual inspection of single-genes expression data. Additionally, it
provides genes that may be missed by gene-wise screens, because of multiple-testing.
The GO-nodes ”complement component” and ”mitosis” are examples demonstrating,
that the GO-approach can identify more differentially expressed genes than gene-wise
screens. Their GO-score results only from the differential expression of genes, that
cannot be identified by a gene-wise significance analysis. The contamination test
identifies many interesting GO-nodes. A manual inspection of each of these nodes is
hard. But, there is another benefit resulting from the contamination test. It provides
a very interesting view on the expression data supported by the graph-structure of
the Gene Ontology. The root-node is always positive, the smaller the GO-nodes are,
the less significant ones can be identified. This property of the test allows for gener-
ating a hypothesis on the question, which branches of the Gene Ontology are mainly
affected by differential gene-expression. The difference of the breast-cancer samples
for example does not equally affect all the sub-branches of the Gene Ontology. We
can show, that the node ”apoptotic program”, its children, grandchildren and so on
are not differentially expressed. So, the contamination test allows insight, that sup-
ports for example the identification of whole processes that may be the target for new
approaches in therapy. Both, the result of the accumulation and the contamination
test is supported by the graphical user interface we implement for this purposes.

Biology is sometimes said to be a ”knowledge based” rather than ”axiom based”
discipline [1]. The current work tries to combine the biological knowledge with the
statistical analysis of microarray-data. It does not claim being the perfect solution to
the problem. But, the analysis of large-scale gene-expression data requires an under-
standing of complex statistical methods on the one hand and a competent biological
expertise on the other hand. Our Gene Ontology approach makes the microarray-data
accessible in a form that highly supports a manual inspection by a molecular-biologist.
The results from our method remain to be validated by additional molecular-biological
experiments. But, the hypothesizes for these experiments can be generated much more
effective.
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